JPH03150808A - Permanent magnet roller - Google Patents

Permanent magnet roller

Info

Publication number
JPH03150808A
JPH03150808A JP28948889A JP28948889A JPH03150808A JP H03150808 A JPH03150808 A JP H03150808A JP 28948889 A JP28948889 A JP 28948889A JP 28948889 A JP28948889 A JP 28948889A JP H03150808 A JPH03150808 A JP H03150808A
Authority
JP
Japan
Prior art keywords
permanent magnet
cylindrical
magnetic
magnet roller
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28948889A
Other languages
Japanese (ja)
Inventor
Seiji Miyazawa
宮沢 清治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP28948889A priority Critical patent/JPH03150808A/en
Publication of JPH03150808A publication Critical patent/JPH03150808A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a rotatable, multipole-magnetized permanent magnet roller with high surface flux density, requiring no cylindrical nonmagnetic sleeve for transporting developer, by specifying the magnet thickness and the ratio of the peripheral pole width to the magnet thickness. CONSTITUTION:Cylindrical permanent magnet 1 is fixed to a shaft 4 with a spacer 5 fixed in contact with the periphery of a cylindrical soft magnetic material 2. The ratio W/t of the peripheral pole width W to the magnet thickness (t) is 1-3, and (t) is 0.5-2mm. The thickness of the permanent magnet is preferably more than 0.5 as for easy shaping, and less than 2mm for the product cost. The ratio W/t is preferably 1 to 3. Within this range, effective multipole magnetization is possible on the periphery of a radial anisotropic magnet. Further, imperfect magnetization is reduced with the magnet thickness less than 1 when the peripheral pole width is 1. In this manner, multipole magnetization and high surface flux density are achieved. It is thus possible to provide a rotatable permanent magnet which requires no cylindrical nonmagnetic sleeve for transporting developer.

Description

【発明の詳細な説明】 [産業上の利用分野J 本発明は、磁気ブラシ現像装置に用いられる永久磁石ロ
ーラーに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application J] The present invention relates to a permanent magnet roller used in a magnetic brush developing device.

[従来技術] 従来の磁気ブラシ現像装g1(−成分磁気ブラシ及び、
二成分磁気ブラシ)に用いられる永久磁石ローラーは、
公知のように回転自在な非磁性円筒状の現像剤搬送スリ
ーブの内部に複数の磁極に着磁された円柱状の磁性体ロ
ーラーを有し、磁性体ローラーにより発生する磁場に従
って現像剤搬送スリーブ表面の現像剤を搬送するもので
あって、磁性体ローラーに焼結フェライトまたは樹JJ
i結合フェライト永久磁石を用いていた。
[Prior art] Conventional magnetic brush developing device g1 (-component magnetic brush and
The permanent magnet roller used in the two-component magnetic brush is
As is known, a rotatable non-magnetic cylindrical developer transport sleeve has a cylindrical magnetic roller magnetized with a plurality of magnetic poles inside it, and the surface of the developer transport sleeve is moved according to the magnetic field generated by the magnetic roller. The device conveys the developer, and the magnetic roller is coated with sintered ferrite or wood JJ.
An i-coupled ferrite permanent magnet was used.

[発明が解決しようとする課題] しかしながら、前記したような従来技術による方法では
、回転自在な非磁性円筒状の現像剤搬送スリーブを用い
ており、スリーブの表面は滑らかな精度の高い機械加工
を必要とし、更にスリーブの内面には円柱状の永久磁石
を極値かな間隔で位置させ、回転させるため高い加工精
度を必要としていた。
[Problems to be Solved by the Invention] However, in the conventional method as described above, a rotatable non-magnetic cylindrical developer conveying sleeve is used, and the surface of the sleeve cannot be machined with high precision to make it smooth. In addition, cylindrical permanent magnets were placed on the inner surface of the sleeve at extreme intervals and rotated, requiring high processing accuracy.

