JPH05101956A - Manufacture of anisotropic magnet of cylindrical shape - Google Patents

Manufacture of anisotropic magnet of cylindrical shape

Info

Publication number
JPH05101956A
JPH05101956A JP18304691A JP18304691A JPH05101956A JP H05101956 A JPH05101956 A JP H05101956A JP 18304691 A JP18304691 A JP 18304691A JP 18304691 A JP18304691 A JP 18304691A JP H05101956 A JPH05101956 A JP H05101956A
Authority
JP
Japan
Prior art keywords
magnet
magnetic field
poles
magnets
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP18304691A
Other languages
Japanese (ja)
Inventor
Akira Matsunaga
章 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YOKOHAMA SUMITOKU DENSHI KK
Original Assignee
YOKOHAMA SUMITOKU DENSHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YOKOHAMA SUMITOKU DENSHI KK filed Critical YOKOHAMA SUMITOKU DENSHI KK
Priority to JP18304691A priority Critical patent/JPH05101956A/en
Publication of JPH05101956A publication Critical patent/JPH05101956A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To satisfactorily anisotropically orient material for magnet without using an electromagnet as magnetic field generating means for anisotropically orienting and to easily and inexpensively manufacture anisotropic magnets of cylindrical shape each having high performance in mass production by extrusion molding. CONSTITUTION:An apparatus for manufacturing anisotropic magnets of cylindrical shape, having magnetic field generating means 8 around a mold 3 provided at a protruding port 1 of an extruder for extruding kneaded mixture of magnetic powder and binder comprises a plurality of pole magnets 8a made of permanent magnets around a cylindrical molding hole (h) as the means 8 and so disposed that both the poles are radial and the polarities of the inner poles of the adjacent poles are different. Simultaneously, auxiliary magnets 8b of the same material as those of the poles are so disposed between the adjacent poles that both the poles are disposed circumferentially and the polarities of the poles are the same as those of the inner poles of the adjacent pole magnets, and a ringlike yoke 8c made of a ferromagnetic material is disposed on the outer periphery of the magnets.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は円筒状異方性磁石の製造
装置、更に詳しくは磁性粉を主原料として押出成形によ
って磁石を製造する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for producing a cylindrical anisotropic magnet, and more particularly to an apparatus for producing a magnet by extruding magnetic powder as a main raw material.

【0002】[0002]

【従来の技術】従来、フェライト磁石や希土類磁石など
の磁性粉を原料とする永久磁石を製造する場合、成形−
焼結−仕上の工程によっているのが殆どであり、又その
成形工程は圧縮成形法によるものが大部分である。例え
ば異方性のフェライト磁石を圧縮成形により製造する場
合には、図7に示すような略単位結晶粒子の大きさにな
るまで粉砕したフェライト磁性粉mを、磁界を施した圧
縮成形機の金型内に収容して磁性粉の自発磁化の方向
(C軸)を所定の方向に揃えた、いわゆる配向状態で所
定の形状に圧縮成形し、加圧状態で脱磁処理をする。次
いで、その成形品を焼結して仕上処理をするものであ
る。この場合、上記の結晶粒子の配向度が高いほど強力
な磁石が得られるもので、上記のような圧縮成形により
製造する場合には、粉末原料の充填、磁界発振、圧縮、
配向固定のまま脱磁、圧力解除、ワーク排出の操作を1
回成形毎に順序よく丁寧に実行することにより、強力な
異方性磁石を製造することができる。その反面、装置構
成が複雑となり、また成形に時間が掛かって製作コスト
が嵩む等の不具合がある。
2. Description of the Related Art Conventionally, when manufacturing a permanent magnet using a magnetic powder such as a ferrite magnet or a rare earth magnet as a raw material,
Mostly, it is based on the sintering-finishing process, and the molding process is mostly based on the compression molding method. For example, when an anisotropic ferrite magnet is manufactured by compression molding, ferrite magnetic powder m crushed to a size of substantially unit crystal grains as shown in FIG. The magnetic powder is housed in a mold, and the spontaneous magnetization direction (C axis) of the magnetic powder is aligned in a predetermined direction. Then, the molded product is sintered and finished. In this case, a stronger magnet is obtained as the degree of orientation of the crystal particles is higher, and when manufactured by compression molding as described above, filling of powder raw material, magnetic field oscillation, compression,
Operations such as demagnetization, pressure release, and work discharge with the orientation fixed 1
A strong anisotropic magnet can be manufactured by performing the steps carefully in every round molding. On the other hand, there are problems that the device configuration becomes complicated, and that molding takes time and manufacturing cost increases.

【0003】また、図10に示すような円筒状異方性磁
石Mgを製造する場合の異方化の方法としては、ラジア
ル異方化法と極異方化法の2法に分けられる。ラジアル
異方化とは図8の(a)のように円筒軸に対して磁性粉
結晶粒子mの自発磁化軸(C軸)をラジアル方向に万遍
なく並べて成形するものであり、極異方化とは図9の
(a)のように成形金型に所定の磁極を発生せしめて、
極付近の金型空腔内の粒子のみを部分異方化させて圧縮
するものである。ラジアル異方性磁石は成形後焼結工
程、仕上工程を経て最後に図8の(b)のように所定の
極数を備えた着磁ヨーク51により着磁する。52は巻
線を示す。一方、極異方性磁石は成形後、焼結工程、仕
上工程を経るが最後の着磁においては図9の(b)のよ
うに所定の極数を備えた着磁ヨーク51の極に成形によ
って形成された粒子の配向極を一致させて着磁しなけれ
ばならない。圧縮成形法にあってはラジアル異方化成
形、極異方化成形共に適用し得るが、1個成形毎に粉末
充填−磁界発生−圧縮−脱磁界印加−圧力解除−ワーク
抜出しを完了させる順序を繰り返すもので、そのために
は磁界発生法は電気的な方法によってなされ、成形手順
に同期してオン、オフが行われる。そのためには、煩雑
な巻線、ヨーク、粉末充填腔の組合わせを必要とし、し
かも、そのシーケンスの設定も複雑にならざるを得な
い。またラジアル異方化、極異方化もそれぞれの磁界発
生手段の構成上大型の円筒状多極磁石の製造には適して
いるが、小型磁石の製造には設計上制限がある。特に最
近の小型ステッピングモータ用の多極円筒状磁石には直
径10mm、8mm、6mm等の外周に8極、10極、
12極、16極等の要求があり、圧縮成形機では対応し
得ないものもある。
Further, the anisotropic method for manufacturing the cylindrical anisotropic magnet Mg as shown in FIG. 10 is divided into two methods, a radial anisotropic method and a polar anisotropic method. The radial anisotropy is a process in which the spontaneous magnetization axis (C axis) of the magnetic powder crystal particles m is evenly arranged in the radial direction with respect to the cylindrical axis as shown in FIG. As shown in FIG. 9 (a), the generation of a predetermined magnetic pole in a molding die
Only the particles in the mold cavity near the pole are partially anisotropically compressed. The radial anisotropic magnet is magnetized by a magnetizing yoke 51 having a predetermined number of poles, as shown in FIG. 8B, after a molding step, a sintering step, and a finishing step. Reference numeral 52 represents a winding. On the other hand, the polar anisotropic magnet is formed into a pole of the magnetizing yoke 51 having a predetermined number of poles as shown in FIG. It is necessary to match the orientation poles of the particles formed by the method and to magnetize them. In the compression molding method, both radial anisotropic molding and extreme anisotropic molding can be applied, but the order of completing powder filling-magnetic field generation-compression-demagnetizing field application-pressure release-workpiece extraction for each molding. For that purpose, the magnetic field generation method is performed by an electric method, and the magnetic field is turned on and off in synchronization with the molding procedure. For that purpose, a complicated combination of windings, yokes, and powder-filled cavities is required, and the setting of the sequence must be complicated. Radial anisotropy and polar anisotropy are also suitable for the production of large cylindrical multipole magnets due to the structure of the respective magnetic field generating means, but there is a design limitation for the production of small magnets. In particular, the recent multi-pole cylindrical magnets for small stepping motors have 8 poles, 10 poles on the outer circumference of diameters of 10 mm, 8 mm, 6 mm, etc.
There are requirements for 12 poles, 16 poles, etc., and there are some that cannot be handled by a compression molding machine.

