JPH0469407B2 - - Google Patents

Info

Publication number
JPH0469407B2
JPH0469407B2 JP7785284A JP7785284A JPH0469407B2 JP H0469407 B2 JPH0469407 B2 JP H0469407B2 JP 7785284 A JP7785284 A JP 7785284A JP 7785284 A JP7785284 A JP 7785284A JP H0469407 B2 JPH0469407 B2 JP H0469407B2
Authority
JP
Japan
Prior art keywords
magnet
magnetic field
ring
magnetic
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7785284A
Other languages
Japanese (ja)
Other versions
JPS60220919A (en
Inventor
Seiji Myazawa
Itaru Okonogi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP7785284A priority Critical patent/JPS60220919A/en
Publication of JPS60220919A publication Critical patent/JPS60220919A/en
Publication of JPH0469407B2 publication Critical patent/JPH0469407B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、磁場中押出成形法により、リング状
の熱可塑性樹脂結合型希土類ラジアル異方性永久
磁石の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a ring-shaped thermoplastic resin bonded rare earth radially anisotropic permanent magnet by an extrusion molding method in a magnetic field.

[従来の技術] 従来、熱可塑性樹脂を結合材とする希土類永久
磁石は、射出成形法により製造されており、該磁
石は等方性磁石と、磁気的に特定方向だけに磁気
性能を付加した異方性磁石とに大別できる。
[Conventional technology] Conventionally, rare earth permanent magnets using thermoplastic resin as a binder have been manufactured by injection molding, and these magnets include isotropic magnets and magnets with magnetic performance added only in a specific direction. It can be roughly divided into anisotropic magnets.

特に放射状に磁気異方性を持たせた円筒状ラジ
アル異方性永久磁石は、外周面に多極着磁を施す
ことにより、小型モーター等のローターとして広
く使用されている。
In particular, cylindrical radially anisotropic permanent magnets that have magnetic anisotropy in a radial direction are widely used as rotors for small motors and the like by applying multipolar magnetization to the outer peripheral surface.

しかしその多くの円筒状永久磁石は、内径に比
べた丈が短く、また肉厚も1mm以上と寸法が限ら
れた大きさになつてしまう。
However, most cylindrical permanent magnets are short in length compared to their inner diameter, and have a wall thickness of 1 mm or more, which limits their dimensions.

そこで押出成形により円筒状ラジアル異方性永
久磁石を製造する方法も発明されているが、いず
れも実用化はされておらず、特開昭53−43897号
公報には、フエライト磁石粉末とゴムまたはプラ
スチツクとの混合物をカレンダー法によりシート
を製造し、その後テープ状にして、複数層巻回し
てロールを作成する方法が開示されている。
Therefore, a method for manufacturing cylindrical radially anisotropic permanent magnets by extrusion molding has been invented, but none of these methods have been put to practical use. A method is disclosed in which a mixture with plastic is produced into a sheet by a calendering method, then formed into a tape, and wound in multiple layers to create a roll.

しかしながら、熱可塑性樹脂を用いる稀土類永
久磁石を製造する場合は、フエライト磁石粉末に
比べ原料コストが非常に高いので、複数層巻回す
るようなコストアツプにつながる工程は実用化で
き難いし、所定厚さにシート状にした後切断して
いたのでは、能率も悪く、巻き付ける時にヒビや
ワレが生じ易く、稀土類磁石粒子を用いたのでは
カレンダー法による磁気異方性の付加はできない
という問題点があつた。
However, when manufacturing rare earth permanent magnets using thermoplastic resin, the raw material cost is much higher than that of ferrite magnet powder, so it is difficult to put into practical use processes that increase costs, such as winding multiple layers, and it is difficult to achieve a certain thickness. The problem is that cutting the material after cutting it into a sheet is inefficient, and cracks and cracks tend to occur when wrapping.If rare earth magnet particles are used, it is not possible to add magnetic anisotropy by the calendering method. It was hot.

