JPH0138903Y2 - - Google Patents

Info

Publication number
JPH0138903Y2
JPH0138903Y2 JP6149984U JP6149984U JPH0138903Y2 JP H0138903 Y2 JPH0138903 Y2 JP H0138903Y2 JP 6149984 U JP6149984 U JP 6149984U JP 6149984 U JP6149984 U JP 6149984U JP H0138903 Y2 JPH0138903 Y2 JP H0138903Y2
Authority
JP
Japan
Prior art keywords
magnetic
magnetic body
mold
cavity
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6149984U
Other languages
Japanese (ja)
Other versions
JPS60174228U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP6149984U priority Critical patent/JPS60174228U/en
Publication of JPS60174228U publication Critical patent/JPS60174228U/en
Application granted granted Critical
Publication of JPH0138903Y2 publication Critical patent/JPH0138903Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Description

【考案の詳細な説明】 本考案は磁石粉末と重合体材料との混合物を磁
界中で射出成形して、異方性樹脂磁石を製造する
際に用いられる金型に関するものである。
[Detailed Description of the Invention] The present invention relates to a mold used when manufacturing an anisotropic resin magnet by injection molding a mixture of magnet powder and a polymer material in a magnetic field.

直流モーターや燃料計等の回転機器に用いられ
ている2極着磁磁石は小型で精密な寸法形状と大
きな磁束を持つものが要求されている。この要求
を満たすため、保磁力の高いバリウムフエライト
やストロンチウムフエライト等を高温(約1150
℃)で焼いた焼結磁石が主として使用されている
が、高温で焼結されるために焼結体の外観に歪が
生じ易く、通常研摩加工によつている。
BACKGROUND ART Two-pole magnetized magnets used in rotating equipment such as DC motors and fuel gauges are required to be small, have precise dimensions and shapes, and have a large magnetic flux. To meet this requirement, barium ferrite, strontium ferrite, etc. with high coercive force are used at high temperatures (approximately 1150
Sintered magnets sintered at temperatures (°C) are mainly used; however, because they are sintered at high temperatures, the appearance of the sintered bodies tends to be distorted, so they are usually subjected to polishing.

一方、上記焼結法の欠点を改善するために、重
合体材料と磁石粉末との混合物を加熱状態で磁界
を印加しながら射出成形することにより、半径方
向放射状に磁石粉末を配向させた寸法精度の良好
な回転機用の筒状異方性樹脂磁石が得られること
も知られている(例えば、特公昭58−53491号公
報)。しかしながらこの方法では、円盤や細長い
円筒・円柱形状でその軸と垂直になる外周面に2
極着磁しても大きな磁石密度のプラスチツク磁石
は得られない。また一般的に行われている金型型
開き方向に磁界を印加し、且つ型開き方向と垂直
になる様に円柱・円筒状キヤビテイの軸方向を配
して、その外周方向に2極配向(以後外周2極異
方性と呼ぶ)した場合には十分な配向により大き
な磁東密度が得られるが、磁石にシヤフト等のイ
ンサートを行う場合はシヤフトの固定が難しく、
また円筒・円柱の外周面にパーテイングライン
(金型合せ面での線)ができて表面がなめらかに
ならないため、燃料計やモーターのローターには
使用できないという欠点がある。
On the other hand, in order to improve the drawbacks of the above-mentioned sintering method, by injection molding a mixture of polymer material and magnet powder while applying a magnetic field in a heated state, the dimensional accuracy of the magnet powder was oriented radially in the radial direction. It is also known that a cylindrical anisotropic resin magnet for rotating machines with good properties can be obtained (for example, Japanese Patent Publication No. 58-53491). However, with this method, there are two
Even with polar magnetization, a plastic magnet with a large magnetic density cannot be obtained. In addition, a magnetic field is applied in the general mold opening direction, and the axial direction of the cylinder/cylindrical cavity is arranged perpendicular to the mold opening direction, and the bipolar orientation ( (Hereafter referred to as periphery bipolar anisotropy), a large magnetic east density can be obtained with sufficient orientation, but when inserting a shaft into the magnet, it is difficult to fix the shaft.
Another drawback is that it cannot be used for fuel gauges or motor rotors because parting lines (lines at the mold mating surface) are formed on the outer circumferential surface of cylinders and cylinders, making the surface unsmooth.