【0004】一方、押出成形により永久磁石を製造する
ことも知られており、いわゆる樹脂磁石の製造法として
の押出成形法と、成形および焼結により磁石を製造する
際の成形を押出成形により行うものとがある。前者は押
出成形した後に焼結することなく製品が得られるので製
作が容易であるが、磁力の大きな異方性磁石を得ること
はできない。また後者のように押出成形した後に焼結す
るものとしては、例えば特開昭56−125813号、
同昭56−125814号公報が提案されている。これ
は円筒状のラジアル異方性磁石の製造に押出成形を応用
したもので、押出機の吐出口に、円筒状成形穴を有する
成形型を配置し、これに1組または2組の電磁コイル
(電磁石)により円筒状成形穴内に放射状の磁界を形成
して、磁性粉とバインダとの混練物を連続的に押出し成
形すると同時に配向処理を行うものである。
On the other hand, it is also known to manufacture a permanent magnet by extrusion molding. The extrusion molding method as a so-called resin magnet manufacturing method and the molding for manufacturing a magnet by molding and sintering are carried out by extrusion molding. There are things. The former is easy to manufacture because a product can be obtained without sintering after extrusion molding, but an anisotropic magnet having a large magnetic force cannot be obtained. Examples of the latter which are extruded and then sintered include those disclosed in JP-A-56-125813.
Japanese Laid-Open Patent Publication No. 56-125814 is proposed. This is an application of extrusion molding to the manufacture of cylindrical radial anisotropic magnets. A molding die with a cylindrical molding hole is placed at the discharge port of the extruder, and one or two sets of electromagnetic coils are placed in this. A radial magnetic field is formed in the cylindrical molding hole by the (electromagnet), and the kneaded material of the magnetic powder and the binder is continuously extruded and molded, and at the same time, the orientation treatment is performed.

【0005】[0005]

【発明が解決しようとする課題】ところが、上記のよう
に電磁石を用いるものは、巻線が必要で複雑な形状で、
かつ、短小指向の磁石の極異方化には限界がある。また
長時間使用で熱発する等の不確定条件が発生し、押出成
形およびそれと同時に行う配向処理ならびに配向固定に
支障を来すおそれがある。さらに磁界を発生させるため
の電力が必要であり、製造コストが増大する等の問題が
ある。
However, the one using the electromagnet as described above requires a winding and has a complicated shape.
In addition, there is a limit to making the magnet oriented in the small and small directions extremely polar. In addition, uncertain conditions such as heat generation during long-time use may occur, which may interfere with extrusion molding and the alignment treatment and alignment fixing performed at the same time. Further, there is a problem that electric power is required to generate a magnetic field, which increases manufacturing costs.

【0006】また上記従来のものは成形に当って磁性粒
子の配向を維持するための手段が講じられておらず、成
形型通過後においても磁性粉とバインダおよび水の割合
は変わらず、従って磁性粉の運動は自由な状態にあるた
め、例えば図11の(a)・(b)に示すように磁石6
1や鉄ヨーク62等の磁界発生手段を備えた成形型を通
過する際に、磁界内では粒子は配向していても磁界を脱
出する時点において成形型の磁場に引かれて後方に配向
してしまうおそれがあった。しかも成形品は成形後も帯
磁しているので、例えば磁界中で図12の(a)または
図13の(a)のように配向されていたものが、成形し
てから切断し乾燥して焼結するまでの間に内部反磁界の
作用で、図12の(b)または図13の(b)のように
配向が崩れてしまい強力な磁石が得られない等の問題が
あった。なお上記図12は近くに隣接極がある場合、図
13は同一極連続の場合である。
Further, the above-mentioned conventional device does not take any means for maintaining the orientation of the magnetic particles during the molding, and the ratio of the magnetic powder to the binder and the water does not change even after passing through the molding die. Since the movement of the powder is in a free state, for example, as shown in (a) and (b) of FIG.
1 or iron yoke 62, when passing through a mold having magnetic field generating means, even if the particles are oriented in the magnetic field, they are attracted by the magnetic field of the mold at the time of exiting the magnetic field and oriented backward. There was a risk of it. Moreover, since the molded product is magnetized even after molding, for example, a product oriented in a magnetic field as shown in FIG. 12 (a) or FIG. 13 (a) is cut, dried and baked. Until the connection, there was a problem that due to the action of the internal demagnetizing field, the orientation was broken as shown in FIG. 12 (b) or FIG. 13 (b) and a strong magnet could not be obtained. Note that FIG. 12 shows the case where adjacent poles are nearby, and FIG. 13 shows the case where the same pole is continuous.

