JPH0654742B2 - Method for manufacturing multipolar anisotropic resin magnet - Google Patents

Method for manufacturing multipolar anisotropic resin magnet

Info

Publication number
JPH0654742B2
JPH0654742B2 JP7546286A JP7546286A JPH0654742B2 JP H0654742 B2 JPH0654742 B2 JP H0654742B2 JP 7546286 A JP7546286 A JP 7546286A JP 7546286 A JP7546286 A JP 7546286A JP H0654742 B2 JPH0654742 B2 JP H0654742B2
Authority
JP
Japan
Prior art keywords
orientation
anisotropic
magnetic
magnetic field
multipolar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7546286A
Other languages
Japanese (ja)
Other versions
JPS62232910A (en
Inventor
尚次 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP7546286A priority Critical patent/JPH0654742B2/en
Publication of JPS62232910A publication Critical patent/JPS62232910A/en
Publication of JPH0654742B2 publication Critical patent/JPH0654742B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は異方性樹脂磁石の製造方法に関し、特に異方性
樹脂磁石の深部まで、多極異方性配向が容易に行える異
方性樹脂磁石の製造方法に関す。
Description: TECHNICAL FIELD The present invention relates to a method for producing an anisotropic resin magnet, and in particular, anisotropy in which multipolar anisotropic orientation can be easily carried out to a deep portion of the anisotropic resin magnet. The present invention relates to a method for manufacturing a resin magnet.

〔従来の技術〕[Conventional technology]

従来、多極異方性配向された樹脂磁石は、磁性粉と高分
子材料を混練し磁性粉を配向させることなく成形した等
方性の樹脂成形品に多極着磁する方法や、成形時にN,
S2極の磁場により磁性粉をラジアル異方性又はアキシ
ャル異方性に配向させた異方性樹脂成形品に多極着磁す
る方法により作成されたものがほとんどであった。着磁
の容易性を考慮すると、後者のようにあらかじめ樹脂成
形品にラジアル又はアキシャル異方性配向させている方
が好ましい。
Conventionally, resin magnets with multipolar anisotropic orientation have been manufactured by kneading magnetic powder and polymer material and magnetizing the isotropic resin molded product without orienting the magnetic powder. N,
Most of them were prepared by a method of multi-pole magnetizing an anisotropic resin molded product in which magnetic powder was oriented in radial anisotropy or axial anisotropy by a magnetic field of S2 pole. In consideration of easiness of magnetization, it is preferable that the resin molded product is previously orientated radially or axially anisotropically as in the latter case.

上記のラジアル又はアキシャル異方性樹脂成形品を得る
には、第2-1 図に断面図を示すように、N,S2極を対
向させた空間(キャビティー)において樹脂を成形すれ
ばよい。この方法は、成形品のキャビティーに充分な配
向磁場をかけることが可能な為、配向度は95%以上のも
のが得られるという利点があり、さらに、磁気特性を良
くするために磁性粉含有量を多くし流動配向性が悪くな
ったものにも内部深くまで成形配向させることが可能で
ある。
In order to obtain the above-mentioned radial or axial anisotropic resin molded product, the resin may be molded in a space (cavity) where N and S2 poles face each other, as shown in the sectional view of FIG. 2-1. This method has the advantage that a sufficient orientation magnetic field can be applied to the cavity of the molded product, so that an orientation degree of 95% or more can be obtained. Furthermore, in order to improve magnetic characteristics, magnetic powder is included. It is possible to form and orient the deeper inside even in the case where the flow orientation is deteriorated by increasing the amount.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしラジアル又はアキシャル異方性配向成形品を多極
に着時する場合には、着磁に使用する磁気の磁路6(第
2-2 図中の6)が、成形品内部の1部において、磁性粉
のもつ磁化容易軸(磁性粉の磁化され易い方向)と90゜
の方向を向いてしまう為に、配向度そのものは高いが配
向方向が1部異なるために、磁気がその部分において規
制されてしまい磁気性能が材料の持っている性能として
はかなり低い所で使用しなければならないという大きな
原理的問題点があった。
However, when a radially or axially anisotropic oriented molded product is attached to multiple poles, the magnetic path 6 (the first
2-2 6) in the figure is oriented 90 ° with the easy axis of magnetization of the magnetic powder (the direction in which the magnetic powder is easily magnetized) in a part inside the molded product, so the degree of orientation itself is Although it is high, the orientation direction is different by 1 part, so that the magnetism is restricted at that part, and there is a major theoretical problem that the magnetic performance must be used at a place where the performance of the material is considerably low.