[発明が解決しようとする課題] 本発明は、このような問題を解決するためのも
ので、その目的とするところは、樹脂結合型希土
類磁石粉末を用いて、内径に比べ丈の長い肉厚の
薄いリング状ラジアル異方性永久磁石を製造する
方法を提供することに有る。
[Problems to be Solved by the Invention] The present invention is intended to solve such problems, and its purpose is to use resin-bonded rare earth magnet powder to create a magnet with a wall thickness that is longer than the inner diameter. An object of the present invention is to provide a method for manufacturing a thin ring-shaped radially anisotropic permanent magnet.

[課題を解決するための手段] 本発明のリング状永久磁石の製造方法は、 磁場中押出成形法により、磁気異方性を持つた
リング状永久磁石を製造する方法において、 樹脂結合型希土類磁石粉末を用い、スパイラル
状のテープを押出し、かつ該テープをリング状心
棒に巻き付け、次いで所定の長さに輪切り状にカ
ツトすることを特徴とするリング状永久磁石の製
造方法である。
[Means for Solving the Problems] A method for manufacturing a ring-shaped permanent magnet of the present invention includes: a method for manufacturing a ring-shaped permanent magnet having magnetic anisotropy by extrusion molding in a magnetic field, comprising: a resin-bonded rare earth magnet; This method of manufacturing a ring-shaped permanent magnet is characterized by extruding a spiral tape using powder, winding the tape around a ring-shaped mandrel, and then cutting it into rounds to a predetermined length.

[作用] 本発明のリング状永久磁石の製造方法は、磁場
中押出成形法によつて磁気異方性を持つたリング
状永久磁石を製造する方法において、熱硬化性樹
脂結合型希土類磁石粉末を用い、後述する第1図
に示す磁場中押出成形装置にて、テープ状にした
後、スパイラル状にしてリング状永久磁石とする
ものである。
[Function] The method for manufacturing a ring-shaped permanent magnet of the present invention is a method for manufacturing a ring-shaped permanent magnet having magnetic anisotropy by an extrusion molding method in a magnetic field. The magnet is formed into a tape shape using a magnetic field extrusion molding apparatus shown in FIG. 1, which will be described later, and then spirally formed into a ring-shaped permanent magnet.

磁気異方性を付加する工程でテープ状とするた
め、磁場が飽和しないので、強い磁場が印加で
き、磁粉の配向がよくなる。直接リング状にして
ラジアル異方性を付加する方法では、形状によつ
て配向磁場が取れない場合が有るが、本方法では
このような場合に特に有用であり、また、スパイ
ラル状にした後リング状とするため丈の長い、肉
厚の薄いラジアル磁石が製造できる。
Since it is made into a tape shape in the process of adding magnetic anisotropy, the magnetic field does not saturate, so a strong magnetic field can be applied and the orientation of the magnetic particles is improved. In the method of directly forming a ring to add radial anisotropy, it may not be possible to obtain an orienting magnetic field depending on the shape, but this method is particularly useful in such cases. Because it is shaped like this, it is possible to manufacture long, thin-walled radial magnets.

また、スパイラル状にした後、リング状とする
ため、丈の長い、肉厚の薄いラジアル磁石が製造
でき、また、スパイラル状にした後、リング状心
棒に巻き付ける方法のため薄肉磁石が可能とな
り、また、従来のテープ状をリング状心棒に巻き
付ける方法より、硬化後の変化量が少ないためヒ
ビやワレが少なく、さらに従来のように、所定の
肉厚にするために、薄肉品を複数層に巻く必要が
なく、所定の厚みに成形しておいて、巻き付ける
ことができ、そのためコストダウンが可能であ
る。
In addition, since it is made into a ring shape after being made into a spiral shape, it is possible to manufacture long, thin-walled radial magnets.Also, since it is made into a spiral shape and then wound around a ring-shaped mandrel, it is possible to produce thin-walled magnets. In addition, compared to the conventional method of wrapping a tape around a ring-shaped mandrel, the amount of change after curing is smaller, so there are fewer cracks and cracks. There is no need to wrap it, and it can be formed to a predetermined thickness and then wrapped, thereby reducing costs.