【0007】本発明は上記問題点に鑑みて提案されたも
ので、異方化配向するための磁界発生手段として電磁石
を用いることなく、良好に異方化配向できるようにする
と共に、配向性の維持を図り、高性能な円筒状異方性磁
石を容易・安価に量産することのできる製造装置を提供
することを目的とする。
The present invention has been proposed in view of the above problems, and makes it possible to favorably achieve anisotropic orientation without using an electromagnet as a magnetic field generating means for anisotropic orientation, and to provide orientation It is an object of the present invention to provide a manufacturing apparatus capable of maintaining and mass-producing high-performance cylindrical anisotropic magnets easily and inexpensively.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めに本発明による円筒状異方性磁石の製造装置は、以下
の構成としたものである。即ち、磁性粉とバインダとの
混練物を押し出す押出機の吐出口に、円筒状成形穴を有
する成形型を設け、その成形型の周囲に配置した磁界発
生手段により上記円筒状成形穴内に磁界を発生させた状
態で上記混練物を押し出して円筒状異方性磁石を製造す
る装置において、上記磁界発生手段として円筒状成形穴
の周囲に、複数個の永久磁石よりなる極磁石を、その両
極が半径方向になるように、かつ隣り合う極磁石の内側
の極が互いに異極となるように配置すると共に、その隣
り合う極磁石間に、それと同材質の永久磁石よりなる補
助磁石を、その両極が周方向になるように、かつその各
極がそれに隣接する極磁石の内側の極と同極になるよう
に配置し、それ等の磁石の外周に強磁性材よりなるリン
グ状のヨークを配置したことを特徴とする。また上記成
形型は、非磁性材製の円筒状のサイジングパイプとプロ
ロングとを連続的に設けると共に、それ等の内方にコア
を配置してなり、そのサイジングパイプとプロロングと
の外周に前記磁界発生手段を配置すると共に、プロロン
グの外周面と磁界発生手段の側面に密着して冷却手段を
配置したことを特徴とする。
In order to achieve the above object, the apparatus for producing a cylindrical anisotropic magnet according to the present invention has the following constitution. That is, a discharge die of an extruder for extruding a kneaded product of magnetic powder and a binder is provided with a forming die having a cylindrical forming hole, and a magnetic field is generated in the cylindrical forming hole by a magnetic field generating means arranged around the forming die. In a device for producing a cylindrical anisotropic magnet by extruding the kneaded material in a generated state, a polar magnet consisting of a plurality of permanent magnets, both poles of which are around the cylindrical molding hole as the magnetic field generating means, The poles are arranged so that they are in the radial direction and the inner poles of adjacent pole magnets are different from each other, and an auxiliary magnet made of a permanent magnet of the same material as that of the two poles is provided between the adjacent pole magnets. Are arranged in the circumferential direction and their poles are the same as the inner poles of the adjacent pole magnets, and a ring-shaped yoke made of a ferromagnetic material is arranged on the outer circumference of those magnets. It is characterized by having done. Further, the above-mentioned molding die is provided with a cylindrical sizing pipe made of a non-magnetic material and a prolong in a continuous manner, and a core is arranged inside thereof, and the outer periphery of the sizing pipe and the prolong is arranged. The magnetic field generating means is arranged, and the cooling means is arranged in close contact with the outer peripheral surface of the prolong and the side surface of the magnetic field generating means.

【0009】[0009]

【作用】上記のように磁界発生手段として永久磁石を用
い、極磁石と補助磁石とを上記のように配置したことに
より、円筒状成形穴内に強い極磁界が形成され、その成
形穴内を混練物が通過して円筒状に成形される際に、良
好かつ確実に異方化配向することが可能となる。また上
記成形型を、非磁性材製の円筒状のサイジングパイプと
プロロングとを連続的に設け、そのサイジングパイプと
プロロングとの外周に前記磁界発生手段を配置すると共
に、プロロングの外周面と磁界発生手段の側面に密着し
て冷却手段を配置したことにより、ワークは磁界通過中
に配向終了し、かつその状態のままで配向を固定化する
ことが可能となる。
By using the permanent magnet as the magnetic field generating means and arranging the pole magnet and the auxiliary magnet as described above, a strong pole magnetic field is formed in the cylindrical molding hole, and the kneaded material is formed in the molding hole. When it passes through and is molded into a cylindrical shape, it is possible to favorably and reliably achieve anisotropic orientation. Further, the molding die, a cylindrical sizing pipe made of a non-magnetic material and a prolong are continuously provided, and the magnetic field generating means is arranged on the outer periphery of the sizing pipe and the prolong, and the outer peripheral surface of the prolong is formed. By arranging the cooling means in close contact with the side surface of the magnetic field generating means, the orientation of the work is completed while the magnetic field is passing, and the orientation can be fixed in that state.

【0010】[0010]

【実施例】以下、図に示す実施例に基づいて本発明を具
体的に説明する。図1は本発明による円筒状異方性磁石
の製造装置の一実施例を示す縦断側面図、図2はその要
部の拡大横断正面図である。図において、1は押出機の
吐出口であり、該押出機の混練・押出機構等は図に省略
したが、磁性粉とバインダとを混練し脱気して押出すこ
とができれば、従来公知の各種構成のものが適用可能で
ある。上記吐出口1には非磁性材製の導入部材2を介し
て成形型3が連結され、その吐出口1および導入部材2
の内方には上記の混練物を成形型3内に導く導入通路1
a・2aが形成されている。1b・2bは上記吐出口1
と導入部材2との連結用フランジ、4は上記導入通路1
a・2a内を流れる混練物の保温用加熱コイルである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on the embodiments shown in the drawings. FIG. 1 is a vertical cross-sectional side view showing an embodiment of an apparatus for manufacturing a cylindrical anisotropic magnet according to the present invention, and FIG. 2 is an enlarged cross-sectional front view of a main part thereof. In the figure, 1 is a discharge port of an extruder, and the kneading / extruding mechanism and the like of the extruder are omitted in the figure, but if the magnetic powder and the binder can be kneaded, degassed, and extruded, it is conventionally known. Various configurations are applicable. A molding die 3 is connected to the ejection port 1 via an introduction member 2 made of a non-magnetic material, and the ejection port 1 and the introduction member 2 are connected to the molding die 3.
Introducing passage 1 for guiding the above kneaded material into molding die 3 inside
a * 2a is formed. 1b and 2b are the discharge ports 1
And the introduction member 2 are connected to each other by a flange 4 and the introduction passage 1 described above.
It is a heating coil for keeping the temperature of the kneaded material flowing in a.2a.

【0011】成形型3は、上記導入通路2aの延長上
に、非磁性かつ耐磨耗性材料よりなる円筒状のサイジン
グパイプ5と、それと同様の材質よりなり内径がサイジ
ングパイプ5と等しいか又は僅かに大きい円筒状のプロ
ロング6とを連続的に設け、それ等の内空に鉄等よりな
る強磁性材製のコア7を配置した構成であり、上記サイ
ジングパイプ5とコア7との間には円筒状成形穴hが形
成されている。またサイジングパイプ5とプロロング6
の外周には、そのサイジングパイプ5およびプロロング
6の一部を覆うようにして磁界発生手段8が設けられ、
その磁界発生手段8の側面とプロロング6の外周面に密
着して冷却手段9が設けられている。その冷却手段9
は、図の場合は熱伝導性のよい冷却部材9aの内部に通
水孔9bを形成し、その通水孔9bに冷却水を通して冷
却する構成である。
The molding die 3 has a cylindrical sizing pipe 5 made of a non-magnetic and wear-resistant material, and the same material as that of the sizing pipe 5 in the extension of the introduction passage 2a. A slightly larger cylindrical prolong 6 is continuously provided, and a core 7 made of a ferromagnetic material made of iron or the like is arranged in the inner space of the prolong 6 and between the sizing pipe 5 and the core 7. A cylindrical forming hole h is formed in the. Also sizing pipe 5 and prolong 6
A magnetic field generating means 8 is provided on the outer periphery of the so as to cover a part of the sizing pipe 5 and the prolong 6,
Cooling means 9 is provided in close contact with the side surface of the magnetic field generating means 8 and the outer peripheral surface of the prolong 6. The cooling means 9
In the case of the figure, the water passage hole 9b is formed inside the cooling member 9a having good thermal conductivity, and the cooling water is passed through the water passage hole 9b to cool.

【0012】上記の磁界発生手段8としては、本発明に
おいては高残留密度、高保持力を有する希土類鉄磁石又
は希土類コバルト磁石等の永久磁石を用いる。電磁石を
用いないのは、 a)押出し成形は連続的であり、従って1個成形の度毎
に磁界の発生、消去のシーケンスは必要としない。 b)電磁石は巻線が必要で複雑な形状で、かつ、短小指
向の磁石の極異方化には限界がある。 c)本法押出法ではワークが有効磁界通過中に配向、お
よび配向固定硬化を行うので磁界帯の長さを必要とす
る。よって電磁石の極の長さも必要となり、電磁石によ
る磁力発生には限度がある。かつ長時間使用で熱発する
等の不確定条件が発生する。従って、有効磁界内での、
高温配向、冷却硬化の温度制御は永久磁石方式がはるか
に容易である。 d)成形コスト中磁界発生用の電力コストは大きなウエ
イトを占めるが、永久磁石方式は電力が不要である。等
の理由による。
As the magnetic field generating means 8 in the present invention, a permanent magnet such as a rare earth iron magnet or a rare earth cobalt magnet having a high residual density and a high coercive force is used. No electromagnet is used: a) Extrusion molding is continuous, and therefore, a sequence of generating and erasing a magnetic field is not required for each molding. b) The electromagnet has a complicated shape because it requires a winding, and there is a limit to making the magnet oriented in the small and small directions extremely polar. c) In this extrusion method, the length of the magnetic field band is required because the work is oriented and fixed and hardened during passage of the effective magnetic field. Therefore, the pole length of the electromagnet is also required, and the generation of magnetic force by the electromagnet is limited. In addition, uncertain conditions such as heat generation during long-term use occur. Therefore, in the effective magnetic field,
The permanent magnet method is much easier for temperature control of high temperature orientation and cooling and hardening. d) Molding cost The power cost for generating the medium magnetic field occupies a large weight, but the permanent magnet system does not require power. Etc.

【0013】次に、磁界発生手段8に用いる永久磁石の
配置構成を決定するに当っては、種々の基礎実験を行っ
た結果、図4に示すように鉄等のヨーク10上に、永久
磁石よりなる主磁石11と補助磁石12とを図のように
配置し、主磁石11の極幅をLm、極間隔をLfとした
とき、Lm/Lf=2程度になるようにするのが最も好
ましいことが分かった。13は上記磁石11・12の上
方に配置した鉄等のヨークであり、前記コア7に相当す
る。そのヨーク13と主磁石11との間隔Ydを3.5
mm、主磁石11の極幅Lmを1.5mm、極間隔Lf
を2mmとし、主磁石11および補助磁石12として希
土類鉄磁石(Br12KG bHc11.5KOe)を
使用して、前記ヨーク10と反対側の主磁石11の極に
発生する磁力を、主磁石11から所定の距離はなれた位
置にプローブを置いて測定したところ、図5のような結
果が得られた。上記図5の横軸は主磁石11からの離間
距離Lgであり、主磁石からの距離が1mm付近で70
00G以上、2mm付近で約6000Gを示した。なお
上記図4においては、主磁石11と補助磁石12とを直
線状に配置したが、円筒状に配置した場合も同様の結果
が得られる。
Next, in determining the arrangement configuration of the permanent magnets used in the magnetic field generating means 8, as a result of various basic experiments, as shown in FIG. 4, the permanent magnets are formed on the yoke 10 made of iron or the like. It is most preferable that the main magnet 11 and the auxiliary magnet 12 are formed as shown in the figure, and that when the pole width of the main magnet 11 is Lm and the pole interval is Lf, Lm / Lf = 2. I found out. Reference numeral 13 denotes a yoke made of iron or the like arranged above the magnets 11 and 12, and corresponds to the core 7. The distance Yd between the yoke 13 and the main magnet 11 is 3.5.
mm, the pole width Lm of the main magnet 11 is 1.5 mm, the pole spacing Lf
Is 2 mm, and a rare earth iron magnet (Br12KG bHc11.5 KOe) is used as the main magnet 11 and the auxiliary magnet 12, and the magnetic force generated at the pole of the main magnet 11 on the side opposite to the yoke 10 is set to a predetermined value from the main magnet 11. When the probe was placed at a position separated by a distance, the measurement was performed, and the result as shown in FIG. 5 was obtained. The horizontal axis of FIG. 5 is the distance Lg from the main magnet 11, and is 70 when the distance from the main magnet is around 1 mm.
Approximately 6000G was shown in the vicinity of 00G and 2 mm. Although the main magnet 11 and the auxiliary magnet 12 are linearly arranged in FIG. 4, similar results can be obtained when they are cylindrically arranged.

【0014】上記のような構成を円筒形外周多極異方性
磁石に適用する場合、磁石の半径方向の厚みは、一般に
1.5〜3mm程度が要求されており、測定距離1mm
〜1.5mmは押出成形の際、磁極の内側に嵌入するサ
イジングパイプの厚みを勘案してワークの外周表面に相
当する位置となる。従って、上記測定距離Lg=1〜2
mmで7000G〜6000Gは実施段階において磁粉粒
子の配向に必要にして充分の磁界である。
When the above-mentioned structure is applied to a cylindrical outer peripheral multi-pole anisotropic magnet, the thickness of the magnet in the radial direction is generally required to be about 1.5 to 3 mm, and the measuring distance is 1 mm.
The thickness of up to 1.5 mm is a position corresponding to the outer peripheral surface of the work in consideration of the thickness of the sizing pipe fitted inside the magnetic pole during extrusion molding. Therefore, the measurement distance Lg = 1 to 2
The magnetic field of 7,000 G to 6000 G in mm is a sufficient magnetic field necessary for the orientation of the magnetic powder particles in the practical stage.

【0015】以上の結果から本発明においては、円筒形
多極異方性磁石を製造するための磁界発生手段8は、図
2のようにしたものである。すなわち、サイジングパイ
プ5の外周に接して上記主磁石11に相当する希土類鉄
磁石等の永久磁石よりなる極磁石8aを、サイジングパ
イプ5側が交互に異極となるようにして等間隔に配置
し、その隣り合う極磁石8a・8a間に上記補助磁石1
2に相当する希土類鉄磁石等の永久磁石よりなる補助磁
石8bを、極磁石8aに接触させて配置する。その各補
助磁石8bは極が周方向になるように配置すると共に、
その補助磁石の極がそれに隣接する極磁石の内側の極と
同極になるように配置する。つまり極磁石8aの内側が
N極ならばそれに接する両側の補助磁石8bのN極が、
その極磁石8a側に向くようにする。S極も同様であ
る。そして上記各磁石8a・8bの外周に接して円筒状
のヨーク8cを配置したものである。このように配置す
れば、上記磁石群の外周にあっては、S.N交互に配置
されたことになり、かつ外周のヨーク8cにより磁路は
クローズ状態となってリークが無くなり、磁界のリーク
は内径側の極磁石8aの先端に集中することとなる。
From the above results, in the present invention, the magnetic field generating means 8 for manufacturing the cylindrical multipole anisotropic magnet is as shown in FIG. That is, the pole magnets 8a, which are in contact with the outer circumference of the sizing pipe 5 and are made of permanent magnets such as rare earth iron magnets corresponding to the main magnets 11, are arranged at equal intervals so that the sizing pipe 5 side has different poles alternately. The auxiliary magnet 1 is provided between the adjacent pole magnets 8a and 8a.
An auxiliary magnet 8b made of a permanent magnet such as a rare earth iron magnet corresponding to 2 is placed in contact with the pole magnet 8a. The auxiliary magnets 8b are arranged such that the poles are in the circumferential direction, and
The pole of the auxiliary magnet is arranged so as to be the same as the pole inside the pole magnet adjacent to it. That is, if the inside of the pole magnet 8a is the N pole, the N poles of the auxiliary magnets 8b on both sides contacting it are
It is made to face the pole magnet 8a side. The same applies to the S pole. A cylindrical yoke 8c is arranged in contact with the outer circumference of each of the magnets 8a and 8b. With this arrangement, the S. This means that the N magnetic poles are arranged alternately, and the yoke 8c on the outer periphery closes the magnetic path to eliminate leakage, and the leakage of the magnetic field is concentrated on the tip of the pole magnet 8a on the inner diameter side.

【0016】上記のように構成された製造装置を用い
て、円筒状異方性磁石を製造するに当たっては、ほぼ単
位結晶粒径まで充分に粉砕したフェライト磁石等の磁性
粉に、バインダを混合する。そのバインダとしては、例
えばヒドロキシエチルセルロースとポリエチレンオキサ
イドのいずれか一方または両方と水、およびポリエチレ
ングリコールを加えたものを用いる。その場合の配合割
合は、例えば、磁性粉が100重量部に対してヒドロキ
シエチルセルロースとポリエチレンオキサイドのいずれ
か一方または両方を合わせて0.1〜6.0重量部、水
を5〜20重量部、ポリエチレングリコールを0.1〜
20重量部程度とすればよい。
When a cylindrical anisotropic magnet is manufactured using the manufacturing apparatus configured as described above, a binder is mixed with magnetic powder such as a ferrite magnet that has been sufficiently ground to about a unit crystal grain size. .. As the binder, for example, one or both of hydroxyethyl cellulose and polyethylene oxide, water, and polyethylene glycol are used. The compounding ratio in that case is, for example, 0.1 to 6.0 parts by weight of one or both of hydroxyethyl cellulose and polyethylene oxide in 100 parts by weight of magnetic powder, 5 to 20 parts by weight of water, Polyethylene glycol 0.1 to
It may be about 20 parts by weight.

【0017】その磁性粉とバインダとの混合物を押出機
内に投入し、その押出機内の図に省略した混練・押出機
構により、充分に混練し、かつ脱気して50℃〜90℃
の範囲内、例えば70℃に加熱して押出機の吐出口1か
ら混練物を順次連続的に押し出す。すると、混練物は導
入部材2を介して成形型3のサイジングパイプ5内に導
かれる。その際、混練物は磁性粒子の配向モビリティを
よくするために保温用加熱コイル4によって上記の例え
ば70℃に維持されて流動状態に保たれる。
The mixture of the magnetic powder and the binder is put into an extruder, and the mixture is thoroughly kneaded and deaerated by a kneading / extruding mechanism (not shown in the figure) in the extruder to 50 ° C. to 90 ° C.
Within a range of, for example, 70 ° C., and the kneaded product is continuously and continuously extruded from the discharge port 1 of the extruder. Then, the kneaded material is introduced into the sizing pipe 5 of the molding die 3 via the introduction member 2. At this time, the kneaded material is kept in a fluidized state by being maintained at, for example, 70 ° C. by the heating coil 4 for heat retention in order to improve the orientation mobility of the magnetic particles.

【0018】上記のサイジングパイプ5内に導入された
混練物は、その成形穴hによって順次円筒状に成形され
ると同時に、磁界発生手段8による磁界の作用で混練物
内の磁性粒子が所定の方向に配向される。特に本発明の
実施例においては、磁界発生手段8として希土類鉄磁石
等の永久磁石よりなる複数個の極磁石8aと補助磁石8
bとを用い、それ等を前記のように配置したので、強力
な磁界が得られ、良好に極異方性の多極配向を施すこと
ができるものである。
The kneaded material introduced into the above-mentioned sizing pipe 5 is successively formed into a cylindrical shape by its forming hole h, and at the same time, the magnetic particles in the kneaded material have a predetermined amount due to the action of the magnetic field by the magnetic field generating means 8. Oriented in the direction. In particular, in the embodiment of the present invention, the magnetic field generating means 8 includes a plurality of pole magnets 8a made of a permanent magnet such as a rare earth iron magnet and an auxiliary magnet 8.
Since b and b are used and arranged as described above, a strong magnetic field can be obtained and good polar anisotropic multipolar alignment can be performed.

【0019】次いで、サイジングパイプ5で横断面円筒
状に成形された成形体(ワーク)Wは、引き続き上記磁
界発生手段8による磁界の作用を受けながら、プロロン
グ6内に順次導かれ、そのプロロング6内を通過する過
程で次第に冷却されて常温程度、例えば25℃程度まで
冷却されてプロロング6から順次排出される。従って、
磁性粒子は上記の磁界の作用で前記の配向状態を維持し
たままで冷却されることになり、成形体は急速に硬度を
増して上記の配向状態を保持したままで固定化排出され
るものである。
Next, the formed body (workpiece) W which is formed into a cylindrical cross section by the sizing pipe 5 is successively guided into the prolong 6 while being subjected to the magnetic field by the magnetic field generating means 8, and the prolongation thereof is carried out. In the process of passing through the long 6, it is gradually cooled to about room temperature, for example, about 25 ° C., and is sequentially discharged from the pro long 6. Therefore,
The magnetic particles are cooled by the action of the magnetic field while maintaining the above-mentioned oriented state, and the molded body rapidly increases in hardness and is fixed and discharged while keeping the above-mentioned oriented state. is there.

【0020】なお、このときの混練物および成形品の温
度変化と、粒子の配向、配向固定、形状固定との関係を
図3に示す。同図右側に混練物の性状を示したが、60
℃付近以上90℃以下の温度帯で粘度を落とし混練物の
流動性を向上させて配向を完了した後、ほぼ60℃〜4
0℃において粘性を増大させ、かつ硬度を加えつつ進行
し、金型磁界を通過し終わるまでに40℃以下になるよ
うに冷却硬化を行う。結局、成形体は略常温まで冷却さ
れ、固化または半固化の状態で磁界を通過することにな
る。この段階で成形品はほぼ固化しているので、粒子配
向は乱れることなく磁界を離れ、プロロング6を経て成
形品が排出されるものである。
FIG. 3 shows the relationship between the temperature change of the kneaded product and the molded product at this time and the orientation, the orientation fixing, and the shape fixing of the particles. The properties of the kneaded product are shown on the right side of the figure.
After the viscosity is lowered in the temperature range of about 90 ° C. to 90 ° C. to improve the fluidity of the kneaded product and the orientation is completed, the temperature is about 60 ° C. to 4 °
At 0 ° C., the viscosity is increased, the hardness is increased, the progress is made, and the cooling and hardening is performed so as to be 40 ° C. or less before passing through the mold magnetic field. After all, the molded body is cooled to about room temperature and passes through the magnetic field in a solidified or semi-solidified state. Since the molded product is almost solidified at this stage, the particle orientation is not disturbed and leaves the magnetic field, and the molded product is discharged through the prolong 6.

【0021】次に、その成形品は常温における真空脱水
操作等を行って脱水、すなわち成形品の完全硬化(完全
固体化)を行い、交番減衰磁界等をかけて強制脱磁およ
び所定長さの切断を行って焼結工程のための処理を終わ
る。ついで焼結工程を経て製品を得るものである。
Next, the molded product is dehydrated by performing a vacuum dehydration operation or the like at room temperature, that is, the molded product is completely hardened (completely solidified), and an alternating magnetic field is applied to force demagnetization and a predetermined length. The cutting is performed to complete the process for the sintering process. Then, a product is obtained through a sintering process.

【0022】以上のように本発明の実施例においては、
良好に異方化配向された円筒状異方性多極磁石を容易・
安価に量産することが可能となるものである。また従来
一般に押出成形にあっては、多量のバインダと水を含有
するので、製品の密度は圧縮成形に劣るのが通常である
が、本発明においては焼結終了時点の密度は4.75〜
4.83であり、圧縮成形法による場合の密度4.9〜
5.1と略程度にすることができた。従って、配向度を
上げることにより、圧縮成形法による場合と同等もしく
はそれ以上の性能を有する異方性磁石を得ることができ
るものである。
As described above, in the embodiment of the present invention,
Easy to create a cylindrical anisotropic multi-pole magnet with good anisotropic orientation
It is possible to mass-produce at low cost. Further, in the past, generally, in extrusion molding, since a large amount of binder and water are contained, the density of the product is usually inferior to that in compression molding, but in the present invention, the density at the end of sintering is 4.75 to.
Which is 4.83, and the density in the case of the compression molding method is 4.9 to
It was able to be about 5.1. Therefore, by increasing the degree of orientation, it is possible to obtain an anisotropic magnet having performance equivalent to or better than that obtained by the compression molding method.

【0023】〔実験例〕ストロンチウムフェライトの粉
末を40kg、ポリエチレングリコール粉末を3kg、
ヒドロキシエチルセルローズを0.2kgを予め準備し
た。ストロンチウムフェライト粉は平均粒径1.0μ
m、ポリエチレングリコールは平均分子量20000で
かつ粉状のもの、ヒドロキシエチルセルローズは粉状の
ものを先ずミキサーに依り充分に混合する。次に水5.
5kgをこれに加え混練機に投入して、混練かつ脱気を
した。次に真空脱気して加温シリンダを有する押出成形
機に投入し、押出成形を行った。なお、その押出成形機
吐出部のサイジングパイプの内径(直径)は11.1m
m、コアの外径は5.31mmとして磁極は10極とし
た。磁界発生手段としては前記実施例のような希土類磁
石の組み合わせ構造とした。サイジングパイプ内周面に
おける磁束密度は6380ガウスであった。その磁界発
生手段の長さは120mmとした。また、押出機内の混
練物の温度は70℃とし、冷却は20℃の水を使用して
半固体状の長尺な円筒状の成形品を得た。その成形品の
寸法は外径11.1mm、内径5.31mmであった。
これを略300mmの長さに切り、真空乾燥機に入れ
た。その真空乾燥機は5.5kWの水封式真空ポンプを
用い、その真空度は500mmHgで約2時間かけて乾
燥させた。以上により成形品中の水分は4%弱となり、
成形品は硬い固体となった。次にこれをパルス脱磁機に
より、ピーク出力1500Aから交番減衰により脱磁
し、次に22mmに切断し、1220℃、10時間にて
焼結した。焼結品は円筒研磨機により外径8mm、内径
4mm、長さ15mmの円筒形磁石を得た。更に内径
8.05mmにして、10極のヨークを使用し、出力は
200μF,1500Vの出力により外周10極の多極
磁石を得た。
[Experimental Example] 40 kg of strontium ferrite powder, 3 kg of polyethylene glycol powder,
0.2 kg of hydroxyethyl cellulose was prepared in advance. Strontium ferrite powder has an average particle size of 1.0μ
First, m and polyethylene glycol having an average molecular weight of 20,000 and being powdery, and hydroxyethyl cellulose being powdery are first thoroughly mixed by a mixer. Then water 5.
5 kg was added thereto, and the mixture was put into a kneading machine to be kneaded and deaerated. Next, vacuum deaeration was performed, and the mixture was put into an extruder having a heating cylinder to perform extrusion molding. The inner diameter (diameter) of the sizing pipe at the discharge part of the extruder is 11.1 m.
m, the outer diameter of the core was 5.31 mm, and the number of magnetic poles was 10. As the magnetic field generating means, a combination structure of the rare earth magnets as in the above embodiment is used. The magnetic flux density on the inner peripheral surface of the sizing pipe was 6380 gauss. The length of the magnetic field generating means was 120 mm. The temperature of the kneaded product in the extruder was 70 ° C., and water was used at 20 ° C. for cooling to obtain a semi-solid long cylindrical molded product. The dimensions of the molded product were an outer diameter of 11.1 mm and an inner diameter of 5.31 mm.
This was cut into a length of about 300 mm and placed in a vacuum dryer. The vacuum dryer used was a 5.5 kW water-sealed vacuum pump, and the degree of vacuum was 500 mmHg, and the drying was performed for about 2 hours. Due to the above, the water content in the molded product is less than 4%,
The molded product became a hard solid. Next, this was demagnetized by a pulse demagnetizer from a peak output of 1500 A by alternating attenuation, then cut to 22 mm and sintered at 1220 ° C. for 10 hours. A cylindrical magnet having an outer diameter of 8 mm, an inner diameter of 4 mm and a length of 15 mm was obtained from the sintered product by a cylindrical grinder. Further, the inner diameter was 8.05 mm, a 10-pole yoke was used, the output was 200 μF, and a multi-pole magnet having an outer periphery of 10 poles was obtained with an output of 1500 V.

【0024】〔比較例1〕次に上記実験例の比較例とし
て、成形用フェライト粉末、バインダ、水等の条件は実
験例と全く同様とし、かつ、成形金型も実験例と同じも
のを使用した。混練の条件も同一として、成形し、成形
に当たって冷却を行わなかった。成形品は、極めて軟い
状態で得られた。自然冷却により、硬化させこれを30
0mmの長さに切り真空乾燥に入れた。以降、上記実験
例と同様の工程を経て、外径8mm、内径4mm、長さ
15mmの10極の多極磁石を得た。
COMPARATIVE EXAMPLE 1 Next, as a comparative example of the above experimental example, the conditions of the molding ferrite powder, binder, water, etc. were completely the same as those of the experimental example, and the molding die used was the same as that of the experimental example. did. The kneading conditions were the same, and molding was performed, and cooling was not performed during molding. The moldings were obtained in a very soft state. Let it harden by natural cooling and
It was cut to a length of 0 mm and put into vacuum drying. After that, through the same steps as in the above-mentioned experimental example, a 10-pole multi-pole magnet having an outer diameter of 8 mm, an inner diameter of 4 mm, and a length of 15 mm was obtained.

【0025】〔比較例2〕さらに他の比較例として従来
の圧縮成形法による等方性のものを作成し同様の着磁を
行った。以上の実験例および比較例1・2で得られた磁
石の磁石特性をそれぞれ図16の(a)〜(c)および
下記表1に示す。 上記表中の比率は、比較例2の平均極磁束を100をし
たときの比率であり、本発明にもとづく前記実験例で得
られた異方性磁石は、前記比較例2における従来の圧縮
成形による等方性磁石よりも68%、また比較例1にお
ける従来の押出法による異方性磁石よりも29%の磁力
の向上となった。
Comparative Example 2 As yet another comparative example, an isotropic one prepared by a conventional compression molding method was prepared and subjected to the same magnetization. The magnet characteristics of the magnets obtained in the above experimental example and comparative examples 1 and 2 are shown in (a) to (c) of FIG. 16 and Table 1 below, respectively. The ratios in the above table are the ratios when the average pole magnetic flux of Comparative Example 2 is 100, and the anisotropic magnets obtained in the experimental examples according to the present invention are the same as those of the conventional compression molding in Comparative Example 2. The magnetic force was 68% higher than that of the isotropic magnet according to Example 1 and 29% higher than the anisotropic magnet obtained by the conventional extrusion method in Comparative Example 1.

【0026】[0026]

【発明の効果】以上説明したように本発明によれば、磁
性粉を押出成形して円筒状異方性磁石を製造する際に円
筒状成形穴内に、永久磁石よりなる極磁石と補助磁石と
の組み合わせにより、磁性粒子の配向に必要かつ充分な
磁界を発生させることが可能となり、良好に配向処理を
行うことができる。また上記のように良好に配向処理が
なされたままで配向状態を固定化することが可能となる
もので、従来の押出成形の不備を解消し、しかも圧縮成
形による場合と同等もしくはそれ以上の性能を有する円
筒状異方性磁石を容易・安価に量産することができる。
さらに本発明によれば、磁石の軽薄短小化への対応が可
能となり、小型磁石の押出成形による製造可能領域を拡
大できる等の効果がある。
As described above, according to the present invention, when a magnetic powder is extrusion-molded to produce a cylindrical anisotropic magnet, a pole magnet made of a permanent magnet and an auxiliary magnet are provided in a cylindrical molding hole. By combining the above, it becomes possible to generate a magnetic field necessary and sufficient for the orientation of the magnetic particles, and it is possible to favorably perform the orientation treatment. In addition, as described above, it becomes possible to fix the orientation state while the orientation treatment is being performed well, eliminating the deficiency of conventional extrusion molding, and moreover, the performance equal to or better than that of compression molding. The cylindrical anisotropic magnet can be mass-produced easily and inexpensively.
Further, according to the present invention, it is possible to cope with the miniaturization of the magnet, and to reduce the size, and it is possible to expand the manufacturable range by extrusion molding of the small magnet.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による円筒状異方性磁石の製造装置の一
実施例を示す縦断側面図。
FIG. 1 is a vertical sectional side view showing an embodiment of an apparatus for manufacturing a cylindrical anisotropic magnet according to the present invention.

【図2】実施例の製造装置の要部の横断正面図。FIG. 2 is a cross-sectional front view of a main part of the manufacturing apparatus according to the embodiment.

【図3】磁石製造過程における混練物の温度と配向状態
等との関係を示す説明図。
FIG. 3 is an explanatory diagram showing the relationship between the temperature of the kneaded material and the orientation state in the magnet manufacturing process.

【図4】磁界発生手段の配置構成を決定するための基礎
実験例の説明図。
FIG. 4 is an explanatory diagram of a basic experiment example for determining the arrangement configuration of magnetic field generating means.

【図5】上記基礎実験例による磁力特性図。FIG. 5 is a magnetic force characteristic diagram according to the basic experiment example.

【図6】(a)〜(c)は本発明による実験例と比較例
で得た磁石の磁力特性図。
6A to 6C are magnetic force characteristic diagrams of magnets obtained in an experimental example and a comparative example according to the present invention.

【図7】フェライト磁石の単位結晶粒子の斜視図。FIG. 7 is a perspective view of unit crystal particles of a ferrite magnet.

【図8】(a)・(b)はラジアル異方化磁石およびそ
の着磁方法の説明図。
8A and 8B are explanatory views of a radial anisotropic magnet and a magnetizing method thereof.

【図9】(a)・(b)は極異方化磁石およびその着磁
方法の説明図。
9A and 9B are explanatory views of a polar anisotropic magnet and a magnetizing method thereof.

【図10】円筒状異方化磁石の斜視図。FIG. 10 is a perspective view of a cylindrical anisotropic magnet.

【図11】(a)・(b)は押出成形時の配向の乱れを
示す説明図。
11 (a) and (b) are explanatory views showing disorder of orientation during extrusion molding.

【図12】(a)・(b)は磁界中の配向状態と着磁後
の配向の乱れを示す説明図。
12A and 12B are explanatory views showing the alignment state in a magnetic field and the alignment disorder after magnetization.

【図13】(a)・(b)は磁界中の配向状態と着磁後
の配向の乱れを示す説明図。
13 (a) and 13 (b) are explanatory views showing the alignment state in a magnetic field and the alignment disorder after magnetization.

【符号の説明】[Explanation of symbols]

1 押出機吐出口 2 導入部材 3 成形型 4 保温用加熱コイル 5 サイジングパイプ 6 プロロング 7 コア 8 磁界発生手段 8a 極磁石 8b 補助磁石 8c ヨーク 9 冷却手段 9a 冷却部材 9b 通水孔 h 円筒状成形穴 DESCRIPTION OF SYMBOLS 1 Extruder discharge port 2 Introducing member 3 Mold 4 Heating coil 5 for heat retention 5 Sizing pipe 6 Prolong 7 Core 8 Magnetic field generating means 8a Pole magnet 8b Auxiliary magnet 8c Yoke 9 Cooling means 9a Cooling member 9b Water hole h Cylindrical molding hole

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 磁性粉とバインダとの60℃〜90℃に
加温された混練物を押し出す押出機の吐出口に、円筒状
成形穴を有する成形型を設け、その成形型の周囲に配置
した磁界発生手段により上記円筒状成形穴内に磁界を発
生させた状態で上記混練物を押し出して円筒状異方性磁
石を製造する装置において、上記磁界発生手段として円
筒状成形穴の周囲に、複数個の永久磁石よりなる極磁石
を、その両極が半径方向になるように、かつ隣り合う極
磁石の内側の極が互いに異極となるように配置すると共
に、その隣り合う極磁石間に、それと同材質の永久磁石
よりなる補助磁石を、その両極が周方向になるように、
かつその各極がそれに隣接する極磁石の内側の極と同極
になるように配置し、それ等の磁石の外周に強磁性材よ
りなるリング状のヨークを配置したことを特徴とする円
筒状異方性磁石の製造装置。
1. A molding die having a cylindrical molding hole is provided at a discharge port of an extruder for extruding a kneaded material of magnetic powder and a binder heated to 60 ° C. to 90 ° C., and the molding die is arranged around the molding die. In a device for producing a cylindrical anisotropic magnet by extruding the kneaded material in a state in which a magnetic field is generated in the cylindrical forming hole by the magnetic field generating means, a plurality of magnetic field generating means are provided around the cylindrical forming hole. Pole magnets consisting of individual permanent magnets are arranged such that both poles are in the radial direction and the inner poles of adjacent pole magnets are different from each other, and between the adjacent pole magnets, Auxiliary magnet consisting of permanent magnet of the same material, so that both poles are in the circumferential direction,
And each pole is arranged so as to be the same pole as the inside pole of the adjacent pole magnet, and a ring-shaped yoke made of a ferromagnetic material is arranged on the outer circumference of those magnets. Anisotropic magnet manufacturing equipment.
【請求項2】 上記成形型は、非磁性材製の円筒状のサ
イジングパイプとプロロングとを連続的に設けると共
に、それ等の内方にコアを配置してなり、そのサイジン
グパイプとプロロングとの外周に前記磁界発生手段を配
置すると共に、プロロングの外周面と磁界発生手段の側
面に密着して冷却手段を配置してなる請求項1記載の円
筒状異方性磁石の製造装置。
2. The molding die comprises a cylindrical sizing pipe made of a non-magnetic material and a prolong, which are continuously provided, and a core is arranged inwardly of the sizing pipe and the prolong. 2. The apparatus for manufacturing a cylindrical anisotropic magnet according to claim 1, wherein the magnetic field generating means is arranged on the outer circumference of the cylindrical anisotropic magnet, and the cooling means is arranged in close contact with the outer peripheral surface of the prolong and the side surface of the magnetic field generating means.
JP18304691A 1991-06-27 1991-06-27 Manufacture of anisotropic magnet of cylindrical shape Withdrawn JPH05101956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18304691A JPH05101956A (en) 1991-06-27 1991-06-27 Manufacture of anisotropic magnet of cylindrical shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18304691A JPH05101956A (en) 1991-06-27 1991-06-27 Manufacture of anisotropic magnet of cylindrical shape

Publications (1)

Publication Number Publication Date
JPH05101956A true JPH05101956A (en) 1993-04-23

Family

ID=16128799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18304691A Withdrawn JPH05101956A (en) 1991-06-27 1991-06-27 Manufacture of anisotropic magnet of cylindrical shape

Country Status (1)

Country Link
JP (1) JPH05101956A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005223233A (en) * 2004-02-09 2005-08-18 Sumitomo Metal Mining Co Ltd Metal mold for molding pole-anisotropic cylindrical magnet
JP2013135103A (en) * 2011-12-27 2013-07-08 Nichia Chem Ind Ltd Method of manufacturing cylindrical bonded magnet and manufacturing apparatus for the same
US9906084B2 (en) 2010-12-22 2018-02-27 Fisher & Paykel Appliances Limited Appliance, motor or stator
CN113077983A (en) * 2021-04-09 2021-07-06 杭州千石科技有限公司 Preparation method of injection molding C-shaped magnetic ring for wireless charging

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005223233A (en) * 2004-02-09 2005-08-18 Sumitomo Metal Mining Co Ltd Metal mold for molding pole-anisotropic cylindrical magnet
JP4556439B2 (en) * 2004-02-09 2010-10-06 住友金属鉱山株式会社 Mold for forming polar anisotropic cylindrical magnet for motor
US9906084B2 (en) 2010-12-22 2018-02-27 Fisher & Paykel Appliances Limited Appliance, motor or stator
US10998784B2 (en) 2010-12-22 2021-05-04 Fisher & Paykel Appliances Limited Appliance, motor or stator
JP2013135103A (en) * 2011-12-27 2013-07-08 Nichia Chem Ind Ltd Method of manufacturing cylindrical bonded magnet and manufacturing apparatus for the same
CN113077983A (en) * 2021-04-09 2021-07-06 杭州千石科技有限公司 Preparation method of injection molding C-shaped magnetic ring for wireless charging
CN113077983B (en) * 2021-04-09 2023-06-02 杭州千石科技有限公司 Preparation method of injection molding C-shaped magnetic ring for wireless charging

Similar Documents

Publication Publication Date Title
JPS61112310A (en) Manufacture of permanent magnet
US5416457A (en) Lateral orientation anisotropic magnet
US20070151629A1 (en) Methods of producing radial anisotropic cylinder sintered magnet and permanent magnet motor-use cyclinder multi-pole magnet
JPH05101956A (en) Manufacture of anisotropic magnet of cylindrical shape
JPS5853491B2 (en) Manufacturing method of anisotropic ring-shaped resin magnet
JP4605317B2 (en) Rare earth anisotropic bonded magnet manufacturing method, magnet molded body orientation processing method, and magnetic field molding apparatus
JP2002057015A (en) Anisotropic magnet, its manufacturing method, and motor using the same
JPH0611014B2 (en) Manufacturing method of cylindrical magnet
JP4577604B2 (en) Method for producing anisotropic rare earth bonded magnet
JPS5923448B2 (en) anisotropic magnet
JPH08111337A (en) Method and apparatus for forming field of permanent magnet
JPH09148166A (en) Manufacture of resin-bonded magnet
JPH0559572B2 (en)
JPH02153507A (en) Manufacture of resin-bonded type permanent magnet
JP2002199668A (en) Manufacturing method of cylindrical-shaped magnet for polar magnetizing
JPS60211908A (en) Manufacture of cylindrical permanent magnet
JP3182979B2 (en) Anisotropic magnet, manufacturing method and manufacturing apparatus
JPH1174143A (en) Method of molding magnetic powder
JPS60931B2 (en) Anisotropic magnet manufacturing method and manufacturing device
JPH10177928A (en) Molding device for cylindrical radial anisotropic magnet
JPS63310356A (en) Cylindrical permanent magnet
JPH03171609A (en) Manufacture of anisotropic magnet and device therefor
JPH05205959A (en) Method and device for manufacturing bow-type anisotropic magnet
JPH053124B2 (en)
JPS60115422A (en) Manufacture of magnetic roll

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980903