上記問題点を解決する方法として、最近、着磁の際に使
用される磁気回路と類似の形状にあらかじめ多極異方性
配向している樹脂成形品に着磁を施すという方法が用い
られている。この方法は、例えば第3-1 図に断面図を示
すように、N,S極を交互にかけているキャビティー中
で成形品を作成するものである。
As a method for solving the above-mentioned problems, recently, a method of magnetizing a resin molded article which is preliminarily multipolar anisotropically oriented in a shape similar to a magnetic circuit used for magnetizing has been used. There is. In this method, for example, as shown in the sectional view of FIG. 3-1, a molded product is prepared in a cavity in which N and S poles are alternately applied.

この方法で得られた樹脂成形品は、着磁に使用される磁
気回路と配向方向が一致しているものの、多極に配向磁
場を発生させるためのN,S極構造が対向磁極とならな
いために、前記のラジアル異方性配向、アキシャル異方
性配向の場合に使用させるギャップ間パーミアンスに比
較して、この方法では漏洩パーミアンスだけによって発
生する磁場を用いて配向させねばならず、配向用の磁場
としては対向磁極(ラジアル異方性配向、アキシャル異
方性配向)の場合と比較して数分の1〜数十分の1にな
ってしまうという原理的な欠点があった、又配向そのも
のの深さも、対向磁極の様に成形品の半径方向または厚
み方向には磁束がほとんど通らないために、多極になれ
ばなるほど表面層のみでしか磁束が通らず、表面層のみ
しか配向が起こらなくなってしまい、他の大部分は等方
性になっているままであり、磁気特性の向上に寄与しな
い所が大部分をしめていた。さらに多極の場合N,Sの
磁極間の距離が近くなるため磁束がキャビティーを通ら
ず磁極間で直接リークしてしまうことによる配向磁場そ
のものの低下との相乗効果によって非常に効率が低下し
てしまっていた。
The resin molded product obtained by this method has the same orientation direction as the magnetic circuit used for magnetization, but the N and S pole structures for generating the orientation magnetic field in the multipoles do not become opposing magnetic poles. In the above-mentioned radial anisotropic orientation, in comparison with the gap permeance used in the case of axial anisotropic orientation, in this method, the magnetic field generated only by the leakage permeance must be used for orientation. The magnetic field had a theoretical defect that the magnetic field was one to several tenths to several tens of minutes as compared with the case of opposing magnetic poles (radial anisotropic orientation, axial anisotropic orientation), and the orientation itself. Since the magnetic flux hardly penetrates in the radial direction or thickness direction of the molded product like the opposing magnetic poles, the higher the number of poles, the more the magnetic flux passes through the surface layer only, and the orientation occurs only in the surface layer. Kuna' would have, most other remains have become isotropic, where does not contribute to the improvement of the magnetic characteristics were the majority. Furthermore, in the case of multiple poles, the distance between the N and S magnetic poles becomes short, and the efficiency decreases greatly due to the synergistic effect with the decrease in the orientation magnetic field itself due to direct leakage of magnetic flux between the magnetic poles without passing through the cavity. It was dead.

また、その為に、ラジアル異方性配向、アキシャル異方
性配向では問題なく使用できていた磁性粉の含有量の多
い高性能材料等は流動配向性が悪いため、多極成形配向
においてはほとんど配向せず、使用できないという大き
な原理的欠点があった。
Also, because of this, high-performance materials with a high content of magnetic powder, which could be used without problems in radial anisotropic orientation and axial anisotropic orientation, have poor flow orientation, so in multipolar molding orientation, There was a major principle drawback that it was not oriented and could not be used.

このように、多極異方性配向成形方法を用いても、磁性
粉含有量の少い磁気特性の低いものしか使用できないこ
とから、ラジアル異方性配向やアキシャル異方性配向で
磁性粉含有量の多い高性能材料を配向させたものと結果
的には大差がなくなってしまっていた。
As described above, even if the multipolar anisotropic orientation molding method is used, only those having a small magnetic powder content and low magnetic properties can be used. As a result, there was no big difference with the oriented high-performance materials.