なお希土類磁石粉末は、一般式Sm
(CO0.0627Cu0.008Fe0.22Zr0.028)8.35からなる
2−17景金属間化合物合金をボールミルを用いて
粒度2〜80ミクロンに粉砕した磁石粉末であり、
希土類磁石粉末とバインダーのナイロン6、12と
の混合割合は、磁石粉末:40〜75体積%、ナイロ
ン6:10〜35体積%、残部ナイロン12の体積%が
好ましい。
The rare earth magnet powder has the general formula Sm
(CO0.0627Cu0.008Fe0.22Zr0.028) 8.35 It is a magnetic powder made by grinding a 2-17-diamond intermetallic compound alloy to a particle size of 2 to 80 microns using a ball mill,
The mixing ratio of the rare earth magnet powder and the binder nylon 6, 12 is preferably 40 to 75% by volume of magnet powder, 10 to 35% by volume of nylon 6, and the remainder nylon 12 by volume.

さらに、前記の磁場中押出成形装置の冷却ダイ
ス部の寸法は、成形寸法を決定する上で重要であ
るが、成形厚となるスキマが0.5〜2mm、スキマ
の巾が2〜15mmで、ダイス自体の厚さが5〜20
mm、巾はスキマの巾の2〜10mm大きくするのが好
ましい範囲である。
Furthermore, the dimensions of the cooling die part of the above-mentioned magnetic field extrusion molding apparatus are important in determining the molding dimensions. thickness of 5 to 20
mm, the width is preferably 2 to 10 mm larger than the width of the gap.

以下、本発明について実施例にもとづき詳細に
説明する。
Hereinafter, the present invention will be explained in detail based on examples.

[実施例] 実施例 1 第1図A,Bは、本発明の実施態様例における
製造方法を実施するための磁場中押出成形装置及
び磁気発生回路の説明図、第2図は本実施態様例
における磁石成形品の説明図、第3図はコイル電
流と発生磁場強さとの関係グラフ、第4図及び第
5図は本実施態様例における磁石成形品の断面図
である。
[Example] Example 1 FIGS. 1A and 1B are explanatory diagrams of a magnetic field extrusion molding apparatus and a magnetic generation circuit for carrying out the manufacturing method according to the embodiment of the present invention, and FIG. 2 is an explanatory diagram of the present embodiment. FIG. 3 is a graph of the relationship between coil current and generated magnetic field strength, and FIGS. 4 and 5 are cross-sectional views of the magnet molded product in this embodiment.

第1図において、1はホツパー、2はシリンダ
ー、3はヒーター、4はスクリユー、5はテーパ
ーバーレル部、6は磁気回路、7,8は磁場コイ
ル、9は磁力線、10はギヤツプ、11は冷却ダ
イス、12は冷却パイプ、13は消磁回路、14
は矯正ダイス、15は加熱ヒーターである。
In Fig. 1, 1 is a hopper, 2 is a cylinder, 3 is a heater, 4 is a screw, 5 is a tapered barrel part, 6 is a magnetic circuit, 7 and 8 are magnetic field coils, 9 is a line of magnetic force, 10 is a gap, and 11 is a cooling unit. Dice, 12 is a cooling pipe, 13 is a degaussing circuit, 14
1 is a straightening die, and 15 is a heating heater.

まず第1図Aに基づいて磁場中押出成形装置の
作用を説明する。
First, the operation of the magnetic field extrusion molding apparatus will be explained based on FIG. 1A.

ホツパー1に投入された希土類磁石粉末と熱可
塑性樹脂との混合物は、シリンダー2の中でヒー
タ3により所定温度に加熱され、スクリユー4の
回転により混練され、非磁性材料よりなるテーパ
ーバーレル部5に押出される。
The mixture of rare earth magnet powder and thermoplastic resin charged into the hopper 1 is heated to a predetermined temperature by the heater 3 in the cylinder 2, kneaded by the rotation of the screw 4, and transferred to the tapered barrel part 5 made of non-magnetic material. Extruded.