円柱状の永久磁石には、磁気エネルギー積の低いフェラ
イト永久磁石を用いており、加工上寸法精度を出しやす
い樹11rI結合型の永久磁石では結合剤であるエポキ
シに代表される熱硬化性樹脂、またはナイロンに代表さ
れる熱可塑性樹脂を混合し成形することから、樹脂混合
分フェライト永久磁石粉の含有割合が減少し、構造上磁
気異方性を付加して表面磁束を増加させることが出来て
も、総じて磁気特性が低いことから磁石の肉厚を増やし
ても磁束が設定値に達しないことがあった。
For the cylindrical permanent magnet, a ferrite permanent magnet with a low magnetic energy product is used.In the tree-11rI bonded permanent magnet, which is easy to achieve dimensional accuracy during processing, the binder is a thermosetting resin such as epoxy, Alternatively, by mixing and molding a thermoplastic resin such as nylon, the content of ferrite permanent magnet powder in the resin mixture decreases, and it is possible to add magnetic anisotropy to the structure and increase the surface magnetic flux. However, because the magnetic properties were generally low, the magnetic flux sometimes did not reach the set value even if the thickness of the magnet was increased.

また別名セラミック磁石と呼ばれる焼結フェライト永久
磁石は樹脂結合型のフェライト永久磁石よりも、結合剤
である樹脂が混合されないだけ磁気特性は高いものの、
成形後高温で熱処理し焼結するため、高い表面磁束を得
る目的で磁気異方性を付加した場合、異方性の方向によ
り焼結時の収縮率が異なり割れ易く、量産は困難であっ
た。
Sintered ferrite permanent magnets, also known as ceramic magnets, have higher magnetic properties than resin-bonded ferrite permanent magnets because the binder resin is not mixed.
Since it is heat-treated and sintered at high temperature after forming, when magnetic anisotropy is added to obtain high surface magnetic flux, the shrinkage rate during sintering varies depending on the direction of the anisotropy, making it prone to cracking, making mass production difficult. .

以上のようにフェライト永久磁石は磁気特性が低いこと
から、肉厚を厚くして高い表面磁束を得ようとするため
、外周着磁極数を大幅に増加させることはできなかった
As described above, since ferrite permanent magnets have low magnetic properties, attempts are made to increase the wall thickness to obtain high surface magnetic flux, and it has not been possible to significantly increase the number of outer circumferential magnetized poles.

そこで本発明はこのような問題点を解決するためのもの
で、その目的とするところは薄く磁気性能の高い永久磁
石を用いることにより多極着磁ができて、かつ高い表面
磁束密度を得ることができ、回転自在な非磁性円筒状の
現像剤搬送スリーブを必要としない永久磁石ローラーを
提供するところにある。
Therefore, the present invention is intended to solve these problems, and its purpose is to achieve multipolar magnetization and obtain a high surface magnetic flux density by using a thin permanent magnet with high magnetic performance. It is an object of the present invention to provide a permanent magnet roller which is capable of rotating and does not require a rotatable non-magnetic cylindrical developer conveying sleeve.

〔課題を解決するための手12] 本発明の永久磁石ローラーは、複数の磁極に着磁された
円筒状の永久磁石ローラーに発生ずる磁場により現像剤
を前記永久磁石ローラー上に保持し、かつ回転させて前
記現像剤を搬送する現像装置の永久磁石ローラーにおい
て、外周−磁極幅Wと永久磁石肉厚tとが、W/l=1
〜3であり、かつ永久磁石肉厚tが0.5〜2市である
ことを特徴とする。
[Measures 12 for Solving the Problems] The permanent magnet roller of the present invention holds the developer on the permanent magnet roller by a magnetic field generated in a cylindrical permanent magnet roller magnetized with a plurality of magnetic poles, and In the permanent magnet roller of the developing device that rotates to convey the developer, the outer circumference-magnetic pole width W and the permanent magnet wall thickness t are W/l=1.
3, and the permanent magnet wall thickness t is 0.5 to 2.

更に本発明の永久磁石ローラーは、円筒状永久磁石が一
般に希土類永久磁石と呼称されているサマリュウム、コ
バルト、それぞれの元素を主成分とする永久磁石粉(詳
しく述べるならば一例として5trrCosまたは51
12 (Coo、asFeo、osMno、o4Cro
、oz ) +7に代表されるサマリュウム及びコバル
トを含有する永久磁石粉)と結合剤である樹脂との混合
物よりなることを特徴とする。
Further, in the permanent magnet roller of the present invention, the cylindrical permanent magnet is made of samarium, cobalt, which are generally called rare earth permanent magnets, and permanent magnet powder containing the respective elements as main components (in detail, as an example, 5trrCos or 51
12 (Coo, asFeo, osMno, o4Cro
, oz) +7) containing samarium and cobalt) and a resin as a binder.