〔発明の目的〕[Object of the Invention]

本発明は上記従来の問題点に鑑み成されたものであり、
その目的は、磁気性能を充分に発揮できる多極異方性配
向されている部分を有する樹脂磁石の製造方法、特に表
面層だけでなく内部深くまで多極異方性配向されている
樹脂磁石の製造方法を提供することにある。
The present invention has been made in view of the above conventional problems,
The purpose thereof is a method for producing a resin magnet having a multipolar anisotropic oriented portion capable of sufficiently exerting magnetic performance, particularly for a resin magnet having a multipolar anisotropic orientation not only in the surface layer but also deep inside. It is to provide a manufacturing method.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の上記目的は、磁性粉を含む樹脂磁石の組成物を
筒状のキャビティー内で溶融状態に保ちつつ該キャビテ
ィーに磁場をかけることにより該磁性粉を異方性配向さ
せる工程を含む多極異方性樹脂磁石の製造方法であっ
て、異方性配向させる工程として、該キャティーの内外
周側からラジアル又はアキシャル異方性配向磁場をかけ
磁性粉をラジアル又はアキシャル異方性配向させる工程
と、続いて該キャビティーの外周側から多極異方性配方
磁場をかけ磁性粉の一部を多極異方性配方させる工程と
を含む多極異方性樹脂磁石の製造方法によって達成され
る。
The above object of the present invention includes a step of anisotropically orienting the magnetic powder by applying a magnetic field to the cavity while keeping the resin magnet composition containing the magnetic powder in a molten state in the cylindrical cavity. A method for producing a multipolar anisotropic resin magnet, wherein as a step of anisotropically orienting, a radial or axial anisotropically orienting magnetic field is applied from the inner and outer peripheral sides of the catty to radially or axially orient the magnetic powder. Achieved by a method for producing a multi-pole anisotropic resin magnet, which includes a step and a step of subsequently applying a multi-pole anisotropic orientation magnetic field from the outer peripheral side of the cavity to partially orient the magnetic powder To be done.

本発明の多極異方性樹脂磁石の製造方法について第1-1
図〜第1-4 図を用いて説明する。
Regarding the method for producing the multipolar anisotropic resin magnet of the present invention, 1-1
This will be described with reference to FIGS. 1 to 4.

第1-1 図〜第1-3 図はそれぞれ、金型キャビティー内の
成形品と配方磁極の関係等を示す模式図である。
FIGS. 1-1 to 1-3 are schematic views showing the relationship between the molded product in the mold cavity and the distribution magnetic poles.

第1-1 図〜第1-3 図において、1はラジアル異方性配向
用のN極,2はラジアル異方性配向用のS極、3は成形
品(又はキャビティー)、4はフェライト磁性粉、5は
ラジアル異方性配向用の磁束の流れ、7はラジアル異方
性配向磁場発生コイル、8は脱磁用コイル、9は交互に
N、S極をかける多極異方性配向用のパルス磁界用のコ
イルであり、10は多極異方性配向用磁場である。
In FIGS. 1-1 to 1-3, 1 is an N pole for radial anisotropic orientation, 2 is an S pole for radial anisotropic orientation, 3 is a molded product (or cavity), 4 is ferrite Magnetic powder, 5 is a magnetic flux flow for radial anisotropic orientation, 7 is a radial anisotropic orientation magnetic field generating coil, 8 is a demagnetizing coil, and 9 is a multipolar anisotropic orientation in which N and S poles are alternately applied. Is a coil for a pulsed magnetic field, and 10 is a magnetic field for multipolar anisotropic orientation.

また第1-4 図においてはaはラジアル異方性配向用の電
流波形を表すグラフ、bは高周波減衰脱磁用電流波形を
表すグラフ、cはパルス磁界による多極異方性配向用電
流波形を表すグラフである。
Further, in FIG. 1-4, a is a graph showing a current waveform for radial anisotropic orientation, b is a graph showing a current waveform for high frequency attenuation demagnetization, and c is a current waveform for multipolar anisotropic orientation due to a pulse magnetic field. It is a graph showing.