つぎに、ダイスを兼ねた磁気回路6に発生する
磁場により、混練物中の希土類磁石粉末が、押出
される方向と直角にかつ薄手方向に配向される。
Next, the rare earth magnet powder in the kneaded material is oriented perpendicular to the direction of extrusion and in the thinner direction by a magnetic field generated in the magnetic circuit 6 which also serves as a die.

この構成は、第1図Bに示すごとくE形を上下
に向き合せた形状で、中間部分はテーパーをもつ
ており、他方との間にギヤツプ10を設けてい
る。
As shown in FIG. 1B, this structure has an E-shape facing upward and downward, with a tapered middle portion and a gap 10 between the two.

両側には磁場コイル7,8がセツトされてお
り、別置の直流電源装置から流される直流電流に
より磁力線9が、図に示す矢印のように流れ前記
ギヤツプ10に磁場を発生する。
Magnetic field coils 7 and 8 are set on both sides, and lines of magnetic force 9 flow in the direction of the arrows shown in the figure due to direct current flowing from a separate direct current power supply to generate a magnetic field in the gap 10.

通常ギヤツプ10は、成形されるテープ状磁石
の厚さにもよるが、10〜20mmの範囲であり、この
ギヤツプ10に成形ダイスを挟み込み使用する。
Normally, the gap 10 is in the range of 10 to 20 mm, depending on the thickness of the tape-shaped magnet to be formed, and a forming die is sandwiched between the gap 10 and used.

配向された混練物は、冷却ダイス11に巻かれ
た水冷パイプ12に水を流すことにより冷却固化
される。
The oriented kneaded material is cooled and solidified by flowing water through a water-cooled pipe 12 wound around a cooling die 11.

ここまでは配向磁場による残留磁場のため、後
工程で成形品同士が吸着したり、リング状にして
多極着磁を行う時、着磁バランスがくずれるた
め、消磁回路13により消磁を行う。
Up to this point, due to the residual magnetic field caused by the orientation magnetic field, the magnetization balance is disrupted when the molded products are attracted to each other in the subsequent process or when multipole magnetization is performed in a ring shape, so demagnetization is performed by the demagnetization circuit 13.

消磁回路13は、第1図Bと同じ構造をしてい
るが、磁場コイル7,8に流す電流を逆方向にす
ることにより、発生する磁力線9が逆方向とな
り、これによつて消磁される。
The degaussing circuit 13 has the same structure as that shown in FIG. 1B, but by making the currents flow in the magnetic field coils 7 and 8 in opposite directions, the lines of magnetic force 9 generated are in the opposite direction, thereby demagnetizing the circuit. .

以上の工程により、テープ状永久磁石の薄手方
向に直角に磁気異方性を付加した、表面磁束密度
が消磁によりほぼゼロに近い樹脂結合型希土類異
方性永久磁石が成形される。
Through the above steps, a resin-bonded rare earth anisotropic permanent magnet with magnetic anisotropy added perpendicularly to the thin direction of the tape-shaped permanent magnet and whose surface magnetic flux density is close to zero due to demagnetization is formed.

つぎに矯正ダイス14を加熱ヒーター15によ
り所定温度まで加熱し、ダイス内を通過させ冷却
することにより、ひねりながら丸めて、第2図に
示すように、スパイラル状にし、これをリング状
の心棒に巻き付けエポキシ接着剤で固定し、所定
の長さに輪切り状にカツトしてリング状永久磁石
とする。
Next, the straightening die 14 is heated to a predetermined temperature by the heating heater 15, passed through the die and cooled, and is twisted and rolled into a spiral shape as shown in FIG. Wrap it around, fix it with epoxy adhesive, and cut it into rings to a predetermined length to make a ring-shaped permanent magnet.

以上のように磁場中押出成形装置に矯正ダイス
を付属させテープ状からスパイラル状にし、リン
グ状とするものである。
As described above, a straightening die is attached to the magnetic field extrusion molding apparatus to change the tape shape into a spiral shape and then into a ring shape.

前述の希土類磁石粉末は、一般式Sm
(Co0.0627Cu0.008Fe0.22Zr0.028)8.35からなる
2−17系金属間化合物合金をボールミルを用いて
粒度2〜80ミクロンに粉砕した磁石粉末である。
The aforementioned rare earth magnet powder has the general formula Sm
(Co0.0627Cu0.008Fe0.22Zr0.028) 8.35 is a magnet powder obtained by pulverizing a 2-17 intermetallic compound alloy to a particle size of 2 to 80 microns using a ball mill.

このようにして造られた磁石粉末65体積%に熱
可塑性樹脂であるナイロン−6を15体積%、ナイ
ロン−12を20体積%を加え、混合機にて混合し、
ホツパー−1より磁場中押出成形装置に投入す
る。
To 65% by volume of the magnet powder thus produced, 15% by volume of thermoplastic resin nylon-6 and 20% by volume of nylon-12 were added and mixed in a mixer.
The material is put into a magnetic field extrusion molding device from hopper 1.

シリンダー2は、ヒーター3によつて約300℃
に保たれており、スクリユー4により混練され、
非磁性材料よりなるテーパーバーレル部5に達
し、磁性材料よりなる磁気回路6のギヤツプ10
に固定された磁性材よりなる冷却ダイス部11を
磁場コイル7,8に流す直流電流による磁力線9
で混合物中の希土類磁石粉末が配向されながら通
過する。
Cylinder 2 is heated to approximately 300℃ by heater 3.
The mixture is kept at
It reaches the tapered barrel portion 5 made of non-magnetic material, and the gap 10 of the magnetic circuit 6 made of magnetic material is reached.
Lines of magnetic force 9 caused by direct current flowing through the magnetic field coils 7 and 8 through the cooling die part 11 made of a magnetic material fixed to the magnetic field coils 7 and 8
The rare earth magnet powder in the mixture passes through the mixture while being oriented.

冷却ダイス部11の寸法は、成形厚となる隙間
を0.8mm、隙間の巾を8mmで、ダイス自体の厚さ
が10mm、巾を12mmとし、磁気回路6のギヤツプ部
10もダイス部11に合せた寸法とした。
The dimensions of the cooling die part 11 are as follows: the gap corresponding to the molding thickness is 0.8 mm, the width of the gap is 8 mm, the thickness of the die itself is 10 mm, the width is 12 mm, and the gap part 10 of the magnetic circuit 6 is also aligned with the die part 11. The dimensions were set as follows.

磁場コイル7,8に電流を流し、発生磁場を
15000(Oe)とした。
A current is passed through the magnetic field coils 7 and 8, and the generated magnetic field is
15000 (Oe).

ダイス11に発生する磁場の強さ(KOe)と
電流(A)との関係グラフを第3図に示す。
A graph showing the relationship between the strength of the magnetic field (KOe) generated in the dice 11 and the current (A) is shown in FIG.

つぎに、冷却ダイス11を混合物が通過する
時、水冷パイプ12に水を流すことにより混合物
が冷却固化され、磁気回路6、ダイス部11と同
じ仕様の磁性材よりなる消磁回路13を通過する
ことにより、磁場コイル7,8に電流を逆方向に
流すために配向時と逆方向の磁力線9が働き、消
磁される。磁場コイル7,8は前記と同様の物で
有るが、電流をコントロールすることにより消磁
磁場を設定している。
Next, when the mixture passes through the cooling die 11, the mixture is cooled and solidified by flowing water through the water cooling pipe 12, and passes through the magnetic circuit 6 and the degaussing circuit 13 made of a magnetic material having the same specifications as the die part 11. As a result, lines of magnetic force 9 in the opposite direction to the orientation act to cause current to flow in the magnetic field coils 7 and 8 in the opposite direction, resulting in demagnetization. The magnetic field coils 7 and 8 are similar to those described above, but the demagnetizing magnetic field is set by controlling the current.

つぎに加熱ヒーター15で、180±20℃の範囲
に加熱された矯正ダイス14内に入り、ひねられ
ながら丸められる。本方法で内径約17mm長さ600
mmのスパイラル状磁石を成形した。
Next, it enters a straightening die 14 heated to a temperature in the range of 180±20°C by a heater 15, and is twisted and rolled. With this method, the inner diameter is about 17mm and the length is 600mm.
mm spiral magnets were molded.

外径16mm、長さ120mmのリング状心棒外径にエ
ポキシ樹脂を塗布し、接着しながら巻き付けた後
80℃で1時間加熱し、その後カツターによりカツ
トし、外径17.6mm長さ18mmのローター磁石とし
た。
After applying epoxy resin to the outer diameter of a ring-shaped mandrel with an outer diameter of 16 mm and a length of 120 mm, and wrapping it while adhering it.
It was heated at 80°C for 1 hour and then cut with a cutter to obtain a rotor magnet with an outer diameter of 17.6 mm and a length of 18 mm.

一方、本実施例に使用した希土類磁石粉末とナ
イロン−6、ナイロン−12との混合物を用い、押
出成形法により、等方性の同寸法のチユーブを成
形し、長さ18mmにカツトし、外径16mmのリング状
心棒に接着固定し、本実施例と同様のローター磁
石を得た。
On the other hand, using the mixture of rare earth magnet powder used in this example, nylon-6, and nylon-12, an isotropic tube of the same size was formed by extrusion molding, cut into a length of 18 mm, and then extruded. A rotor magnet similar to this example was obtained by adhesively fixing it to a ring-shaped mandrel having a diameter of 16 mm.

以上の方法で得られた両ローター磁石を、内外
に2極着磁し、表面磁束密度をガウスメーターと
ホールプローブにて測定したところ、本発明法に
より製造したローター磁石は約2100(G)を示し、従
来の押出成形法による等方性のローター磁石では
約900(G)を示し、本発明法によるローター磁石が
優れていることが明らかである。
Both rotor magnets obtained by the above method were magnetized with two poles inside and outside, and the surface magnetic flux density was measured using a Gauss meter and a Hall probe. The rotor magnet manufactured by the method of the present invention had a magnetic flux density of approximately 2100 (G). The isotropic rotor magnet produced by the conventional extrusion molding method showed approximately 900 (G), and it is clear that the rotor magnet produced by the method of the present invention is superior.

実施例 2 実施例1と同様の希土類磁石混合物を用い同様
の方法で、ただしダイス11の隙間を0.5mmとし、
隙間の巾を5mmとし成形を行つた。
Example 2 The same rare earth magnet mixture as in Example 1 was used and the same method was used, except that the gap between the dice 11 was set to 0.5 mm,
Molding was carried out with a gap width of 5 mm.

隙間の配向磁場は実施例1と同じ、15000(Oe)
とした。
The orientation magnetic field in the gap is the same as in Example 1, 15000 (Oe)
And so.

また、磁気回路9のギヤツプ部10の寸法は変
えていない。
Furthermore, the dimensions of the gap portion 10 of the magnetic circuit 9 remain unchanged.

矯正ダイス14を交換し、外径8mm、長さ150
mmのスパイラル状磁石を成形し、内径7mmのリン
グ状心棒に巻き付け接着し、カツトして外径8mm
のローター磁石を得た。
Replace the straightening die 14, outer diameter 8mm, length 150
mm spiral magnet is formed, wrapped around a ring-shaped mandrel with an inner diameter of 7 mm, glued, and cut to have an outer diameter of 8 mm.
obtained a rotor magnet.

一方、本実施例に仕様した希土類磁石とナイロ
ン−6、ナイロン−12との混合物を用い、押出成
形法により等方性の同寸法のチユーブを成形し、
チユーブの内部に実施例1と同様のリング状心棒
を接着し、実施例1と同様の外径8mm、長さ8mm
のローター磁石を得た。
On the other hand, using a mixture of the rare earth magnet specified in this example, nylon-6, and nylon-12, an isotropic tube of the same size was formed by extrusion molding.
A ring-shaped mandrel similar to that in Example 1 was glued inside the tube, and the outer diameter was 8 mm and the length was 8 mm as in Example 1.
obtained a rotor magnet.

以上の方法で得られた両ローター磁石を、内外
の2極着磁を行い、表面磁束密度を測定したとこ
ろ、本発明法により製造したローター磁石は、約
800(G)を示し、従来の押出成形法による等方性の
ローター磁石では約210(G)を示した。
Both rotor magnets obtained by the above method were polarized inside and outside, and the surface magnetic flux density was measured, and it was found that the rotor magnet manufactured by the method of the present invention was approximately
800 (G), and an isotropic rotor magnet made by conventional extrusion molding showed approximately 210 (G).

以上実施例を述べたが、押出すテープの断面形
状は、平板状でなくても、第4図に示すような断
面形状でも良いし、またスパイラルのピツチを極
端に少なくし多条に巻き付けた第5図に示すよう
なローター磁石でも製造できる。
Although the embodiments have been described above, the cross-sectional shape of the tape to be extruded does not have to be flat, but may be the cross-sectional shape shown in Fig. 4, and the tape can be wound in multiple strips by extremely reducing the pitch of the spiral. A rotor magnet as shown in FIG. 5 can also be manufactured.

[発明の効果] 以上述べたように本発明のリング状永久磁石の
製造方法は、磁気異方性を付加する工程でテープ
状とするため、磁場が多く取れるので、磁粉の配
向がよく、直接リング状にしてラジアル異方性を
付加する方法では、形状によつて配向磁場が取れ
ない場合が有るが、本方法では、このような場合
に特に有用である。
[Effects of the Invention] As described above, in the method for manufacturing a ring-shaped permanent magnet of the present invention, since it is made into a tape shape in the process of adding magnetic anisotropy, a large amount of magnetic field can be obtained, so that the magnetic particles are well oriented and can be directly In the method of adding radial anisotropy to a ring shape, it may not be possible to obtain an orienting magnetic field depending on the shape, but this method is particularly useful in such cases.

また、スパイラル状にした後、リング状とする
ため丈の長い、肉厚の薄いラジアル磁石が製造で
きる効果を有する。
Moreover, since it is formed into a ring shape after being formed into a spiral shape, it has the effect that a long and thin radial magnet can be manufactured.

また、スパイラル状にした後、リング状心棒に
巻き付ける方法のため薄肉磁石が可能となり、ま
たテープ状をリング状心棒に巻き付ける方法によ
り、硬化後の変化量が少ないためヒビやワレが少
なく、所定の肉厚にするために、薄肉品を複数層
巻く必要がなく、所定の厚みに成形しておいて、
巻き付けることができ、そのためコストダウンの
効果も有する。
In addition, thin-walled magnets are possible because the method is made into a spiral and then wrapped around a ring-shaped mandrel. Also, by wrapping a tape-shaped material around a ring-shaped mandrel, there is less change after hardening, so there are fewer cracks and cracks, and it is possible to create a thin magnet. There is no need to roll thin-walled products in multiple layers to make them thick, and you can form them to a predetermined thickness.
It can be wrapped around, which also has the effect of reducing costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A,Bは本発明の実施態様例における製
造方法を示す説明図、第2図は、本実施態様例に
おける磁石成形品の説明図、第3図はコイル電流
と発生磁場強さとの関係クラフ、第4図及び第5
図は本実施例態様例における磁石成形品の断面
図。 1……ホツパー、2……シリンダー、3……ヒ
ーター、4……スクリユー、5……テーパーバー
レル部、6……磁気回路、7,8……磁場コイ
ル、9……磁力線、10……ギヤツプ、11……
冷却ダイス、12……水冷パイプ、13……消磁
回路、14……矯正ダイス、15……加熱ヒータ
ー。
Figures 1A and B are explanatory diagrams showing the manufacturing method in an embodiment of the present invention, Figure 2 is an explanatory diagram of a molded magnet product in this embodiment, and Figure 3 is a diagram showing the relationship between coil current and generated magnetic field strength. Related graphs, Figures 4 and 5
The figure is a sectional view of a molded magnet in this embodiment. 1...Hopper, 2...Cylinder, 3...Heater, 4...Screw, 5...Taper barrel part, 6...Magnetic circuit, 7, 8...Magnetic field coil, 9...Magnetic field line, 10...Gap , 11...
Cooling die, 12...water cooling pipe, 13...demagnetizing circuit, 14...straightening die, 15...heating heater.

Claims (1)

【特許請求の範囲】 1 磁場中押出成形法により、磁気異方性を持つ
たリング状永久磁石を製造する方法において、 樹脂結合型希土類磁石粉末を用い、スパイラル
状のテープを押出し、かつ該テープをリング状心
棒に巻き付け、次いで所定の長さに輪切り状にカ
ツトすることを特徴とするリング状永久磁石の製
造方法。
[Claims] 1. A method for producing a ring-shaped permanent magnet with magnetic anisotropy by extrusion molding in a magnetic field, comprising: extruding a spiral tape using resin-bonded rare earth magnet powder; 1. A method for producing a ring-shaped permanent magnet, which comprises winding the magnet around a ring-shaped mandrel, and then cutting the magnet into rings of a predetermined length.
JP7785284A 1984-04-18 1984-04-18 Manufacture of ringed permanent magnet Granted JPS60220919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7785284A JPS60220919A (en) 1984-04-18 1984-04-18 Manufacture of ringed permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7785284A JPS60220919A (en) 1984-04-18 1984-04-18 Manufacture of ringed permanent magnet

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP28802289A Division JPH02191310A (en) 1989-11-07 1989-11-07 Manufacture of tape-shaped permanent magnet

Publications (2)

Publication Number Publication Date
JPS60220919A JPS60220919A (en) 1985-11-05
JPH0469407B2 true JPH0469407B2 (en) 1992-11-06

Family

ID=13645587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7785284A Granted JPS60220919A (en) 1984-04-18 1984-04-18 Manufacture of ringed permanent magnet

Country Status (1)

Country Link
JP (1) JPS60220919A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017017986A (en) * 2011-06-16 2017-01-19 ジーケーエヌ ハイブリッド パワー リミテッド Method of producing magnetically loaded composite tapes

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4742980B2 (en) * 2006-05-17 2011-08-10 パナソニック株式会社 Sheet-like bonded magnet curling device
US9362036B2 (en) * 2009-08-04 2016-06-07 The Boeing Company Magnetic composite structures with high mechanical strength

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017017986A (en) * 2011-06-16 2017-01-19 ジーケーエヌ ハイブリッド パワー リミテッド Method of producing magnetically loaded composite tapes

Also Published As

Publication number Publication date
JPS60220919A (en) 1985-11-05

Similar Documents

Publication Publication Date Title
JPS61112310A (en) Manufacture of permanent magnet
JP3007491B2 (en) Side-oriented anisotropic magnet
JPH0469407B2 (en)
JPH0517691B2 (en)
JPS59226367A (en) Production of anisotropic magnet roll
JPH0611014B2 (en) Manufacturing method of cylindrical magnet
JPH07111924B2 (en) Magnetic roll and method for manufacturing cylindrical magnet for magnetic roll
JPH09148166A (en) Manufacture of resin-bonded magnet
JPS6349889B2 (en)
JP2579550B2 (en) Method of manufacturing rotor for small motor
JP2005317845A (en) Anisotropic bond magnet and its manufacturing method
JPS62229817A (en) Manufacture of polar anisotropic long molded product
JP2001167963A (en) Method of manufacturing magnet and mold for molding magnet
JPS62261110A (en) Manufacture of permanent magnet
JPS60931B2 (en) Anisotropic magnet manufacturing method and manufacturing device
JP2002198216A (en) Sheet magnet and method of magnetizing the same
JP3524563B2 (en) Plastic magnet and method of manufacturing the same
JPH03150808A (en) Permanent magnet roller
JPS5849011B2 (en) Manufacturing method of anisotropic cylindrical polymer magnet
JPS60208817A (en) Manufacture of anisotropic resin magnet
JPS60143369A (en) Manufacture of magnet roll for magnetic brush development
JP2001157419A (en) Method of manufacturing permanent magnet field type small-sized dc motor
JPH02222110A (en) Magnet roll
JPH03150807A (en) Permanent magnet roll
JPH0880022A (en) Motor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term