[作用] 本発明の上記の構成によれば、薄く磁気性能の高い永久
磁石を用いることにより多極着磁ができて、かつ高い表
面磁束密度を得ることができ、回転自在な非磁性円筒状
の現像剤搬送スリーブを必要としない永久磁石ローラー
ができる。
[Function] According to the above configuration of the present invention, by using a thin permanent magnet with high magnetic performance, multipolar magnetization can be achieved, high surface magnetic flux density can be obtained, and a rotatable non-magnetic cylindrical magnet can be formed. A permanent magnet roller that does not require a developer conveying sleeve can be created.

表−1に永久磁石の肉厚と一磁極幅の構成を示す。Table 1 shows the thickness of the permanent magnet and the width of one magnetic pole.

永久磁石の肉厚は成形性から0.5mm以上とし、永久
磁石原料のコストから2mmとした。
The thickness of the permanent magnet was set to 0.5 mm or more in view of formability, and 2 mm in view of the cost of the permanent magnet raw material.

また通常、ラジアル異方性永久磁石の外周多極着磁が効
率良く行なえる範囲は、外周−磁極幅Wを1とした時、
磁石肉厚tを1以下にした方が不完全着磁部分が少なく
なるためw/l、=1〜3とした。
In addition, normally, the range in which outer circumference multi-pole magnetization of a radial anisotropic permanent magnet can be performed efficiently is when the outer circumference-pole width W is 1.
When the magnet wall thickness t is set to 1 or less, incompletely magnetized portions are reduced, so w/l was set to be 1 to 3.

表−1磁石肉厚と磁極幅 永久磁石肉厚t=0.5〜2關 一時極幅Wとの関係  w/l=1〜3[実施例] 以下実施例により本発明の詳細な説明する。Table-1 Magnet wall thickness and magnetic pole width Permanent magnet wall thickness t=0.5~2 degrees Relationship with temporary pole width W w/l=1~3 [Example] The present invention will be explained in detail below with reference to Examples.

第1図は本発明の永久磁石ローラーの軸方向から見た断
面図を示す。
FIG. 1 shows a cross-sectional view of the permanent magnet roller of the present invention viewed from the axial direction.

第1図において円筒状永久磁石1は、円筒状軟磁性材料
2の外周に密接固定しスペーサー5ににす、軸4に固定
されている。
In FIG. 1, a cylindrical permanent magnet 1 is closely fixed to the outer periphery of a cylindrical soft magnetic material 2 and is fixed to a shaft 4 by a spacer 5.

円筒状永久磁石1はサマリュウム及びコバルトを主成分
とする、詳しく述べるならば Sm (Coo、5zzCuo、oaFeo、22Zr
o、o2a ) 8.37の組成式で表わされる一般に
2−17系Sm−Co希土類永久磁石合金を溶解、鋳造
後、磁気特性を向上安定させるための熱処理を行ない、
このインゴットを粉砕し、粒度調整を行なった希土類永
久磁石粉に結合剤であるエポキシ樹脂を2重量%混合し
原料とした。
The cylindrical permanent magnet 1 has samarium and cobalt as its main components.
o, o2a) After melting and casting a 2-17 Sm-Co rare earth permanent magnet alloy generally represented by the composition formula 8.37, heat treatment is performed to improve and stabilize the magnetic properties,
This ingot was pulverized, and 2% by weight of epoxy resin as a binder was mixed with rare earth permanent magnet powder whose particle size was adjusted and used as a raw material.

成形は塩化ビニールバイブ等を押し出し成形する方法と
基本的に同様な押し出し成形機械を用い、更にラジアル
異方性を付加するため磁場掛は装置を付加した、ラジア
ル磁場押し出し成形機械を用い、外径φ20X内径φ1
7のリング状ラジアル異方性永久磁石を押し出し成形し
、その内面に外径φ17×内径φ15mmの低炭素含有
の鉄を主成分とするバイブをa6ffi加工した円筒状
軟磁性材料2を密接させ接骨剤により固定して、長さ2
20IIII11に明断後エポキシ樹脂を加熱固化させ
た。
For molding, an extrusion molding machine that is basically the same as the extrusion molding method used for extruding vinyl chloride vibrators, etc. is used, and a radial magnetic field extrusion molding machine is used that has an additional device for applying a magnetic field to add radial anisotropy. φ20X inner diameter φ1
A ring-shaped radially anisotropic permanent magnet No. 7 is extruded and molded, and a cylindrical soft magnetic material 2 processed by a6ffi, which is a vibrator whose main component is iron containing low carbon and has an outer diameter of 17 mm and an inner diameter of 15 mm, is closely attached to the inner surface of the magnet. Fixed with agent and length 2
After cutting in 20III11, the epoxy resin was heated and solidified.