本発明の多極異方性樹脂磁石の製造方法の一態様として
は、まず第1-1 図に断面図を示すような金型の、ラジア
ル異方性配方用のN極1、ラジアル異方性配方用のS極
2のあいだの空間(キャビティー)において、磁性粉と
高分子材料との混合物を、磁性粉が容易に向きを変える
ことができるような溶融状態にしておいて、ラジアル異
方性配向用コイル7に第1-4 図のaに波形を示すような
直流電流を流す。このコイルによって発生した磁束はラ
ジアル異方性配向磁極N極1を通って成形品3内部を通
って第1-2 図に示すようなラジアル異方性配向用磁束の
流れ5となってラジアル異方性配向用磁極S極2へ流れ
て閉ループとなる。
As an embodiment of the method for producing a multi-pole anisotropic resin magnet of the present invention, first, an N-pole for radial anisotropic distribution of a die as shown in FIG. In the space (cavity) between the S poles 2 for sex distribution, the mixture of the magnetic powder and the polymer material is kept in a molten state such that the magnetic powder can easily change its direction, and the radial difference is generated. A direct current having a waveform shown in a of FIG. 1-4 is applied to the orientation coil 7. The magnetic flux generated by this coil passes through the radially anisotropically oriented magnetic pole N pole 1, passes through the inside of the molded product 3, and becomes a magnetic flux 5 for radial anisotropic orientation as shown in FIG. It flows to the magnetic pole S for polar orientation 2 and becomes a closed loop.

このとき、成形品内部では第1-2 図に示すように磁性粉
(例えばフェライト磁性粉)がラジアル方向へ配列す
る。キャビティー内に樹脂磁石の材料を溶融状態で存在
せしめるのと、コイルに電流を流す順番は上記に限ら
ず、コイルに電流を流しキャビティーに磁場を発生させ
ているところへ、樹脂磁石の材料を射出してもよく、こ
の場合は、材料及び磁場の条件等にもよるが射出、配向
の工程は約0.5 秒〜 1秒で完了する。
At this time, magnetic powder (for example, ferrite magnetic powder) is arranged in the radial direction inside the molded product as shown in FIG. 1-2. The resin magnet material is allowed to exist in a molten state in the cavity, and the order in which the current is applied to the coil is not limited to the above.If the current is applied to the coil and the magnetic field is generated in the cavity, the resin magnet material May be injected, and in this case, the step of injection and orientation is completed in about 0.5 seconds to 1 second, depending on the material and magnetic field conditions.

次にラジアル異方性配向用電流を切って第1-4 図のbに
波形を示すような脱磁電流を流す。この脱磁電流は、フ
ェライト磁性粉の向きを変化させないためにできるだけ
高い周波数応答の電流を使用する。例えばラジアル配向
用コイルに比較して脱磁用コイルは、ターン数を減らす
ことによってコイルのインダクタンスを低下させ逆方向
パルス磁界を短いパルス幅でかければよく、1/1000〜1/
10000 秒で脱磁できる。
Next, the current for radial anisotropic orientation is cut off and a demagnetizing current having a waveform shown in b of FIG. 1-4 is passed. For this demagnetizing current, a current having a frequency response as high as possible is used so as not to change the direction of the ferrite magnetic powder. For example, in comparison with the radial orientation coil, the demagnetizing coil can reduce the inductance of the coil by reducing the number of turns and can apply the reverse pulse magnetic field with a short pulse width.
It can be demagnetized in 10,000 seconds.

次にキャビティーに第1-4 図に波形を示すようなパルス
電流cを第1-3 図のパルス磁界発生用コイル9に流すこ
とにより多極異方性配向用磁場10を発生させる。これに
より今までラジアル方向二配向していた磁性粉にうち、
この多極異方性配向用磁場10の強くかかった部分にある
ものは第1-3 図に示す様に向きを変えて多極異方性配向
となり、多極異方性配向用磁場10の弱いところはラジア
ル異方性配向のまま残る。
Next, a multipolar anisotropic orientation magnetic field 10 is generated by causing a pulse current c having a waveform shown in FIG. 1-4 to flow in the cavity through the pulse magnetic field generation coil 9 shown in FIG. 1-3. As a result, the magnetic powder that had been oriented in two radial directions until now,
What is in the part where the magnetic field for multipolar anisotropic orientation 10 is strongly applied changes its orientation as shown in FIG. 1-3 to become multipolar anisotropic orientation. The weak points remain in the radial anisotropic orientation.