本考案者は上記の如き欠点のない外周2極異方
性プラスチツク磁石等を得るための金型について
鋭意検討した結果、円柱、円盤及び円筒キヤビテ
イの軸方向を金型型開き方向と平行とし、磁性材
と非磁性材とを特定の組合せで配置した金型を用
いると、電磁石コイルで型開き方向に発生させた
磁束の流れをキヤビテイ部で垂直に曲げ、キヤビ
テイの外周方向に磁界を印加でき、前記の如き欠
点が改善されることを見出し、本考案を完成する
に至つた。
As a result of intensive study on a mold for obtaining an anisotropic plastic magnet with a bipolar outer circumference free from the above-mentioned drawbacks, the present inventor made the axial direction of the cylinder, disk, and cylindrical cavity parallel to the opening direction of the mold, By using a mold in which magnetic and non-magnetic materials are arranged in a specific combination, the flow of magnetic flux generated in the mold opening direction by the electromagnetic coil is bent perpendicularly at the cavity part, and a magnetic field can be applied in the direction of the outer circumference of the cavity. They have found that the above-mentioned drawbacks can be improved, and have completed the present invention.

すなわち本考案は、磁界の印加方向が型開き方
向と平行になるように電磁石コイル1が金型内あ
るいは金型外に配置され、キヤビテイと同じ長さ
以上の磁性あるいは非磁性体5内に片端面が型開
き面に接するように形成された筒状、柱状あるい
は盤状キヤビテイ6を複数個有し、かつ該磁性あ
るいは非磁性体5の内側が内部磁性体4からな
り、その反対側が外部磁性体7からなる異方性樹
脂磁石射出成形用金型において、上記内部磁性体
4と磁性あるいは非磁性体5とキヤビテイ6と外
部磁性体7とで形成される部分の片端面が、内部
磁性体4と軸線が同一の柱状磁性体3とこの柱状
磁性体3の外側に配置された非磁性体11とに接
し、もう一方の片端面が内部磁性体4と軸線が同
一の非磁性体12とこの非磁性体12の外側に配
置された筒状磁性体8とに接し、かつ柱状磁性体
3の差渡しaと内部磁性体4の差渡しbとがa≦
bであり、外部磁性体7の差渡しcと非磁性体1
2の差渡しdとがc≦dであることを特徴とする
異方性樹脂磁石射出成形用金型を提供するもので
ある。
In other words, in the present invention, an electromagnetic coil 1 is placed inside or outside the mold so that the direction of application of the magnetic field is parallel to the mold opening direction, and a magnetic or non-magnetic material 5 with a length equal to or longer than the cavity is placed. It has a plurality of cylindrical, columnar, or disc-shaped cavities 6 whose end surfaces are in contact with the mold opening surface, and the inside of the magnetic or non-magnetic material 5 is made of an internal magnetic material 4, and the opposite side is made of an external magnetic material. In the anisotropic resin magnet injection molding mold consisting of the body 7, one end surface of the portion formed by the internal magnetic body 4, the magnetic or non-magnetic body 5, the cavity 6, and the external magnetic body 7 is the internal magnetic body. 4 and a non-magnetic body 11 disposed outside the columnar magnetic body 3, and the other end surface is in contact with a non-magnetic body 12 whose axis is the same as that of the internal magnetic body 4. This non-magnetic body 12 is in contact with the cylindrical magnetic body 8 disposed outside, and the span a of the columnar magnetic body 3 and the span b of the internal magnetic body 4 are a≦
b, and the width c of the external magnetic body 7 and the non-magnetic body 1
The present invention provides a mold for injection molding an anisotropic resin magnet, characterized in that the width d of the two satisfies c≦d.

以下に本考案の異方性樹脂磁石射出成形用金型
を図面に基づいて詳細に説明する。
EMBODIMENT OF THE INVENTION Below, the anisotropic resin magnet injection mold of this invention is demonstrated in detail based on drawing.

第1図は本考案の実施例の一例であつて、金型
外に配置された1個の電磁石コイルを用いて外周
2極異方性樹脂磁石を1回に6個成形できる金型
の断面図であり、は移動側金型、は固定側金
型である。第2図は第1図に示す移動側金型の
A−A面(型開き面)の平面図である。1は電磁
石コイル、2は移動側金型取付板に続く磁性ある
いは非磁性体からなる移動側ブロツク、9は固定
側金型取付板に続く磁性あるいは非磁性体からな
る固定側ブロツクであり、電磁石コイル1によつ
て磁界を印加すると磁束は移動側ブロツク2から
固定側ブロツク9に向かう方向に金型内を通過
し、金型外の空気中を通つて循環するか、あるい
はその逆方向に流れる。つまり、金型内では磁界
の印加方向が型開き方向と平行である。
Figure 1 is an example of an embodiment of the present invention, and shows a cross section of a mold that can mold six bipolar anisotropic resin magnets at a time using one electromagnetic coil placed outside the mold. In the figure, is a movable side mold, and is a stationary side mold. FIG. 2 is a plan view of the A-A plane (mold opening surface) of the movable mold shown in FIG. 1. FIG. 1 is an electromagnetic coil, 2 is a moving side block made of magnetic or non-magnetic material following the moving side mold mounting plate, 9 is a fixed side block made of magnetic or nonmagnetic material following the fixed side mold mounting plate, and the electromagnet When a magnetic field is applied by the coil 1, the magnetic flux passes through the mold in the direction from the moving block 2 to the stationary block 9, circulates through the air outside the mold, or flows in the opposite direction. . That is, within the mold, the direction of application of the magnetic field is parallel to the mold opening direction.

また、太い実線の矢印は金型内における磁束の
流れを示し、3は柱状磁性体、4は柱状の内部磁
性体、5は筒状の非磁性体、6は非磁性体5内に
複数個形成された柱状のキヤビテイ、7は筒状の
外部磁性体、8は固定側にある筒状の磁性体、1
0は非磁性体からなる突出ピン、11は柱状磁性
体3の外側に配置された外部磁性体、12は固定
側にあるブロツク状非磁性体であつて、キヤビテ
イ6以外はそれぞれ軸線を同一にしており、柱状
磁性体3の差渡しaは内部磁性体4の差渡しbよ
り小さく、外部磁性体7の差渡しcは固定側非磁
性体12の差渡しdより小さい。
In addition, thick solid arrows indicate the flow of magnetic flux within the mold, 3 is a columnar magnetic body, 4 is a columnar internal magnetic body, 5 is a cylindrical non-magnetic body, and 6 is a plurality of pieces inside the non-magnetic body 5. The formed columnar cavity, 7 is a cylindrical external magnetic body, 8 is a cylindrical magnetic body on the fixed side, 1
0 is a protruding pin made of a non-magnetic material, 11 is an external magnetic material disposed outside the columnar magnetic material 3, and 12 is a block-shaped non-magnetic material on the fixed side, all of which have the same axis except for the cavity 6. The width a of the columnar magnetic body 3 is smaller than the width b of the internal magnetic body 4, and the width c of the external magnetic body 7 is smaller than the width d of the fixed non-magnetic body 12.

これらは型開き方向と平行に直進してきた磁束
の流れを、それとは直行する方向に放射状に無理
なく変更させ、キヤビテイ6内に均一に乱れない
磁束を導くために配置されており、なかでも柱状
磁性体3とブロツク状非磁性体12の差渡しの大
きさを特定の範囲に限定することが重要である。
These are arranged to smoothly change the flow of magnetic flux that has been traveling straight parallel to the mold opening direction to a radial direction perpendicular to that direction, and to guide the magnetic flux uniformly and undisturbed into the cavity 6. It is important to limit the distance between the magnetic material 3 and the block-shaped nonmagnetic material 12 to a specific range.

柱状磁性体3の差渡しaは内部磁性体4の差渡
しbに対してa≦bであることが必要であり、a
はbに対して通常0〜50mm、好ましくは5〜30mm
小さい。またブロツク状非磁性体12の差渡しd
は外部磁性体7の差渡しcに対してc≦dである
こと、換言すればブロツク状非磁性体12の型開
き面が少なくとも内部磁性体4の型開き面の全面
およびキヤビテイ6の型開き面の全面に接し、好
ましくは更に外部磁性体7の型開き面の一部に接
することが必要であり、dはcに対して通常0〜
50mm、好ましくは10〜30mm大きい。a>bおよ
び/又はc>dの場合には磁束の流れを型開き方
向と直交する方向に変更させることが困難であり
好ましくない。
It is necessary that the width a of the columnar magnetic body 3 satisfies a≦b with respect to the width b of the internal magnetic body 4, and a
is usually 0 to 50 mm, preferably 5 to 30 mm relative to b
small. Also, the length d of the block-shaped nonmagnetic material 12
c≦d with respect to the width c of the external magnetic body 7. In other words, the mold opening surface of the block-shaped nonmagnetic material 12 is at least the entire mold opening surface of the internal magnetic material 4 and the mold opening surface of the cavity 6. It is necessary to contact the entire surface of the surface, preferably a part of the mold opening surface of the external magnetic body 7, and d is usually 0 to c with respect to c.
50mm, preferably 10-30mm larger. If a>b and/or c>d, it is difficult to change the flow of magnetic flux in a direction perpendicular to the mold opening direction, which is not preferable.

13はノズル、14はスプル、15はランナで
ある。
13 is a nozzle, 14 is a sprue, and 15 is a runner.

第3図は、ランナー・ゲート位置をN極・S極
の中間に配することによつて、ゲート及びウエル
ド部による着磁波形の乱れを防止した円筒形磁石
8個取り金型の型開き面の平面図である。また第
4〜5図は、同じく8個取りだがゲートとしてピ
ンゲートを用い、第1〜3図の円柱(円筒状磁性
体あるいは非磁性体のかわりに角柱状磁性体ある
いは非磁性体を用いた例であり、第4図は断面
図、第5図はA−A面(型開き面)の平面図であ
る。
Figure 3 shows the opening surface of a mold with eight cylindrical magnets, which prevents disturbance of the magnetization waveform due to the gate and weld by placing the runner and gate between the N and S poles. FIG. In addition, Figures 4 and 5 show an example in which a pin gate is used as the gate, although the gate is made of 8 pieces, and a prismatic magnetic or non-magnetic material is used instead of the cylinder (cylindrical magnetic or non-magnetic material) shown in Figures 1 to 3. FIG. 4 is a sectional view, and FIG. 5 is a plan view taken along the line AA (mold opening surface).

尚、キヤビテイ6は磁性体内に形成してもよい
が、第1〜5図の如く非磁性体内に形成すること
が好ましい。また第5図の如きキヤビテイの配置
はキヤビテイ部における磁束の流れが平行である
点で、磁束の流れがキヤビテイ部で平行ではない
第2〜3図の配置に比べ好ましい。
Although the cavity 6 may be formed in a magnetic body, it is preferably formed in a non-magnetic body as shown in FIGS. 1 to 5. Further, the cavity arrangement as shown in FIG. 5 is preferable in that the magnetic flux flows in parallel in the cavity, compared to the arrangement in FIGS. 2 and 3, in which the magnetic flux flows in parallel in the cavity.

本考案の金型を用いて異方性筒状樹脂磁石を成
形するには、電磁石コイル1により磁界を印加し
ながら磁石粉末と重合体材料との混合物を所定温
度で射出成形すればよい。射出成形機で溶融混練
され、多数個の筒状キヤビテイ6に射出充填され
た該混合物は、充填されると同時に型開きと垂直
方向に均一に配向され、冷却固化されて、外周2
極異方性樹脂磁石として得られる。
In order to mold an anisotropic cylindrical resin magnet using the mold of the present invention, a mixture of magnet powder and polymer material may be injection molded at a predetermined temperature while a magnetic field is applied by the electromagnetic coil 1. The mixture is melt-kneaded in an injection molding machine and injected into a large number of cylindrical cavities 6. At the same time as the mixture is filled, it is oriented uniformly in a direction perpendicular to the mold opening, and is cooled and solidified to form the outer periphery 2.
Obtained as a polar anisotropic resin magnet.

ここで使用される磁石粉末としては、例えばス
トロンチウムフエライト、バリウムフエライト等
のフエライト磁石粉末、RCO5,R2CO17等の希土
類コバルト磁石粉末、アルニコ磁石粉末、Fe−
Cr−Co磁石粉末、Mn−A1−C磁石粉末等が挙
げられる。
Examples of the magnet powder used here include ferrite magnet powder such as strontium ferrite and barium ferrite, rare earth cobalt magnet powder such as RCO 5 and R 2 CO 17 , alnico magnet powder, Fe-
Examples include Cr-Co magnet powder and Mn-A1-C magnet powder.

また重合体材料としては、ポリエチレン、ポリ
プロピレン、ポリスチレン、ABS樹脂、AS樹
脂、エチレン−酢酸ビニル共重合体、エチレン−
エチルアクリレート共重合体、ポリエチレンテレ
フタレート、ポリブチレンテレフタレート、ポリ
アセタール、熱可塑性ポリウレタン、アイオノマ
ー樹脂、オレフイン−ビニルアルコール共重合
体、ナイロン6、ナイロン66、ナイロン12、
ナイロン11等の熱可塑性樹脂、フエノールホル
ムアルデヒド樹脂、尿素−ホルムアルデヒド樹
脂、エポキシ樹脂、不飽和ポリエステル、ジアリ
ルフタレート樹脂等の熱硬化性樹脂、天然ゴム、
スチレン−ブタジエンゴム、ニトリルゴム、クロ
ロプレンゴム等のゴム、シリコーン樹脂等が挙げ
られるが、なかでも熱可塑性樹脂が好ましい。
Polymer materials include polyethylene, polypropylene, polystyrene, ABS resin, AS resin, ethylene-vinyl acetate copolymer, ethylene-vinyl acetate copolymer,
Ethyl acrylate copolymer, polyethylene terephthalate, polybutylene terephthalate, polyacetal, thermoplastic polyurethane, ionomer resin, olefin-vinyl alcohol copolymer, nylon 6, nylon 66, nylon 12,
Thermoplastic resins such as nylon 11, thermosetting resins such as phenol formaldehyde resin, urea-formaldehyde resin, epoxy resin, unsaturated polyester, diallyl phthalate resin, natural rubber,
Examples include rubbers such as styrene-butadiene rubber, nitrile rubber, and chloroprene rubber, and silicone resins, among which thermoplastic resins are preferred.

以上の様にして得られる本考案の金型による外
周2極異方性樹脂磁石は、多数個取りによる量産
が可能で、寸法精度に優れ、高い磁気特性が得ら
れる。例えば、第3図の構造の金型を用い、スト
ロンチウムフエライト粉末87重量部とナイロン
613重量部とからなる混合物を、5000エルステツ
ドの磁界を有するキヤビテイに射出成形し、脱磁
後10000エルステツドの平行磁界で再着磁して得
られた、外径12mm、内径4mm、高さ8mmの外周2
極異方性樹脂磁石は、表面磁束密度分布がきれい
な正弦波を示し、その最大表面磁束密度は1020ガ
ウスと優れるものであつた。尚、同一形状の等方
性焼結磁石および半径方向異方性樹脂磁石の表面
磁束密度分布はともに台形波を示し、最大表面磁
束密度はそれぞれ870ガウスおよび720ガウスであ
つた。
The two-pole outer anisotropic resin magnet obtained using the mold of the present invention obtained as described above can be mass-produced by molding a large number of magnets, has excellent dimensional accuracy, and has high magnetic properties. For example, using a mold with the structure shown in Figure 3, 87 parts by weight of strontium ferrite powder and nylon
A mixture consisting of 613 parts by weight was injection molded into a cavity with a magnetic field of 5,000 oersted, and after demagnetizing it was re-magnetized in a parallel magnetic field of 10,000 oersted. Outer circumference 2
The polar anisotropic resin magnet exhibited a clean sinusoidal surface magnetic flux density distribution, and its maximum surface magnetic flux density was an excellent 1020 Gauss. Incidentally, the surface magnetic flux density distributions of the isotropic sintered magnet and the radially anisotropic resin magnet having the same shape both showed a trapezoidal wave, and the maximum surface magnetic flux density was 870 Gauss and 720 Gauss, respectively.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、金型外に電磁石コイルを有し、円柱
状キヤビテイを6個有する本考案の外周2極異方
性樹脂磁石射出成形用金型の断面図、第2図は第
1図に示す移動側金型のA−A(型開き面)の
平面図、第3図はランナー・ゲート位置をN極・
S極の中間に配した円筒形キヤビテイを8個有す
る本考案の外周2極異方性樹脂磁石射出成形用金
型の移動側金型型開き面の平面図、第4図はピン
ゲートを有する円柱状キヤビテイを4個づつ2列
配置した本考案の外周2極異方性樹脂磁石射出成
形用金型、第5図は第4図に示す移動側金型の
A−A面(型開き面)の平面図である。 :移動側金型、:固定側金型。1:電磁石
コイル、2:移動側ブロツク、3:柱状磁性体、
4:内部磁性体、5:磁性あるいは非磁性体、
6:キヤビテイ、7:外部磁性体、8:筒状磁性
体、9:固定側ブロツク、10:突出ピン、1
1:外部非磁性体、12:非磁性体、13:ノズ
ル、14:スプル、15:ランナ。a:柱状磁性
体3の差渡し、b:内部磁性体4の差渡し、c:
外部磁性体7の差渡し。
Figure 1 is a cross-sectional view of an injection mold for an anisotropic resin magnet with an outer circumference of two poles according to the present invention, which has an electromagnetic coil outside the mold and six cylindrical cavities, and Figure 2 is similar to Figure 1. The A-A (mold opening surface) plan view of the movable mold shown in Figure 3 shows the runner and gate positions being
FIG. 4 is a plan view of the mold opening surface of the movable side mold of the present invention's outer periphery bipolar anisotropic resin magnet injection mold having eight cylindrical cavities arranged in the middle of the S pole. FIG. 4 shows a circle with a pin gate. Fig. 5 shows the A-A plane (mold opening surface) of the movable mold shown in Fig. 4, which is an injection mold for injection molding of an anisotropic resin magnet with two outer circumferences according to the present invention, in which two rows of four columnar cavities are arranged. FIG. : Moving side mold, : Fixed side mold. 1: Electromagnetic coil, 2: Moving side block, 3: Columnar magnetic body,
4: Internal magnetic material, 5: Magnetic or non-magnetic material,
6: Cavity, 7: External magnetic body, 8: Cylindrical magnetic body, 9: Fixed side block, 10: Projection pin, 1
1: External non-magnetic material, 12: Non-magnetic material, 13: Nozzle, 14: Sprue, 15: Runner. a: Passing of the columnar magnetic body 3, b: Passing of the internal magnetic body 4, c:
Passing the external magnetic body 7.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 磁界の印加方向が型開き方向と平行になるよう
に電磁石コイル1が金型内あるいは金型外に配置
され、キヤビテイと同じ長さ以上の磁性あるいは
非磁性体5内に片端面が型開き面に接するように
形成された筒状、柱状あるいは盤状キヤビテイ6
を複数個有し、かつ該磁性あるいは非磁性体5の
内側が内部磁性体4からなり、その反対側が外部
磁性体7からなる異方性樹脂磁石射出成形用金型
において、上記内部磁性体4と磁性あるいは非磁
性体5とキヤビテイ6と外部磁性体7とで形成さ
れる部分の片端面が、内部磁性体4と軸線が同一
の柱状磁性体3とこの柱状磁性体3の外側に配置
された非磁性体11とに接し、もう一方の片端面
が内部磁性体4と軸線が同一の非磁性体12とこ
の非磁性体12の外側に配置された筒状磁性体8
とに接し、かつ柱状磁性体3の差渡しaと内部磁
性体4の差渡しbとがa≦bであり、外部磁性体
7の差渡しcと非磁性体12の差渡しdとがc≦
dであることを特徴とする異方性樹脂磁石射出成
形用金型。
An electromagnetic coil 1 is placed inside or outside the mold so that the direction of application of the magnetic field is parallel to the mold opening direction, and one end surface is placed in a magnetic or non-magnetic material 5 with a length equal to or longer than the cavity. A cylindrical, columnar or disc-shaped cavity 6 formed so as to be in contact with
In an anisotropic resin magnet injection mold having a plurality of magnetic or non-magnetic bodies 5, the inside of which is an internal magnetic body 4, and the opposite side thereof is an external magnetic body 7, the internal magnetic body 4 is One end surface of the part formed by the magnetic or non-magnetic material 5, the cavity 6, and the external magnetic material 7 is arranged on the outside of the columnar magnetic material 3 whose axis is the same as that of the internal magnetic material 4. a non-magnetic body 12 that is in contact with the non-magnetic body 11 and whose other end surface has the same axis as the internal magnetic body 4; and a cylindrical magnetic body 8 disposed outside the non-magnetic body 12.
and the width a of the columnar magnetic body 3 and the width b of the internal magnetic body 4 are a≦b, and the width c of the external magnetic body 7 and the width d of the non-magnetic body 12 are c. ≦
An anisotropic resin magnet injection mold characterized by d.
JP6149984U 1984-04-27 1984-04-27 Anisotropic resin magnet injection mold Granted JPS60174228U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6149984U JPS60174228U (en) 1984-04-27 1984-04-27 Anisotropic resin magnet injection mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6149984U JPS60174228U (en) 1984-04-27 1984-04-27 Anisotropic resin magnet injection mold

Publications (2)

Publication Number Publication Date
JPS60174228U JPS60174228U (en) 1985-11-19
JPH0138903Y2 true JPH0138903Y2 (en) 1989-11-21

Family

ID=30589837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6149984U Granted JPS60174228U (en) 1984-04-27 1984-04-27 Anisotropic resin magnet injection mold

Country Status (1)

Country Link
JP (1) JPS60174228U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7027898B2 (en) * 2018-01-15 2022-03-02 住友金属鉱山株式会社 Mold for forming anisotropic magnet and method for manufacturing anisotropic magnet using this

Also Published As

Publication number Publication date
JPS60174228U (en) 1985-11-19

Similar Documents

Publication Publication Date Title
US4327346A (en) Anisotropic polymeric magnet in the tubular form and process for producing the same
US4678616A (en) Method of producing permanent magnet
US5416457A (en) Lateral orientation anisotropic magnet
JPS5948742B2 (en) Mold for magnetic field forming
JP2003527744A (en) Method of producing and magnetizing a single magnet part, assembling for producing a miniaturized magnet system and its magnet system
JPH0138903Y2 (en)
JPS6252913A (en) Method and device for manufacture of multipolar anisotropic cylindrical magnet
JPS6028377B2 (en) Manufacturing method for rolled magnets
JPH0343707Y2 (en)
US4904175A (en) Magnetic plastic rotor disk manufacturing apparatus
JPS6211209A (en) Magnet and manufacture thereof
JPH071727B2 (en) Anisotropic resin magnet and manufacturing method thereof
JPS56114309A (en) Manufacture of permanent magnet
JPH04267308A (en) Focused orientation type polar anisotropic disclike magnet and magnetic orienting mold
JPS5814052B2 (en) Magnetization method of anisotropic cylindrical magnet
JPS5849012B2 (en) Manufacturing method of anisotropic cylindrical polymer magnet
JPH071726B2 (en) Anisotropic resin magnet and manufacturing method thereof
JPH0556644B2 (en)
JPH04244766A (en) Focus composite orientation disclike magnet and magnetic field orientation molding machine
JPS62130813A (en) Manufacture of cylindrical multipolar anisotropic magnet and device therefor
JPH027856A (en) Manufacturing device for rotor of rotary electric machine
JPS5849011B2 (en) Manufacturing method of anisotropic cylindrical polymer magnet
JPS62277710A (en) Injection molding machine for plastic magnet
JPH0654742B2 (en) Method for manufacturing multipolar anisotropic resin magnet
JPS6211212A (en) Injection molding die for manufacturing plastic magnet