また結合剤として熱可塑性のナイロン12またはナイロ
ン6等の樹脂を用いても加熱しながら押し出せば同様に
成形出来るものであるが、その場合は永久磁石粉を約6
0〜70 vo1%にしないと流動性が悪く成形が困難
となるが、冷却のみで同化できる。
Furthermore, even if a thermoplastic resin such as nylon 12 or nylon 6 is used as a binder, it can be molded in the same way by extruding it while heating, but in that case, the permanent magnet powder is
If it is not 0 to 70 vol%, the fluidity will be poor and molding will be difficult, but it can be assimilated only by cooling.

なお本実施例では円筒状永久磁石を成形後、円筒状軟磁
性材t[に密接固定したが押し出し成形時に永久磁石内
部にインサート成形することもできるものである。
In this example, after molding the cylindrical permanent magnet, it was closely fixed to the cylindrical soft magnetic material t[, but it is also possible to insert mold it inside the permanent magnet during extrusion molding.

円筒状永久磁石1の外周面には着磁装置と着磁ヨークを
用いN、S%iそれぞれ10極の20極等分多極着磁を
行なった。
The outer circumferential surface of the cylindrical permanent magnet 1 was multi-poled equally into 20 poles with 10 poles each of N and S%i using a magnetizing device and a magnetizing yoke.

永久磁石がラジアル異方性のため外周面より着磁され、
かつ内周面に密着した軟磁性材料を経て再度永久磁石の
外周面に戻る磁気回路を組む形となり高い表面磁束を得
ることができる。
Because the permanent magnet has radial anisotropy, it is magnetized from the outer circumferential surface,
In addition, a magnetic circuit is assembled that returns to the outer circumferential surface of the permanent magnet via the soft magnetic material that is in close contact with the inner circumferential surface, and a high surface magnetic flux can be obtained.

更に上記のようにして成形、接着、着磁をした円筒状永
久磁石1と円筒状軟磁性材料2とを、スペーサー5を介
して軸4に固定して永久磁石ロールとした。
Further, the cylindrical permanent magnet 1 and the cylindrical soft magnetic material 2, which were molded, bonded, and magnetized as described above, were fixed to a shaft 4 via a spacer 5 to form a permanent magnet roll.

本発明の永久磁石ローラーの表面磁束密度を市販のガウ
スメーターとホールプローブを用い測定た。
The surface magnetic flux density of the permanent magnet roller of the present invention was measured using a commercially available Gauss meter and a Hall probe.

永久磁石ローラーの軸4を回転させ円筒状永久磁石1を
回し、その表面に接触させたホールプローブからに出力
をガウスメーターで読み取り、更にメモリーできるオシ
ロスコープを用い記録した。
The shaft 4 of the permanent magnet roller was rotated to turn the cylindrical permanent magnet 1, and the output was read using a Gauss meter from a Hall probe that was in contact with the surface of the permanent magnet 1, and was further recorded using an oscilloscope with a memory function.

着磁波形は規則正しい正弦波に酷似した形状で最大値は
N、S極ともそれぞれ1550.1530ガウスあり最
小値はN、S極1260.1240ガウス、平均N極1
420、S極1400ガウスであった。比較例として従
来技術によるフェライト永久磁石の同寸法の永久磁石ロ
ーラーを測定した。
The magnetization waveform is very similar to a regular sine wave, the maximum value is 1550.1530 Gauss for both N and S poles, the minimum value is 1260.1240 Gauss for N and S poles, and the average N pole is 1.
420, and the S pole was 1400 Gauss. As a comparative example, a permanent magnet roller of the same size made of a ferrite permanent magnet according to the prior art was measured.