以上の様にして2回、配向させた後、冷却固化させるこ
とにより多極異方性配向された部分のある異方性配向樹
脂磁石が得られる。
After being orientated twice as described above, it is cooled and solidified to obtain an anisotropically oriented resin magnet having a multipolar anisotropically oriented portion.

脱磁用磁場を発生させる方法としては上記のような方法
に限らずパルス磁界発生用コイル9に1/10000 秒程度の
短いパルス幅の磁界をかけて必要な部分だけを脱磁し
て、その後に配向用のパルス幅の広い1/100 〜1/10000
秒程度のパルス磁界をかけても可能である。
The method for generating the demagnetizing magnetic field is not limited to the method described above, and a magnetic field having a short pulse width of about 1/10000 second is applied to the pulse magnetic field generating coil 9 to demagnetize only the necessary portion, and then Wide pulse width for orientation 1/100 to 1/10000
It is also possible to apply a pulsed magnetic field of about a second.

また、キャビティー内に溶融状態の磁性粉混入高分子材
料を存在せしめる方法としては、射出成形法、トランス
ファー法、ホットプレス法、反応成形法等が使用でき
る。
Further, as a method of allowing the molten magnetic powder-containing polymer material to exist in the cavity, an injection molding method, a transfer method, a hot pressing method, a reaction molding method, or the like can be used.

本発明の異方性樹脂磁石の製造方法により製造される異
方性樹脂磁石の組成物は、磁性粉とバインダーを主成分
としており、その他、滑剤等が添加される。
The composition of the anisotropic resin magnet produced by the method for producing an anisotropic resin magnet of the present invention contains magnetic powder and a binder as main components, and a lubricant and the like are added.

磁性粉としては、フェライト系やサマリウムコバルト系
等の希土類金属系等が使用できるが、着磁のためのエネ
ルギーが少なくてすむフェライトが好適に使用される。
使用される具体的なフェライトとしてはストロンチウム
フェライトやバリウムフェライト等が挙げられる。
As the magnetic powder, a rare earth metal type such as a ferrite type or a samarium cobalt type can be used, but a ferrite that requires less energy for magnetization is preferably used.
Specific examples of ferrite used include strontium ferrite and barium ferrite.

バインダーとしてはポリアミドやポリブチレンテレフタ
レートやポリフェニレンサルファイド等の従来公知の任
意の樹脂磁石用のバインダー材料が使用される。磁性粉
の配合割合は樹脂磁石の組成物の重量に対しておよそ70
wt% 〜90wt% の範囲である。
As the binder, any conventionally known binder material for resin magnets such as polyamide, polybutylene terephthalate, and polyphenylene sulfide is used. The mixing ratio of the magnetic powder is about 70 relative to the weight of the resin magnet composition.
It is in the range of wt% to 90 wt%.

滑剤としては、ステアリン酸金属塩やビスアミド系等が
使用され、又表面処理剤としてはシラン系、チタネート
系等のものが使用される。
As the lubricant, stearic acid metal salts, bisamides, etc. are used, and as the surface treatment agent, silanes, titanates, etc. are used.

本発明の異方性樹脂磁石の製造方法においては、ラジア
ル又はアキシャル異方性配向させた次に多極異方性配向
用磁場をかけるため、成形品の奥深くまで多極異方性配
向用磁場が誘導される。これは多極異方性配向用磁場が
ラジアル異方性配向させた磁性粉と磁気連鎖を起こし奥
深くまで磁場がとどきやすくなるからである。
In the method for producing an anisotropic resin magnet of the present invention, since a magnetic field for multipolar anisotropic alignment is applied after radial or axial anisotropic alignment, the magnetic field for multipolar anisotropic alignment is deep inside the molded product. Is induced. This is because the magnetic field for multipolar anisotropic orientation causes magnetic chains with the magnetic powder oriented in radial anisotropy, and the magnetic field can easily reach deep.

