JPH027856A - Manufacturing device for rotor of rotary electric machine - Google Patents

Manufacturing device for rotor of rotary electric machine

Info

Publication number
JPH027856A
JPH027856A JP32667588A JP32667588A JPH027856A JP H027856 A JPH027856 A JP H027856A JP 32667588 A JP32667588 A JP 32667588A JP 32667588 A JP32667588 A JP 32667588A JP H027856 A JPH027856 A JP H027856A
Authority
JP
Japan
Prior art keywords
rotor
cavity
mold
burr
cylindrical cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32667588A
Other languages
Japanese (ja)
Inventor
Takeshi Anpo
安保 武志
Eisaku Fujimoto
栄作 藤本
Takahiro Motone
元根 隆博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP32667588A priority Critical patent/JPH027856A/en
Publication of JPH027856A publication Critical patent/JPH027856A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To omit work for removing burr after molding and prevent the efficiency of work from being lowered, by opening a pin point gate at a projecting section inside a cavity. CONSTITUTION:A fused mixture is injected in a cavity 18, and a previously set rotary shaft 40 is fixed in a state that the shaft 40 is inserted through the central section of a cylindrical resin magnet 52 molded in the cavity 18, and a rotor for a rotary electric machine is obtained. In this case, the resin magnet remains at a pin point gate 30, and so when the mold of the rotor is removed from the cavity 18, then burr 15 remains on the end surface of the rotor. However, a metallic mold 20 is provided with a projecting section 28 projected inside the cavity 18, and so on the end surface of the rotor, a recessed section 39 is molded at the same time. The burr 15 is to be projected to the recessed section 39, and burr removing work for removing the burr is not needed in particular, and there is no problem even if the burr is left as it is.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、異方性円筒状磁石に回転軸を一体的に取付
けた回転電機用ロータを製造するに際し、金型から該ロ
ータを脱型した後に、煩雑なパリ取り作業を不要とし得
る回転電機用ロータの製造装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention is applicable to the production of a rotor for a rotating electric machine in which a rotating shaft is integrally attached to an anisotropic cylindrical magnet, after the rotor is removed from a mold. The present invention relates to an apparatus for manufacturing a rotor for a rotating electrical machine that can eliminate the need for complicated deburring operations.

従来技術 回転電機用のロータ、例えば自転車の発電機に使用され
る円筒状磁石に回転軸を挿通固定してなるロータは、従
来より以下に説明する工程を経て製造されている。すな
わち、Baフェライト磁石粉末またはSrフェライト磁
石粉末の如き、等方性フェライトの強磁性粉末に少量の
バインダーを添加し、約1〜2t/adの圧力でプレス
成形して、中心に貫通孔を有する円筒状の成形体を得る
。この成形体を、1150℃〜1250℃の高温で焼結
し、外周をセンターレス加工により研磨して口−タ本体
1oを製造する(第1図)。次いで1回転軸12をロー
タ本体10の中心貫通孔14に挿通し、第2図に示す如
く、熱硬化性接着剤16を充填塗布して加熱固化させた
後、着磁ヨークを使用して、Nt!、S極が交互になる
よう多極着磁することにより磁石ロータを完成するもの
である。第3図に、この一連の製造工程の概略を示す。
2. Description of the Related Art A rotor for a rotating electric machine, for example, a rotor used in a bicycle generator, in which a rotating shaft is inserted and fixed to a cylindrical magnet, has been conventionally manufactured through the steps described below. That is, a small amount of binder is added to isotropic ferrite ferromagnetic powder such as Ba ferrite magnet powder or Sr ferrite magnet powder, and the mixture is press-molded at a pressure of about 1 to 2 t/ad to form a through hole in the center. A cylindrical molded body is obtained. This molded body is sintered at a high temperature of 1150 DEG C. to 1250 DEG C., and the outer periphery is polished by centerless processing to produce a mouthpiece body 1o (FIG. 1). Next, the one-rotation shaft 12 is inserted into the center through hole 14 of the rotor body 10, and as shown in FIG. Nt! , the magnet rotor is completed by multi-pole magnetization so that the south poles alternate. FIG. 3 shows an outline of this series of manufacturing steps.

前述した従来技術に係る回転電機用ロータの製造方法は
、多くの工程数を要すると共に、該方法により得られた
ロータ回転軸は、その芯出し精度が低く、芯振れを生じ
易い難点がある。これは。
The method of manufacturing a rotor for a rotating electric machine according to the prior art described above requires a large number of steps, and the rotor rotating shaft obtained by the method has a drawback that the centering accuracy is low and center runout is likely to occur. this is.

プレス成形後の焼結時における熱影響により、貫通孔1
4の内径が変動することに起因するが、コスト上の制約
から、内径研磨までは出来ないのが現状である。また1
等方性フェライト磁石粉末では、前記のように焼結後に
着磁するが、粉末粒子の配列は既に固定しているため、
該粒子の磁化容易軸を磁化方向に揃えて配向度を高める
ことはできず、従って磁気特性の向上にも限界があった
Due to the heat effect during sintering after press forming, through hole 1
This is due to the fact that the inner diameter of 4 varies, but at present it is not possible to polish the inner diameter due to cost constraints. Also 1
Isotropic ferrite magnet powder is magnetized after sintering as described above, but the arrangement of the powder particles is already fixed, so
It is not possible to increase the degree of orientation by aligning the axis of easy magnetization of the particles with the magnetization direction, and therefore there is a limit to the improvement of magnetic properties.

そこで、特公昭47−35721号公報に開示される「
複数極の磁界を印加しつつ強磁性粉末と合成樹脂との溶
融混合物をキャビティ中に射出し、該混合物を冷却固化
させて異方性磁石を成形する製造方法」並びに特公昭3
5−8857号公報に開示される「キャビティ中に細心
を一致させてロータ回転軸を臨ませることにより磁石を
成形する製法」等の技術を前提として、以下の如き回転
電機用ロータの製造方法が提案される。すなわち、金型
の円筒状キャビティ中に軸心を一致させてロータ回転軸
を臨ませ、前記円筒状キャビティの半径方向外側から等
分割された複数極の磁界を印加しつつ強磁性粉末と合成
樹脂との溶融混合物を該キャビティ中に射出し、次いで
前記混合物を冷却固化させることにより、回転軸が挿通
固定された円筒状異方性磁石からなる回転電機用ロータ
を得るというものである。この方法によれば、回転軸の
芯出し精度を向上させて芯振れをなくし、併せて磁気特
性を大幅に向上させた回転電機用ロータが製造される。
Therefore, as disclosed in Japanese Patent Publication No. 47-35721,
A manufacturing method in which a molten mixture of ferromagnetic powder and synthetic resin is injected into a cavity while applying a multi-pole magnetic field, and the mixture is cooled and solidified to form an anisotropic magnet.''
The following method of manufacturing a rotor for a rotating electric machine is based on the technology disclosed in Japanese Patent No. 5-8857, "A manufacturing method of molding a magnet by aligning the rotor rotating shaft meticulously in a cavity so as to face it." Suggested. That is, the axis of rotation of the rotor is aligned in the cylindrical cavity of the mold, and the rotor rotation axis is exposed, and the ferromagnetic powder and the synthetic resin are applied while applying a magnetic field of multiple equally divided poles from the outside in the radial direction of the cylindrical cavity. By injecting a molten mixture of and into the cavity, and then cooling and solidifying the mixture, a rotor for a rotating electrical machine made of a cylindrical anisotropic magnet into which a rotating shaft is inserted and fixed is obtained. According to this method, a rotor for a rotating electric machine is manufactured that improves the centering accuracy of the rotating shaft, eliminates center runout, and significantly improves magnetic properties.

発明が解決しようとするi題 前記磁場射出成型に用いられる金型は、キャビティ中に
溶融混合物を射出する導入路としてスプルーおよびこれ
に連通ずるゲートを備えるが、後者のゲートとしては、
その直径が極めて小さい所謂ピンポイントゲートが使用
される。しかしこのピンポイントゲートでは、射出終了
時に溶融混合物が該ゲート中に残留固化するので、キャ
ビティからロータを脱型した際に、第4図に示す如く、
樹脂磁石の固化したパリ15が痕跡として残留し該ロー
タ1oの開放端部から突出することになる。
Problem to be Solved by the Invention The mold used in the magnetic field injection molding is equipped with a sprue and a gate communicating with the sprue as an introduction path for injecting the molten mixture into the cavity.
A so-called pinpoint gate whose diameter is extremely small is used. However, with this pinpoint gate, the molten mixture remains solidified in the gate at the end of injection, so when the rotor is removed from the cavity, as shown in FIG.
The solidified particles 15 of the resin magnet remain as traces and protrude from the open end of the rotor 1o.

このためロータ成形後に、パリ取りを別途行なう煩雑な
作業が必要となるが、これは作業効率を低下させる大き
な要因となっている。
For this reason, after the rotor molding, the complicated work of separately performing deburring is required, which is a major factor in reducing work efficiency.

発明の目的 本発明は、回転電機用ロータの製造装置に内在している
前記欠点を、好適に解決するべく案出されたものであっ
て、円筒状磁石に回転軸を挿通したロータを製造するに
際し、射出成型後のロータからパリを除去する必要をな
くし得る回転電機用ロータの製造装置を提供することを
目的とする。
OBJECTS OF THE INVENTION The present invention was devised to suitably solve the above-mentioned drawbacks inherent in rotor manufacturing apparatuses for rotating electric machines, and includes manufacturing a rotor in which a rotating shaft is inserted through a cylindrical magnet. It is an object of the present invention to provide an apparatus for manufacturing a rotor for a rotating electric machine, which eliminates the need to remove particles from a rotor after injection molding.

課題を解決するための手段 先の課題を克服し、所期の目的を達成するため本発明は
1円筒状キャビティを画成する非磁性体からなる金型と
、着磁コイルに接続しかつ前記円筒状キャビティの半径
方向外周に等中心角で臨む強磁性体からなる複数極の着
磁ヨークと、円筒状キャビティの底部中央に穿設したロ
ータ回転軸挿通用の貫通孔と、前記貫通孔に隣接して穿
設した貫通孔から昇降自在に突出可能なノックアウトピ
ンと、円筒状キャビティの開口部を開閉自在に閉塞する
非磁性体からなる金型と、前記開閉自在な非磁性体金型
に穿設したピンポイントゲートとからなる回転電機用ロ
ータの製造装置において、前記円筒状キャビティの開口
部を開閉自在に閉塞する非磁性体金型に、該キャビティ
の内方に向けて突出する隆起部を設け、この隆起部に前
記ピンポイントゲートを開口させるよう構成したことを
特徴とする。
Means for Solving the Problems In order to overcome the above problems and achieve the intended purpose, the present invention comprises a mold made of a non-magnetic material defining one cylindrical cavity, connected to a magnetizing coil, and A multi-pole magnetized yoke made of a ferromagnetic material facing the radial outer periphery of the cylindrical cavity at equal central angles, a through hole for inserting the rotor rotating shaft formed in the center of the bottom of the cylindrical cavity, and a through hole in the through hole. A knockout pin that can be raised and lowered to protrude from a through hole drilled adjacent to it, a mold made of a non-magnetic material that can freely open and close the opening of the cylindrical cavity, and a mold made of a non-magnetic material that can be opened and closed. In an apparatus for manufacturing a rotor for a rotating electric machine, the non-magnetic mold for freely opening and closing the opening of the cylindrical cavity is provided with a protrusion protruding inward of the cavity. and the pinpoint gate is configured to open in this raised portion.

実施例 次に、本願発明に係る回転電機用ロータの製造装置につ
き、好適な実施例を挙げて、添付図面を参照しながら以
下説明する。先ず、第5図に示す回転電機用ロータ製造
装置の一実施例において、参照符号18は金型中に形成
される円筒状キャビティを示し、このキャビティ18は
非磁性体からなる固定側金型20により、底部22およ
び円筒状内周壁面が画成されている。また第6図に示す
ように、キャビティ18の半径方向外周には、等中心角
で複数極の強磁性体からなる着磁ヨーク24が配設され
、各着磁ヨーク24の先端がキャビティ18内に直接臨
んで、該キャビティ18の内周壁面の一部を形成するよ
うになっている。
Embodiment Next, a preferred embodiment of the apparatus for manufacturing a rotor for a rotating electrical machine according to the present invention will be described below with reference to the accompanying drawings. First, in one embodiment of the rotor manufacturing apparatus for a rotating electrical machine shown in FIG. 5, reference numeral 18 indicates a cylindrical cavity formed in a mold, and this cavity 18 is connected to a fixed side mold 20 made of a non-magnetic material. The bottom portion 22 and a cylindrical inner circumferential wall surface are defined by this. Further, as shown in FIG. 6, magnetizing yokes 24 made of a ferromagnetic material having multiple poles at equal central angles are arranged on the radial outer circumference of the cavity 18, and the tip of each magnetizing yoke 24 is located inside the cavity 18. It faces directly to form a part of the inner circumferential wall surface of the cavity 18.

前記着磁ヨーク24は、4極以上の偶数個で構成され、
S@およびNi2が交互になるよう所定の中心角で配設
されるものであって、本実施例では4極構造となってい
る。また、着磁ヨーク24は図示しない着磁コイルに接
続され、この着磁コイルを励起することにより、前記円
筒状キャビティ18中に強磁界が印加される。
The magnetizing yoke 24 is composed of an even number of four or more poles,
S@ and Ni2 are arranged alternately at a predetermined central angle, and the present embodiment has a four-pole structure. Further, the magnetizing yoke 24 is connected to a magnetizing coil (not shown), and by exciting the magnetizing coil, a strong magnetic field is applied within the cylindrical cavity 18.

円筒状キャビティ18の開口部上方には、該開口部を開
閉自在に閉塞する非磁性体からなる可動金型26が昇降
自在に配設されている。この可動金型26がキャビティ
18の開口部に臨む部分には、キャビティ内方に向けて
若干突出する円錐台形の隆起部28が一体的に形成され
、この隆起部28に、後述する溶融混合物射出用のピン
ポイントゲート30が垂直に穿設されている。また、可
動金型26の上方に、非磁性体からなる更に別の可動金
型32が昇降自在に配設され、可動金型26の頂部と可
動金型32との合わせ境界面には。
A movable mold 26 made of a non-magnetic material is disposed above the opening of the cylindrical cavity 18 so as to be movable up and down, and which can open and close the opening. A truncated conical protuberance 28 that slightly protrudes inward of the cavity is integrally formed in the portion of the movable mold 26 facing the opening of the cavity 18. A pinpoint gate 30 for use is vertically drilled. Furthermore, another movable mold 32 made of a non-magnetic material is disposed above the movable mold 26 so as to be movable up and down, and at the interface between the top of the movable mold 26 and the movable mold 32.

図示の如くランナ34が形成されると共に、このランナ
34は、可動金型32に穿設したスプルー36およびノ
ズル口38に連通接続している。なお、各金型20,2
6および32を構成する非磁性体としては、例えばオー
ステナイト系ステンレスが好適に使用される。
As shown in the figure, a runner 34 is formed, and this runner 34 is connected to a sprue 36 and a nozzle port 38 formed in the movable mold 32. In addition, each mold 20, 2
As the non-magnetic material constituting 6 and 32, for example, austenitic stainless steel is preferably used.

また円筒状キャビティ18の底部22を形成する固定金
型20には、その底部中央において、後述する如く、ロ
ータ回転軸40を挿通するための貫通孔42が垂直に穿
設されている。この場合、貫通孔42の内径は、回転軸
40の外径に対し2/100〜3/100程度の環状細
隙が形成されるよう予め寸法設定してあり、更に貫通孔
42の略中間から下方には、大径の段付孔部44が一体
的に形成しである。これは射出成形後にロータを脱型す
るに際し1回転軸40が貫通孔42の内壁と接触する摩
擦抵抗を軽減させるためである。
Further, the fixed mold 20 forming the bottom 22 of the cylindrical cavity 18 has a through hole 42 vertically bored in the center of the bottom for inserting the rotor rotation shaft 40, as will be described later. In this case, the inner diameter of the through hole 42 is set in advance so that an annular gap of about 2/100 to 3/100 of the outer diameter of the rotating shaft 40 is formed, and furthermore, from approximately the middle of the through hole 42 A large-diameter stepped hole 44 is integrally formed at the bottom. This is to reduce the frictional resistance caused by the one-rotation shaft 40 coming into contact with the inner wall of the through hole 42 when the rotor is demolded after injection molding.

また、前記中心貫通孔42の周囲に隣接して複数の貫通
孔46が穿設され(第5図)、この貫通孔46にノック
アウトピン48が昇降自在に挿通され、キャビティ18
中に突出可能となっている。
Further, a plurality of through holes 46 are bored adjacent to the center through hole 42 (FIG. 5), and a knockout pin 48 is inserted through the through holes 46 so as to be able to move up and down.
It is possible to protrude inside.

なお、中心貫通孔42の外部開放端には、当板50を着
脱自在に位置させ、この当板50により回転軸40のキ
ャビティ中での位置規制をさせるのが好ましい。
Note that it is preferable that a contact plate 50 is removably positioned at the external open end of the center through hole 42, and that the position of the rotating shaft 40 in the cavity is regulated by the contact plate 50.

実施例の作用 このように構成した実施例に係る製造装置の使用の実際
につき1次に説明する。先ず、第5図に示す如く、円筒
状キャビティ18の底部に穿設した貫通孔42中に回転
軸40を挿通して、該回転軸40の軸心をキャビティ1
8の軸心と一致させる。この場合、中心貫通孔42の下
部開口を当板5oで閉塞することにより1回転軸40の
端部はこの当板50に当接して所定の位置規制がなされ
、従って回転軸4oは常に所定寸法長だけ該キャビティ
18中に臨むようセットされることになる。
Effects of the Embodiment The actual use of the manufacturing apparatus according to the embodiment configured as described above will now be explained first. First, as shown in FIG. 5, the rotating shaft 40 is inserted into the through hole 42 bored at the bottom of the cylindrical cavity 18, and the axis of the rotating shaft 40 is aligned with the cavity
Align it with the axis of 8. In this case, by closing the lower opening of the center through hole 42 with the contact plate 5o, the end of the one-rotation shaft 40 comes into contact with the contact plate 50 and is regulated in a predetermined position, so that the rotation shaft 4o always has a predetermined size. It is set so that it faces into the cavity 18 by the length.

次いで、磁気異方性定数の大きい強磁性粉末と合成樹脂
とからなる混合物を加熱溶融し、この溶融混合物を前記
可動金型32のノズル口38から注入し、スプルー34
およびピンポイントゲート30を介して円筒状キャビテ
ィ18中に射出する。
Next, a mixture consisting of a ferromagnetic powder with a large magnetic anisotropy constant and a synthetic resin is heated and melted, and this molten mixture is injected from the nozzle port 38 of the movable mold 32 and the sprue 34
and inject into the cylindrical cavity 18 through the pinpoint gate 30.

また、これと同期して図示しない着磁コイルを励磁し、
前記着磁ヨーク24を介してキャビティ18に半径方向
外方から強磁界を印加する。このように磁石粉末と合成
樹脂との混合物が溶融状態にあり5粒子配列が固まって
いない間に複数極の磁界を印加することによって、磁石
粉末粒子の磁化容易軸を半径方向に配向させることがで
き、磁気特性の優れた円筒状異方性磁石がキャビティ1
8中に成形される。この円筒状異方性磁石の粒子の磁化
容易軸が、磁化方向に配向された状態の概略を第8図に
示す。
Also, in synchronization with this, a magnetizing coil (not shown) is excited,
A strong magnetic field is applied to the cavity 18 from the outside in the radial direction via the magnetizing yoke 24. In this way, by applying a multi-pole magnetic field while the mixture of magnet powder and synthetic resin is in a molten state and the five-particle arrangement is not solidified, it is possible to orient the axis of easy magnetization of the magnet powder particles in the radial direction. A cylindrical anisotropic magnet with excellent magnetic properties is placed in cavity 1.
It is molded into 8. FIG. 8 schematically shows a state in which the easy axis of magnetization of the particles of this cylindrical anisotropic magnet is oriented in the magnetization direction.

実施例に使用される磁気異方性定数の大きい強磁性粉末
としては、例えばBaフェライト磁石粉末またはSrフ
ェライト磁石粉末、または希土類磁石粉末(RCos型
またはR2O,,17型。ここにRは希土類元素の一種
以上を示す)、その地異方性マンガンアルミ(Mn−A
I−C)磁石粉末等が好適に使用される。なお、これら
の強磁性粉末の粒子径は、単磁区粒子径付近にあるもの
とするのが望ましい。
Examples of the ferromagnetic powder with a large magnetic anisotropy constant used in the examples include Ba ferrite magnet powder, Sr ferrite magnet powder, or rare earth magnet powder (RCos type or R2O, 17 type, where R is a rare earth element. ), the locally anisotropic manganese aluminum (Mn-A
I-C) Magnet powder etc. are preferably used. Note that it is desirable that the particle diameter of these ferromagnetic powders be around the single magnetic domain particle diameter.

合成樹脂は有機バインダーとして使用され、例えば熱可
塑性樹脂として、ポリエチレン、ナイロン。
Synthetic resins are used as organic binders, such as thermoplastics, polyethylene, nylon.

ポリプロピレン、ポリフェニールサイファイドが、また
熱硬化性樹脂として、フェノール、エポキシ等が使用可
能である。また、強磁性粉末と合成樹脂との望ましい配
合割合は、磁石粉末体積率で約50〜65%である。更
に、射出成形時の溶融混合物の成形温度は150〜35
0℃の範囲が望ましく、また印加される磁界は3000
0s以上とする必要がある。
Polypropylene and polyphenyl cyphide can be used, and as the thermosetting resin, phenol, epoxy, etc. can be used. Further, a desirable blending ratio of the ferromagnetic powder and the synthetic resin is about 50 to 65% in volume fraction of the magnet powder. Furthermore, the molding temperature of the molten mixture during injection molding is 150 to 35
The temperature range is preferably 0°C, and the applied magnetic field is 3000°C.
It is necessary to set it to 0s or more.

このようにして溶融混合物がキャビティ18中に射出さ
れ、磁化した後冷却固化する結果として、キャビティ1
8中に臨むよう予めセットされていた回転軸40は、キ
ャビティ18中で成形された円筒状樹脂磁石52の中心
部に挿通された状態で一体的に固定され、第7図に示す
如き回転電機用ロータが得られる。この場合に、射出終
了時のピンポイントゲート30には、固化した樹脂磁石
が残留するため、キャビティ18からロータを脱型した
際に該ロータ端面には、パリ15が突出的に残留するこ
とになる。しかし先に述べた如く、金型20にはキャビ
ティ18の内方に向は突出する隆起部28が設けられて
いるので、成型されたロータの前記一端面には、前記隆
起部28に対応する陥凹部39が同時に成形される。そ
して前記パリ15は、この陥凹部39の中央に突出する
ことになるので、特にこれを除去するパリ取り作業はす
る必要がなく、このまま残しておいて差支えがない。な
お本実施例では、自転車用発電機のロータについて説明
したが、その他面流電動機のロータ等の如く、回転電機
一般の磁石ロータの製造に広く好適に使用される。
In this way, the molten mixture is injected into the cavity 18, magnetized, and then cooled and solidified.
The rotating shaft 40, which was set in advance so as to face inside the cavity 18, is inserted into the center of the cylindrical resin magnet 52 molded in the cavity 18 and is integrally fixed therein. A rotor for use is obtained. In this case, since the solidified resin magnet remains in the pinpoint gate 30 at the end of injection, when the rotor is demolded from the cavity 18, the particles 15 remain protrudingly on the end face of the rotor. Become. However, as mentioned above, since the mold 20 is provided with a protrusion 28 that protrudes inward from the cavity 18, the one end surface of the molded rotor has a portion corresponding to the protrusion 28. A recess 39 is formed at the same time. Since the burr 15 protrudes into the center of the recessed portion 39, there is no need to perform a burr removing operation to remove it, and there is no problem in leaving it as is. In this embodiment, a rotor for a bicycle generator has been described, but the present invention can be widely and suitably used in manufacturing magnet rotors of general rotating electric machines, such as rotors of other surface current motors.

発明の効果 以上に説明した如く、本発明に係る回転電機用ロータの
製造装置によれば、円筒状キャビティの開口部を開閉自
在に閉塞する非磁性体金型に、該キャビティの内方に向
は突出する隆起部を設け。
Effects of the Invention As explained above, according to the apparatus for manufacturing a rotor for a rotating electric machine according to the present invention, a non-magnetic mold that can open and close the opening of a cylindrical cavity is provided with a mold that is directed inward of the cavity. has a protruding ridge.

この隆起部にピンポイントゲートを開口させるよう構成
しである。従って、磁場中に射出成型されて得られたロ
ータの一端面には、前記隆起部に対応する陥凹部が同時
に成形されることになる。しかも、ピンポイントゲート
中で残留固化する樹脂磁石は、この陥凹部の中央におい
てパリとして突出するだけであるので、これを残してお
いても何等差支えがない。従って、煩雑なパリ取り作業
が不要になると共に、要求される品質基準も低下させる
懸念がない、等の有益な効果が得られるものである。
The configuration is such that a pinpoint gate is opened in this raised portion. Therefore, on one end surface of the rotor obtained by injection molding in a magnetic field, a recess corresponding to the protrusion is simultaneously molded. Furthermore, since the resin magnet remaining and solidified in the pinpoint gate only protrudes as a lump at the center of this recess, there is no problem in leaving it alone. Therefore, beneficial effects such as no need for complicated deburring work and no fear of lowering the required quality standards can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来技術に係る回転電機用ロータへの回転軸取
付状態を示す斜視図、第2図は従来技術に係るロータの
縦断面図、第3図は従来技術に係るロータの製造手順の
概略を示す工程図、第4図は磁場射出成型により製造し
た回転電機用ロータにおいて、その開放端部にパリが突
出的に残留している状態を示す縦断面図、第5図は本発
明の実施例に係る製造装置の縦断面図、第6図は第5図
のA−A線横断面図、第7図は本発明により製造した回
転電機用ロータの縦断面図、第8図は第7図に示す円筒
状磁石の粒子配向を示す説明図である。 18・・・円筒状キャビティ 20・・・固定側金型   24・・・着磁ヨーク26
・・・可動側金型   28・・・隆起部30・・・ピ
ンポイントゲート 40・・・ロータ回転軸  42・・・貫通孔48・・
・ノソクアウトビン FIG、1 FIG、4 ]4 5フ FrG、3 FIG、2 FIG、7 FIG、8 (後図面なし)
Fig. 1 is a perspective view showing how a rotating shaft is attached to a rotor for a rotating electric machine according to the prior art, Fig. 2 is a longitudinal cross-sectional view of the rotor according to the prior art, and Fig. 3 is a manufacturing procedure for a rotor according to the prior art. 4 is a longitudinal cross-sectional view showing a rotor for a rotating electric machine manufactured by magnetic field injection molding, with pars remaining prominently at the open end thereof; FIG. 6 is a cross-sectional view taken along the line A-A in FIG. 5, FIG. 7 is a vertical cross-sectional view of a rotor for a rotating electrical machine manufactured according to the present invention, and FIG. 8 is a vertical sectional view of a manufacturing apparatus according to an embodiment. 8 is an explanatory diagram showing the particle orientation of the cylindrical magnet shown in FIG. 7. FIG. 18... Cylindrical cavity 20... Fixed side mold 24... Magnetizing yoke 26
...Movable side mold 28...Protuberance 30...Pinpoint gate 40...Rotor rotation shaft 42...Through hole 48...
・Output bin FIG, 1 FIG, 4 ] 4 5 FrG, 3 FIG, 2 FIG, 7 FIG, 8 (No rear drawing)

Claims (1)

【特許請求の範囲】 円筒状キャビティ(18)を画成する非磁性体からなる
金型(20)と、着磁コイルに接続しかつ前記円筒状キ
ャビティ(18)の半径方向外周に等中心角で臨む強磁
性体からなる複数極の着磁ヨーク(24)と、円筒状キ
ャビティ(18)の底部中央に穿設したロータ回転軸挿
通用の貫通孔(42)と、前記貫通孔(42)に隣接し
て穿設した貫通孔(46)から昇降自在に突出可能なノ
ックアウトピン(48)と、円筒状キャビティ(18)
の開口部を開閉自在に閉塞する非磁性体からなる金型(
26)と、前記開閉自在な非磁性体金型(26)に穿設
したピンポイントゲート(30)とからなる回転電機用
ロータの製造装置において、前記円筒状キャビティ(1
8)の開口部を開閉自在に閉塞する非磁性体金型(20
)に、該キャビティ(18)の内方に向けて突出する隆
起部(28)を設け、この隆起部(28)に前記ピンポ
イントゲート(30)を開口させるよう構成した ことを特徴とする回転電機用ロータの製造装置。
[Claims] A mold (20) made of a non-magnetic material that defines a cylindrical cavity (18), and a mold (20) connected to a magnetizing coil and having an equicentral angle on the radial outer circumference of the cylindrical cavity (18). A multi-pole magnetized yoke (24) made of a ferromagnetic material facing the cylindrical cavity (18), a through hole (42) for inserting the rotor rotating shaft bored in the center of the bottom of the cylindrical cavity (18), and the through hole (42) A knockout pin (48) that can be raised and lowered to protrude from a through hole (46) bored adjacent to the cylindrical cavity (18).
A mold made of a non-magnetic material that can open and close the opening of the
26) and a pinpoint gate (30) formed in the openable and closable non-magnetic mold (26), wherein the cylindrical cavity (1
8) A non-magnetic mold (20
) is provided with a protrusion (28) projecting inward of the cavity (18), and the pinpoint gate (30) is configured to open in the protrusion (28). Manufacturing equipment for electrical rotors.
JP32667588A 1988-12-23 1988-12-23 Manufacturing device for rotor of rotary electric machine Pending JPH027856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32667588A JPH027856A (en) 1988-12-23 1988-12-23 Manufacturing device for rotor of rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32667588A JPH027856A (en) 1988-12-23 1988-12-23 Manufacturing device for rotor of rotary electric machine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP58009034A Division JPS59136053A (en) 1983-01-21 1983-01-21 Method and equipment for manufacturing rotor for rotary electric machine

Publications (1)

Publication Number Publication Date
JPH027856A true JPH027856A (en) 1990-01-11

Family

ID=18190405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32667588A Pending JPH027856A (en) 1988-12-23 1988-12-23 Manufacturing device for rotor of rotary electric machine

Country Status (1)

Country Link
JP (1) JPH027856A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0617382U (en) * 1992-07-27 1994-03-04 東京電気株式会社 PM type stepping motor
JP2009115235A (en) * 2007-11-07 2009-05-28 Ntn Corp Constant velocity universal joint
EP3171475A1 (en) 2015-11-20 2017-05-24 Mitsubishi Heavy Industries, Ltd. Power supply protector and air-conditoning system including the same, and method for manufacturing power supply protector

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5230560U (en) * 1975-08-23 1977-03-03
JPS5364731A (en) * 1976-11-19 1978-06-09 Matsushita Electric Ind Co Ltd Method of manufacturing gasket for battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5230560U (en) * 1975-08-23 1977-03-03
JPS5364731A (en) * 1976-11-19 1978-06-09 Matsushita Electric Ind Co Ltd Method of manufacturing gasket for battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0617382U (en) * 1992-07-27 1994-03-04 東京電気株式会社 PM type stepping motor
JP2009115235A (en) * 2007-11-07 2009-05-28 Ntn Corp Constant velocity universal joint
EP3171475A1 (en) 2015-11-20 2017-05-24 Mitsubishi Heavy Industries, Ltd. Power supply protector and air-conditoning system including the same, and method for manufacturing power supply protector

Similar Documents

Publication Publication Date Title
US4441875A (en) Mold apparatus for forming article under influence of magnetic field
JP2006217702A (en) Manufacturing method of motor stator , motor rotor, and motor core
JPH027856A (en) Manufacturing device for rotor of rotary electric machine
JPS5853491B2 (en) Manufacturing method of anisotropic ring-shaped resin magnet
JPS6252913A (en) Method and device for manufacture of multipolar anisotropic cylindrical magnet
JPS59136054A (en) Specifying method of axial position of rotational shaft of rotor and apparatus for executing the same
US4904175A (en) Magnetic plastic rotor disk manufacturing apparatus
JPH02178011A (en) Manufacture of annular permanent magnet, annular permanent magnet manufactured thereby and mold for annular permanent magnet
JPS59136053A (en) Method and equipment for manufacturing rotor for rotary electric machine
JPH0382350A (en) Electric motor field rotor and manufacture thereof
JPH0439214B2 (en)
JPH071726B2 (en) Anisotropic resin magnet and manufacturing method thereof
JPS60931B2 (en) Anisotropic magnet manufacturing method and manufacturing device
JPS61230309A (en) Metallic mold for magnetic field formation
JPH0138903Y2 (en)
JPH03274413A (en) Magnetic encoder
JPH0629139A (en) Anisotropic resin magnet with functional member
JPS6351613A (en) Manufacture of plastic magnet
JPS59165633A (en) Method and apparatus for applying multipolar magnetic field to plurality of cavity demarcated to magnetic field injection molding die
JPS5849012B2 (en) Manufacturing method of anisotropic cylindrical polymer magnet
JPH01275116A (en) Manufacturing device for rotary plastic magnet
JPS58218858A (en) Manufacture of permanent magnet for rotary machine
JPS5849011B2 (en) Manufacturing method of anisotropic cylindrical polymer magnet
JPS61125010A (en) Method and device for manufacturing multipolar anisotropic cylindrical magnet
JPS60202912A (en) Manufacture of anisotropic magnet roll