第2図の断面図に示す構造の物で樹脂結合タイプに比べ
磁気特性の高い焼結タイプのフェライト永久磁石を使用
したものである。
It has the structure shown in the sectional view of FIG. 2, and uses a sintered type ferrite permanent magnet which has higher magnetic properties than the resin bonded type.

円柱状永久磁石6は焼結フェライト永久磁石でその中央
部には軸4が固定され、外側には非磁性円筒状スリーブ
3が円柱状永久磁石6と相対的に自在回転する構造とな
っている。
The cylindrical permanent magnet 6 is a sintered ferrite permanent magnet, and has a shaft 4 fixed in its center, and a non-magnetic cylindrical sleeve 3 on the outside that freely rotates relative to the cylindrical permanent magnet 6. .

寸法は実施例と同様に永久磁石外径φ20、長さは22
0mmであるが、永久磁石の肉厚が厚くラジアル異方性
とならないため等方性の焼結フェライト永久磁石とした
The dimensions are the same as in the example: permanent magnet outer diameter φ20, length 22
0 mm, but since the permanent magnet is thick and does not exhibit radial anisotropy, an isotropic sintered ferrite permanent magnet was used.

表面磁束密度は本実施例と同様に測定した。The surface magnetic flux density was measured in the same manner as in this example.

着磁波形は規[14正しい正弦波に酷似した形状で最大
値はN、S極ともそれぞれ820.830ガウスあり最
小値はN、S極690.705ガウス、平均N極785
、S極790ガウスであった。
The magnetization waveform is a regular sine wave with a maximum value of 820.830 Gauss for both N and S poles, a minimum value of 690.705 Gauss for N and S poles, and an average N pole of 785 Gauss.
, S pole was 790 Gauss.

本実施例では、永久磁石肉厚tと一磁極幅Wとの組み合
わせの一例を述べたが、w/l=1〜3、t=0.5〜
2++++sの範囲内で同様の高い表面磁束を得ること
ができるものである。
In this embodiment, an example of the combination of the permanent magnet wall thickness t and the one magnetic pole width W is described, but w/l=1 to 3 and t=0.5 to
Similar high surface magnetic flux can be obtained within the range of 2++++s.

[発明の効果] 以上述べたように本発明の永久磁石ローラーによれば、
複数の磁極に着磁された円筒状の永久磁石ローラーに発
生する磁場により現像剤を前記永久磁石ローラー上に保
持し、かつ回転させて前記現像剤を搬送する現像装置の
永久磁石ローラーにおいて、外周−磁極幅Wと永久磁石
肉厚tとが、W/l=1〜3でありかつ永久磁石肉厚t
が0゜5〜2mmであり、 82に希土類永久磁石と呼
称されているサマリュウム、コバルト、それぞれの元素
を主成分とする永久磁石粉と結合剤である樹脂との混合
物よりなることとしたことにより、薄(磁気性能の高い
永久磁石を用いることにより多極着磁ができて、かつ高
い表面磁束密度を得ることができ、回転自在な非磁性円
筒状の現像剤搬送スリーブを必要としない永久磁石ロー
ルを提供出来るという効果を有するものである。
[Effects of the Invention] As described above, according to the permanent magnet roller of the present invention,
In a permanent magnet roller of a developing device that holds the developer on the permanent magnet roller by a magnetic field generated in a cylindrical permanent magnet roller magnetized with a plurality of magnetic poles, and rotates and conveys the developer, the outer periphery is - The magnetic pole width W and the permanent magnet wall thickness t are W/l=1 to 3, and the permanent magnet wall thickness t
is 0°5 to 2 mm, and is made of a mixture of permanent magnet powder containing samarium and cobalt, both of which are called rare earth permanent magnets as main components, and resin as a binder. , a permanent magnet that can be multi-pole magnetized by using a thin permanent magnet (with high magnetic performance), can obtain high surface magnetic flux density, and does not require a rotatable non-magnetic cylindrical developer conveying sleeve. This has the effect of being able to provide rolls.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の永久磁石ローラーの断面図。 第2図は従来技術による永久磁石ローラーの断面図。 ■・・円筒状永久磁石 2・・円筒状軟磁性材料4・・
軸       5・・スペーサー6・・円柱状永久磁
石 一以上一
FIG. 1 is a sectional view of the permanent magnet roller of the present invention. FIG. 2 is a sectional view of a permanent magnet roller according to the prior art. ■...Cylindrical permanent magnet 2...Cylindrical soft magnetic material 4...
Shaft 5...Spacer 6...One or more cylindrical permanent magnets

Claims (2)

【特許請求の範囲】[Claims] (1) 複数の磁極に着磁された円筒状の永久磁石ロー
ラーに発生する磁場により現像剤を前記永久磁石ローラ
ー上に保持し、かつ回転させて前記現像剤を搬送する現
像装置の永久磁石ローラーにおいて、外周−磁極幅Wと
永久磁石肉厚tとがW/t=1〜3であり、かつ永久磁
石肉厚tが0.5〜2mmであることを特徴とする永久
磁石ローラー。
(1) A permanent magnet roller of a developing device that holds the developer on the permanent magnet roller by a magnetic field generated in a cylindrical permanent magnet roller magnetized with a plurality of magnetic poles, and rotates to convey the developer. A permanent magnet roller characterized in that the outer periphery-magnetic pole width W and the permanent magnet wall thickness t are W/t=1 to 3, and the permanent magnet wall thickness t is 0.5 to 2 mm.
(2) 前記円筒状永久磁石が一般に希土類永久磁石と
呼称されているサマリュウム、コバルト、それぞれの元
素を主成分とする永久磁石粉と結合剤である樹脂との混
合物よりなることを特徴とする請求項(1)記載の永久
磁石ローラー。
(2) A claim characterized in that the cylindrical permanent magnet is made of a mixture of permanent magnet powder containing samarium and cobalt, which are generally called rare earth permanent magnets, and a resin serving as a binder. Permanent magnet roller according to item (1).
JP28948889A 1989-11-07 1989-11-07 Permanent magnet roller Pending JPH03150808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28948889A JPH03150808A (en) 1989-11-07 1989-11-07 Permanent magnet roller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28948889A JPH03150808A (en) 1989-11-07 1989-11-07 Permanent magnet roller

Publications (1)

Publication Number Publication Date
JPH03150808A true JPH03150808A (en) 1991-06-27

Family

ID=17743927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28948889A Pending JPH03150808A (en) 1989-11-07 1989-11-07 Permanent magnet roller

Country Status (1)

Country Link
JP (1) JPH03150808A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013087950A (en) * 2011-10-14 2013-05-13 Boeing Co:The Apparatus and method utilizing magnetic force to apply force to material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013087950A (en) * 2011-10-14 2013-05-13 Boeing Co:The Apparatus and method utilizing magnetic force to apply force to material

Similar Documents

Publication Publication Date Title
JPS61112310A (en) Manufacture of permanent magnet
JPS61148474A (en) Magnetic roller for copying machine and making thereof
JP4029679B2 (en) Bond magnet for motor and motor
JPS6312370B2 (en)
JPH03150808A (en) Permanent magnet roller
JP3012067B2 (en) Extremely anisotropic cylindrical magnet
JPH0611014B2 (en) Manufacturing method of cylindrical magnet
JPH03150807A (en) Permanent magnet roll
JPH0624174B2 (en) Manufacturing method of cylindrical magnet
JP7381851B2 (en) Method for manufacturing cylindrical bonded magnet, mold for forming cylindrical bonded magnet, and cylindrical bonded magnet
JPH0469407B2 (en)
JPS60211908A (en) Manufacture of cylindrical permanent magnet
JPH05129127A (en) Anisotropic segment type magnet
JP2005312166A (en) Anisotropic bond magnet for four magnetic pole motor and motor employing it
JPH06244047A (en) Manufacture of resin bonded permanent magnet
JPH02191310A (en) Manufacture of tape-shaped permanent magnet
JPS62235703A (en) Anisotropic resin magnet
JP4013916B2 (en) Orientation processing device for anisotropic bonded magnet for 4-pole motor
JPS62232107A (en) Anisotropic resin magnet
JP2689619B2 (en) Magnet roll
JPS62235704A (en) Anisotropic resin magnet
JPS60931B2 (en) Anisotropic magnet manufacturing method and manufacturing device
JP3049134B2 (en) 2-pole cylindrical magnet
JPH05101956A (en) Manufacture of anisotropic magnet of cylindrical shape
JPS61116956A (en) Rotor for motor of magnet rotation type