また、上記のように磁場が効率よくかかり磁性粉を配向
させる力が大きいため、磁性粉を多く含んである高性能
材料を使用することもできる様になり、さらに高性能な
プラスチックマグネットが得られるようになった。
Further, as described above, since the magnetic field is efficiently applied and the force for orienting the magnetic powder is large, it becomes possible to use a high-performance material containing a large amount of magnetic powder, and a higher-performance plastic magnet can be obtained. It became so.

〔発明の効果〕〔The invention's effect〕

本発明の異方性樹脂磁石の製造方法においては 等方性を残さず磁石全体が異方性配向されているので
磁気効率がよい、 多極異方性配向が、少ないエネルギーで磁気的に効率
よく行える、 樹脂磁石の深部まで多極異方性配向されるので性能の
よい異方性樹脂磁石が得られる、 高性能にするために磁性粉含有量を多くした流動性の
悪い材料に対しても配向が容易に行える等の効果があ
る。
In the method for producing an anisotropic resin magnet according to the present invention, since the entire magnet is anisotropically oriented without leaving isotropicity, magnetic efficiency is good. Multipolar anisotropic orientation is magnetically efficient with a small amount of energy. It can be well done. Multi-pole anisotropic orientation is carried out to the deep part of the resin magnet, so an anisotropic resin magnet with good performance can be obtained. For materials with high magnetic powder content and poor fluidity for high performance Also has an effect such as easy orientation.

【図面の簡単な説明】[Brief description of drawings]

第1-1 図は本発明による多極異方性成形配向用金型の模
式断面図であり、第1-2 図は本発明によるラジアル異方
性配向用磁場をかけた状態での磁束の流れと配向の様子
を表す模式図であり、第1-3 図は脱磁した後に多極異方
性配向磁場をかけたときの磁束の流れと配向の様子を表
す模式図であり、第1-4 は、各コイルに流す励磁用電流
波形を表すグラフであり、 第2-1 図及び第2-2 図は、従来例のラジアル異方性配向
成形による金型磁極部及び成形品の模式図であり、 第3-1 図及び第3-2 図は、従来例の多極異方成形配向に
よる金型磁極部及び成形品の模式図である。 1:ラジアル異方性配向用のN極 2:ラジアル異方性配向用のS極 3:成形品 4:フェライト磁性粉 5:ラジアル異方性配向用の磁束の流れ 6:多極異方着磁用磁路(実際に使用される磁束の流
れ) 7:ラジアル異方性配向磁場発生コイル 8:脱磁用コイル 9:多極異方性配向用のパルス磁界用のコイル 10:多極異方性配向用磁場10 a:ラジアル異方性配向用の電流波形を表すグラフ b:脱磁用パルス電流波形を表すグラフ c:パルス磁界による多極異方性配向用電流波形を表す
グラフ
FIG. 1-1 is a schematic cross-sectional view of a mold for multipolar anisotropic molding alignment according to the present invention, and FIG. 1-2 is a magnetic flux in a state in which a magnetic field for radial anisotropic alignment according to the present invention is applied. FIG. 1-3 is a schematic diagram showing the state of flow and orientation, and FIG. 1-3 is a schematic diagram showing the state of flow and orientation of magnetic flux when a multipolar anisotropic orientation magnetic field is applied after demagnetization. -4 is a graph showing the excitation current waveform flowing in each coil. Figures 2-1 and 2-2 are schematics of the die magnetic pole part and the molded product by the conventional radial anisotropic orientation molding. FIG. 3-1 and FIG. 3-2 are schematic diagrams of a die magnetic pole part and a molded product according to a conventional example of multipolar anisotropic molding orientation. 1: N pole for radial anisotropic orientation 2: S pole for radial anisotropic orientation 3: Molded product 4: Ferrite magnetic powder 5: Magnetic flux flow for radial anisotropic orientation 6: Multipolar anisotropic deposition Magnetic path for magnetic flux (flow of magnetic flux actually used) 7: Radial anisotropic orientation magnetic field generating coil 8: Demagnetization coil 9: Multipolar anisotropic orientation pulse magnetic field coil 10: Multipole different Magnetic field for anisotropic orientation 10 a: Graph showing current waveform for radial anisotropic orientation b: Graph showing pulse current waveform for demagnetization c: Graph showing current waveform for multipolar anisotropic orientation by pulse magnetic field

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】磁性粉を含む樹脂磁石の組成物を筒状のキ
ャビティー内で溶融状態に保ちつつ該キャビティーに磁
場をかけることにより該磁性粉を異方性配向させる工程
を含む多極異方性樹脂磁石の製造方法であって、異方性
配向させる工程として、該キャビティーの内外周側から
ラジアル又はアキシャル異方性配向磁場をかけ磁性粉を
ラジアル又はアキシャル異方性配向させる工程と、続い
て該キャビティーの外周側から多極異方性配方磁場をか
け磁性粉の一部を多極異方性配方させる工程とを含むこ
とを特徴とする多極異方性樹脂磁石の製造方法。
1. A multipole device comprising a step of anisotropically orienting magnetic powder by applying a magnetic field to the cavity while keeping a resin magnet composition containing magnetic powder in a cylindrical cavity in a molten state. In the method for producing an anisotropic resin magnet, as a step of anisotropically orienting, a step of radially or axially anisotropically orienting magnetic powder by applying a radial or axial anisotropic orientation magnetic field from the inner and outer peripheral sides of the cavity And a step of subsequently applying a multipolar anisotropic orientation magnetic field from the outer peripheral side of the cavity to partially orient the magnetic powder in a multipole anisotropic orientation. Production method.
JP7546286A 1986-04-03 1986-04-03 Method for manufacturing multipolar anisotropic resin magnet Expired - Fee Related JPH0654742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7546286A JPH0654742B2 (en) 1986-04-03 1986-04-03 Method for manufacturing multipolar anisotropic resin magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7546286A JPH0654742B2 (en) 1986-04-03 1986-04-03 Method for manufacturing multipolar anisotropic resin magnet

Publications (2)

Publication Number Publication Date
JPS62232910A JPS62232910A (en) 1987-10-13
JPH0654742B2 true JPH0654742B2 (en) 1994-07-20

Family

ID=13576993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7546286A Expired - Fee Related JPH0654742B2 (en) 1986-04-03 1986-04-03 Method for manufacturing multipolar anisotropic resin magnet

Country Status (1)

Country Link
JP (1) JPH0654742B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5722944B2 (en) * 2013-04-26 2015-05-27 株式会社日本製鋼所 Manufacturing method of plastic magnet
EP3196471B1 (en) * 2016-01-19 2023-08-23 Pfeiffer Vacuum Gmbh Vacuum pump

Also Published As

Publication number Publication date
JPS62232910A (en) 1987-10-13

Similar Documents

Publication Publication Date Title
JPS61112310A (en) Manufacture of permanent magnet
JPS6359243B2 (en)
KR100579914B1 (en) Manufacture method of laminating polar hybrid magnet
JP2006019573A (en) Composite bonded magnet and manufacturing method thereof, and rotor of dc brushless motor having composite bonded magnet
US6605162B2 (en) Anisotropic magnet and process of producing the same
JPH0654742B2 (en) Method for manufacturing multipolar anisotropic resin magnet
JPS5853491B2 (en) Manufacturing method of anisotropic ring-shaped resin magnet
JPS6134249B2 (en)
JPS6252913A (en) Method and device for manufacture of multipolar anisotropic cylindrical magnet
JPH071727B2 (en) Anisotropic resin magnet and manufacturing method thereof
JPS58219705A (en) Anisotropic ring polymer magnet and apparatus for manufacturing the same
JPH071726B2 (en) Anisotropic resin magnet and manufacturing method thereof
JPS60211908A (en) Manufacture of cylindrical permanent magnet
JPH08111337A (en) Method and apparatus for forming field of permanent magnet
JPH0736371B2 (en) Method for manufacturing multipolar anisotropic resin magnet
JPS62235703A (en) Anisotropic resin magnet
JPH0559572B2 (en)
JPH0626169B2 (en) Method and apparatus for forming rare earth magnet in magnetic field
JPS62229817A (en) Manufacture of polar anisotropic long molded product
JPH0138903Y2 (en)
JPS60931B2 (en) Anisotropic magnet manufacturing method and manufacturing device
JPH0471205A (en) Manufacture of bond magnet
JPS62130813A (en) Manufacture of cylindrical multipolar anisotropic magnet and device therefor
JPH0469407B2 (en)
JPH09115754A (en) Method and device for forming magnetic field for anisotropic polarity rare-earth bond magnet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees