JP2001185412A - Anisotropic bonded magnet - Google Patents

Anisotropic bonded magnet

Info

Publication number
JP2001185412A
JP2001185412A JP36607399A JP36607399A JP2001185412A JP 2001185412 A JP2001185412 A JP 2001185412A JP 36607399 A JP36607399 A JP 36607399A JP 36607399 A JP36607399 A JP 36607399A JP 2001185412 A JP2001185412 A JP 2001185412A
Authority
JP
Japan
Prior art keywords
magnet
permanent magnet
bonded magnet
anisotropic
anisotropic bonded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP36607399A
Other languages
Japanese (ja)
Inventor
Atsushi Kawamoto
淳 川本
Takashi Ishikawa
尚 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP36607399A priority Critical patent/JP2001185412A/en
Publication of JP2001185412A publication Critical patent/JP2001185412A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2

Abstract

PROBLEM TO BE SOLVED: To provide an anisotropic bonded magnet which enables manufacture with high productivity, has a small drop in magnetic flux even if it is magnetized in multipoles, and enables to cape with a further reduction in size, high performance and cost reduction of a permanent magnet motor. SOLUTION: This anisotropic bonded magnet is a permanent magnet in which a magnetic field is applied to a magnetic material on the inside of the cavity from the outside of cavity to orient the magnetic field, where the magnetic material of the magnet is obtained by bonding anisotropic rare earth element-iron-nitrogen magnetic powder by a resin binder. The anisotropic bonded magnet has a density of 4.45-4.85 g/cm3 and is suitable as a permanent magnet for a permanent magnet motor having the permanent magnet for a movable or a fixed part.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、コンピュータ関連
部品、プリンター、カメラ、時計等の制御用及び駆動用
として用いられる永久磁石型モータに好適な異方性ボン
ド磁石に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anisotropic bonded magnet suitable for a permanent magnet type motor used for controlling and driving computer-related parts, printers, cameras, watches and the like.

【0002】[0002]

【従来の技術】固定ディスクやフロッピーディスク、C
D−ROM、CDR−DVDドライブの駆動装置等のコ
ンピュータ関連装置をはじめ、プリンター等の周辺機
器、その他の各種機器に使用される制御用及び駆動用の
装置として、可動部もしくは固定部に異方性永久磁石を
備えた永久磁石型モータが幅広く利用されている。
2. Description of the Related Art Fixed disks, floppy disks, C
Control and drive devices used for computer-related devices such as D-ROM and CDR-DVD drive drive devices, as well as peripheral devices such as printers and other various devices. 2. Description of the Related Art Permanent magnet type motors having a permanent magnet are widely used.

【0003】従来から、小型で高性能が要求される永久
磁石型モータでは、その可動部もしくは固定部に用いら
れる異方性永久磁石として、ネオジム(Nd)−鉄(F
e)−ホウ素(B)系やサマリウム(Sm)−コバルト
(Co)系等の焼結磁石、あるいはNd−Fe−B系急
冷磁石粉末を樹脂結合剤で結合したボンド磁石が主に使
用されてきた。
[0003] Conventionally, in a permanent magnet type motor requiring a small size and high performance, neodymium (Nd) -iron (F) is used as an anisotropic permanent magnet used for a movable portion or a fixed portion.
e) A sintered magnet such as -boron (B) -based or samarium (Sm) -cobalt (Co) -based, or a bonded magnet in which Nd-Fe-B-based quenched magnet powder is bonded with a resin binder has been mainly used. Was.

【0004】しかしながら、Nd−Fe−B系やSm−
Co系の焼結磁石は、これらの磁石粉末にバインダーを
混合して成形し、高温で焼結することによって製造する
ため、焼結したままの状態では必要な寸法精度が得られ
ない。従って、永久磁石型モータ等の小型精密機器用途
に用いるためには、焼結後に十分な寸法精度が得られる
まで研削等の機械加工を施す必要があった。
However, Nd-Fe-B and Sm-
Since a Co-based sintered magnet is manufactured by mixing a binder with these magnet powders, molding the mixture, and sintering at a high temperature, required dimensional accuracy cannot be obtained in a sintered state. Therefore, in order to use it for small precision equipment such as a permanent magnet type motor, it is necessary to perform machining such as grinding until sufficient dimensional accuracy is obtained after sintering.

【0005】一方、Nd−Fe−B系のボンド磁石は、
圧縮成型や射出成形により製造するため、十分な寸法精
度で大量生産できる利点がある。しかし、その原料とな
る従来のNd−Fe−B系急冷磁石粉末は磁気特性が低
く、且つその磁石粉末を樹脂結合剤を用いて結合するこ
とによって実効的な磁石割合が減少するため、磁力が弱
いという欠点を有していた。
On the other hand, Nd—Fe—B bonded magnets are
Since it is manufactured by compression molding or injection molding, there is an advantage that it can be mass-produced with sufficient dimensional accuracy. However, the conventional Nd-Fe-B-based quenched magnet powder as the raw material has low magnetic properties, and the effective magnet ratio is reduced by bonding the magnet powder using a resin binder, so that the magnetic force is reduced. It had the disadvantage of being weak.

【0006】[0006]

【発明が解決しようとする課題】近年、各種機器の小型
化に伴って、永久磁石型モータについても益々小型化、
高特性化、低価格化の要求が高まっている。そのため、
永久磁石型モータ等に用いる永久磁石においても、小型
で高特性であり、加工が容易で生産性が高く、且つ安価
な異方性永久磁石が求められている。しかし、このよう
な要求に伴う小型化により、焼結磁石は益々加工が困難
になり、ボンド磁石は小型化するほど高い特性を維持す
ることが難しくなっている。
In recent years, with the miniaturization of various devices, the size of permanent magnet type motors has also been reduced.
Demands for higher characteristics and lower prices are increasing. for that reason,
As for permanent magnets used in permanent magnet type motors and the like, anisotropic permanent magnets that are small, have high characteristics, are easy to process, have high productivity, and are inexpensive are required. However, due to miniaturization accompanying such demands, it becomes more and more difficult to process sintered magnets, and it becomes more difficult for bonded magnets to maintain high characteristics as they are miniaturized.

【0007】また、従来のNd−Fe−B系急冷磁石粉
末を利用した異方性ボンド磁石では、多極着磁する際の
着磁工程でかなり大きな磁界を必要とする。ところが、
磁石が小型化するに伴い、多極着磁を行うために小さな
着磁ヨークを用いることになるので、一つの磁極の大き
さが数ミリメートル以下となるため着磁に十分な磁界を
発生させることができず、その結果十分に大きな磁界で
着磁した場合に比較して特性が低下せざるを得なかっ
た。
[0007] In the case of a conventional anisotropic bonded magnet using a Nd-Fe-B-based quenched magnet powder, a considerably large magnetic field is required in the magnetizing step when performing multi-polar magnetization. However,
As magnets become smaller, smaller magnetized yokes will be used to perform multi-pole magnetisation, so the size of one magnetic pole will be less than a few millimeters, so generating a sufficient magnetic field for magnetisation As a result, the characteristics had to be reduced as compared with the case where the magnet was magnetized with a sufficiently large magnetic field.

【0008】本発明は、このような従来の事情に鑑み、
生産性良く製造することができるうえ、多極着磁しても
磁束の低下が少なく、永久磁石型モータの一層の小型化
・高性能化・低コスト化への対応が可能な異方性ボンド
磁石を提供することを目的とする。
The present invention has been made in view of such a conventional situation,
Anisotropic bond that can be manufactured with high productivity and has a small decrease in magnetic flux even when magnetized with multiple poles, making it possible to respond to further downsizing, higher performance, and lower cost of permanent magnet type motors. It is intended to provide a magnet.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、可動部もしくは固定部に永久磁石を備え
た永久磁石型モータ用の異方性永久磁石を提供するもの
である。即ち、本発明が提供する異方性永久磁石は、キ
ャビティ内に収容された磁性材料に対して、キャビティ
外部から磁場を印加して磁場配向した永久磁石であっ
て、磁性材料が異方性希土類元素−鉄−窒素系磁石粉末
を樹脂結合剤で結合した異方性ボンド磁石であることを
特徴とするものである。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides an anisotropic permanent magnet for a permanent magnet type motor having a permanent magnet in a movable portion or a fixed portion. That is, the anisotropic permanent magnet provided by the present invention is a permanent magnet in which a magnetic field is applied by applying a magnetic field from outside the cavity to a magnetic material housed in the cavity, and the magnetic material is anisotropic rare earth element. It is an anisotropic bonded magnet in which element-iron-nitrogen based magnet powder is bonded with a resin binder.

【0010】[0010]

【発明の実施の形態】本発明の異方性ボンド磁石は、異
方性の希土類元素−鉄−窒素系磁石粉末を樹脂結合剤で
結合し、多極着磁したものである。希土類元素−鉄−窒
素系磁石粉末を用いたボンド磁石は、多極着磁しても各
磁極の磁束密度のバラツキが小さいという特徴を備え、
中でも希土類元素としてサマリウム(Sm)が最も好ま
しく、代表的な磁石粉末の組成としては24〜25重量
%Sm−3〜4重量%N−残部Feがある。また、鉄の
一部をコバルト(Co)で置換しても良い。
BEST MODE FOR CARRYING OUT THE INVENTION The anisotropic bonded magnet of the present invention is obtained by combining an anisotropic rare earth element-iron-nitrogen based magnet powder with a resin binder and magnetizing it multipolarly. The bonded magnet using the rare earth element-iron-nitrogen based magnet powder has a feature that the variation of the magnetic flux density of each magnetic pole is small even when the multi-polarized magnet is magnetized.
Above all, samarium (Sm) is most preferable as the rare earth element, and a typical composition of the magnet powder is 24 to 25% by weight Sm-3 to 4% by weight N-balance Fe. Further, part of iron may be replaced with cobalt (Co).

【0011】上記の希土類元素−鉄−窒素系磁石粉末
は、例えば特開平2−57663号公報に記載の溶解鋳
造法、あるいは特許第1702544号公報や特開平9
−157803号公報に記載の還元拡散法により希土類
元素−鉄系合金粉末を製造し、その後これを窒化するこ
とによって得られる。この希土類元素−鉄−窒素系磁石
粉末は、微粉砕することにより、粒径10μm以下又は
平均粒径では4μm以下とする。
The above rare earth element-iron-nitrogen based magnet powder can be prepared by, for example, a melting casting method described in Japanese Patent Application Laid-Open No. 2-57663, or a method disclosed in Japanese Patent No. 1702544 or Japanese Patent Application Laid-Open No.
It is obtained by producing a rare earth element-iron alloy powder by the reduction diffusion method described in JP-A-157803 and nitriding the powder. The rare earth element-iron-nitrogen magnet powder is finely pulverized to have a particle diameter of 10 μm or less or an average particle diameter of 4 μm or less.

【0012】尚、希土類元素−鉄−窒素系磁石粉末の粒
径が10μm以下とは、走査型電子顕微鏡(SEM)に
より磁石粉末を観察して、観察された粒子100個の最
大径を測定したとき、その最大径が10μm以下の粒子
が95個以上を占めることを意味する。また、平均粒径
とは、上記のごとく測定された各最大径を体積換算して
求めた体積基準の平均粒径である。
When the particle diameter of the rare earth element-iron-nitrogen based magnet powder is 10 μm or less, the magnet powder was observed by a scanning electron microscope (SEM), and the maximum diameter of 100 observed particles was measured. Sometimes, it means that particles having a maximum diameter of 10 μm or less occupy 95 or more. The average particle diameter is a volume-based average particle diameter obtained by converting the maximum diameter measured as described above to a volume.

【0013】希土類元素−鉄−窒素系磁石粉末を結合す
るために用いる樹脂結合剤は、従来からボンド磁石の製
造に使用されているもので良く、エポキシ樹脂、フェノ
ール樹脂、メラミン樹脂、シリコーン樹脂等の熱硬化性
樹脂、あるいはポリアミド樹脂、ポリエチレン樹脂、ポ
リステイレン樹脂、ポリオレフィン樹脂等の熱可塑性樹
脂を使用することができる。一般的に、圧縮成型の場合
にはエポキシ樹脂が好ましく、射出成形の場合にはナイ
ロン12樹脂を使用し、及び押出成形を行う場合にはポ
リオレフィン樹脂を用いることが多いが、これらに限定
されるものではない。
The resin binder used to bind the rare earth element-iron-nitrogen based magnet powder may be one conventionally used in the production of bonded magnets, such as epoxy resin, phenol resin, melamine resin, silicone resin, etc. Or a thermoplastic resin such as a polyamide resin, a polyethylene resin, a polystyrene resin, and a polyolefin resin. Generally, epoxy resin is preferred for compression molding, nylon 12 resin is used for injection molding, and polyolefin resin is often used for extrusion molding, but is limited to these. Not something.

【0014】本発明のボンド磁石は、上記の希土類元素
−鉄−窒素系磁石粉末を樹脂結合剤と混合し、通常のボ
ンド磁石と同様に、圧縮成型、射出成形、又は押出成形
することにより製造することができる。その際、成形金
型には配向磁界発生用の複数の磁石を組み込み、キャビ
ティ外部から磁石粉末に配向磁界を与えて磁場配向させ
る。得られたボンド磁石は、着磁ヨークを用いて異方性
に多極着磁させる。
The bonded magnet of the present invention is manufactured by mixing the above rare earth element-iron-nitrogen based magnet powder with a resin binder and subjecting the mixture to compression molding, injection molding or extrusion molding in the same manner as a normal bonded magnet. can do. At this time, a plurality of magnets for generating an orientation magnetic field are incorporated in the molding die, and an orientation magnetic field is applied to the magnet powder from outside the cavity to perform magnetic field orientation. The resulting bonded magnet is anisotropically multipolar magnetized using a magnetized yoke.

【0015】ボンド磁石の形状及び多極着磁の状態は、
それを用いる装置に合わせて適宜選定する。例えば、永
久磁石型モータでは、駆動コイルの内側又は外側に可動
部である磁石ロータを配置するロータ形が一般的である
から、その場合には、説明のためにNS極を図示した図
1に示すように、リング状のボンド磁石の外周面又は内
周面に多極着磁させる。また、リニア形の永久磁石型モ
ータでは、例えば図2に示すように、可動部となる平板
状のボンド磁石の平面にNS極を縞状のパターンで多極
着磁させる。
The shape of the bonded magnet and the state of multipolar magnetization are as follows.
It is selected appropriately according to the device using it. For example, in a permanent magnet type motor, a rotor type in which a magnet rotor which is a movable portion is disposed inside or outside a drive coil is generally used. In this case, FIG. As shown, multi-pole magnetization is performed on the outer peripheral surface or inner peripheral surface of the ring-shaped bonded magnet. In a linear permanent magnet type motor, for example, as shown in FIG. 2, NS poles are multipolarly magnetized in a striped pattern on a plane of a flat bonded magnet which is a movable portion.

【0016】このように多極着磁された異方性ボンド磁
石は、永久磁石型モータ用として好適である。尚、永久
磁石型モータは、その設計思想に基づき構成が決定され
るものであり、どのような構造でも差し支えない。例え
ば、代表的なインナーロータ形の永久磁石型モータで
は、本発明の多極着磁させたリング状の異方性ボンド磁
石を磁石ロータとし、その外側に複数の駆動コイルを備
えたステータヨークが配置される。
The multipolar magnetized anisotropic bonded magnet is suitable for a permanent magnet type motor. The configuration of the permanent magnet type motor is determined based on its design concept, and any structure may be used. For example, in a typical inner rotor type permanent magnet type motor, a multi-pole magnetized ring-shaped anisotropic bonded magnet of the present invention is used as a magnet rotor, and a stator yoke provided with a plurality of drive coils outside thereof is provided. Be placed.

【0017】一般に多極着磁された各磁極の間の距離が
短くなる程、多極着磁が難しくなり且つ磁束密度が低下
するが、本発明で用いる希土類元素−鉄−窒素系磁石粉
末を含むボンド磁石では、磁石の小型化により一つの磁
極の大きさが小さくなっても、多極着磁させた各磁極に
十分大きな磁界を発生させることができる。
In general, the shorter the distance between the multipole-magnetized magnetic poles becomes, the more difficult the multipolar magnetization becomes and the lower the magnetic flux density becomes. However, the rare earth element-iron-nitrogen based magnet powder used in the present invention is used. In a bonded magnet including a magnet, even if the size of one magnetic pole is reduced due to the downsizing of the magnet, a sufficiently large magnetic field can be generated in each of the multi-polarized magnetic poles.

【0018】具体的には、本発明の異方性ボンド磁石
は、多極着磁された各磁極からの磁束密度の絶対値の最
大値を、Nd−Fe−B系急冷磁石粉末を用いて作製し
た同形状の等方性ボンド磁石に比較して、20%以上高
くすることができる。従って、本発明の異方性ボンド磁
石を用いることにより、永久磁石型モータをより一層小
型で、高性能なものとすることが可能となる。
Specifically, in the anisotropic bonded magnet of the present invention, the maximum value of the absolute value of the magnetic flux density from each of the multi-polarized magnetic poles is determined by using a Nd-Fe-B-based quenched magnet powder. Compared with the manufactured isotropic bonded magnet having the same shape, the height can be increased by 20% or more. Therefore, by using the anisotropic bonded magnet of the present invention, it becomes possible to make the permanent magnet type motor smaller and have higher performance.

【0019】また、本発明による異方性ボンド磁石の密
度は、4.45〜4.85g/cmの範囲が好ましい。
磁石の密度が4.45g/cm未満では十分な磁束密
度が得られず、4.85g/cmを超えると樹脂添加
量を減らさなければならず、成型が困難になる。尚、磁
石の密度は、磁石の単位体積当たりの重量をいい、磁石
粉末組成や、使用する樹脂結合剤の樹脂の種類、成型方
法などによって変わる。
The density of the anisotropic bonded magnet according to the present invention is preferably in the range of 4.45 to 4.85 g / cm 3 .
If the magnet density is less than 4.45 g / cm 3 , a sufficient magnetic flux density cannot be obtained. If the magnet density exceeds 4.85 g / cm 3 , the amount of added resin must be reduced, and molding becomes difficult. The density of the magnet refers to the weight per unit volume of the magnet, and varies depending on the magnet powder composition, the type of resin of the resin binder used, the molding method, and the like.

【0020】[0020]

【実施例】実施例1 組成がSm:24重量%、Fe:72.5重量%、N:
3.5重量%であり、粒径が10μm、平均粒径が4μ
mの微細なSm−Fe−N系磁石粉末にエポキシ樹脂5
重量%を添加混合した後、成形金型のキャビティに入れ
て圧縮成型し、外径4.3mm、内径2mm、高さ5m
mのリング状のボンド磁石を製造した。その際、成形金
型に配向磁界発生用の磁石を組み込み、キャビティ外側
から配向磁界を与えて磁石粉末が磁気配向するように構
成した。
【Example】Example 1  Composition: Sm: 24% by weight, Fe: 72.5% by weight, N:
3.5% by weight, particle size 10 μm, average particle size 4 μm
m Sm-Fe-N based magnet powder with epoxy resin 5
After adding and mixing by weight, put it in the cavity of the molding die.
Compression molding, outer diameter 4.3mm, inner diameter 2mm, height 5m
m were produced. At that time,
A magnet for generating an alignment magnetic field is built into the mold, and outside the cavity.
From the magnet powder so that the magnet powder is magnetically oriented.
Done.

【0021】得られたボンド磁石の密度を水置換法によ
り測定したところ、4.82g/cmであった。この
リング状のボンド磁石を、着磁ヨークを用いて、図1に
示すように外周面に沿い周方向に8極に多極着磁した。
また、この多極着磁された異方性ボンド磁石の各磁極の
中心における磁束密度は、最大で1.5kGであった。
When the density of the obtained bonded magnet was measured by a water displacement method, it was 4.82 g / cm 3 . This ring-shaped bonded magnet was magnetized into eight poles in the circumferential direction along the outer peripheral surface as shown in FIG. 1 using a magnetized yoke.
The magnetic flux density at the center of each magnetic pole of the multipolar magnetized anisotropic bonded magnet was 1.5 kG at the maximum.

【0022】次に、この多極着磁させたリング状の異方
性ボンド磁石を磁石ロータとし、その外側に複数の駆動
コイルを備えたステータヨークを配置して、永久磁石型
モータを作製した。このモータのトルクを測定したとこ
ろ、トルクは12g・cmであった。
Next, a permanent magnet type motor was produced by using the multipole-magnetized ring-shaped anisotropic bonded magnet as a magnet rotor and arranging a stator yoke having a plurality of drive coils outside thereof. . When the torque of this motor was measured, the torque was 12 g · cm.

【0023】比較例1 組成がNd:13重量%、Fe:81重量%、B:6重
量%からなり、粒径が200μm以下30μm以上であ
るNd−Fe−B系急冷磁石粉末(マグネクエンチイン
ターナショナル製、MQP−B)を用い、実施例1と同
様にして、外径4.3mm、内径2mm、高さ5mmの
リング状のボンド磁石を製造した。得られたボンド磁石
の密度を実施例1と同様に測定したところ、5.88/
cmであった。
[0023]Comparative Example 1  Composition: Nd: 13% by weight, Fe: 81% by weight, B: 6 layers
% And a particle size of 200 μm or less and 30 μm or more
Nd-Fe-B quenched magnet powder (Magnequench
Same as Example 1 using MQP-B manufactured by Ternation.
In the same manner, the outer diameter is 4.3 mm, the inner diameter is 2 mm, and the height is 5 mm.
A ring-shaped bonded magnet was manufactured. The resulting bonded magnet
Was measured in the same manner as in Example 1, and the result was 5.88 /
cm3Met.

【0024】このリング状のボンド磁石を着磁ヨークを
用いて実施例1と同様に8極に多極着磁したところ、得
られた等方性ボンド磁石の磁束密度は最大で1.2kG
であった。また、この永久磁石を用いて実施例1と同様
に永久磁石型モータを作製したところ、そのトルクは1
0.3g・cmであった。
When this ring-shaped bonded magnet was magnetized into eight poles using the magnetized yoke in the same manner as in Example 1, the magnetic flux density of the obtained isotropic bonded magnet was at most 1.2 kG.
Met. When a permanent magnet type motor was manufactured using this permanent magnet in the same manner as in Example 1, the torque was 1%.
It was 0.3 g · cm.

【0025】実施例2 実施例1と同一のSm−Fe−N系磁石粉末にナイロン
12樹脂9重量%と混合し、配向磁界発生用の磁石を組
み込んだ成形金型を用いて押出成型し、外径28mm、
内径24mm、高さ5mmのリング状のボンド磁石を製
造した。得られたボンド磁石の密度を実施例1と同様に
測定したところ、4.48g/cmであった。
[0025]Example 2  Nylon was added to the same Sm-Fe-N-based magnet powder as in Example 1.
12% resin and mixed with 9% by weight to form a magnet for generating alignment magnetic field
Extrusion molding using a molding die into which the outer diameter is 28 mm,
Manufacture a ring-shaped bonded magnet with an inner diameter of 24 mm and a height of 5 mm
Built. The density of the obtained bonded magnet was determined in the same manner as in Example 1.
4.48 g / cm3Met.

【0026】このリング状のボンド磁石を、実施例1と
同様に着磁ヨークを用いて周方向に8極に多極着磁し
た。多極着磁された異方性ボンド磁石の各磁極の中心に
おける磁束密度は、最大で2.9kGであった。また、
この永久磁石を用いて実施例1と同様に永久磁石型モー
タを作製したところ、そのトルクは91g・cmであっ
た。
This ring-shaped bonded magnet was magnetized to eight poles in the circumferential direction using a magnetized yoke in the same manner as in Example 1. The magnetic flux density at the center of each magnetic pole of the multipole-magnetized anisotropic bonded magnet was 2.9 kG at the maximum. Also,
When a permanent magnet type motor was manufactured using this permanent magnet in the same manner as in Example 1, the torque was 91 g · cm.

【0027】比較例2 比較例1と同一のNd−Fe−B系急冷磁石粉末を用
い、実施例2と同様にして、外径28mm、内径24m
m、高さ5mmのリング状のボンド磁石を製造した。得
られたボンド磁石の密度を実施例1と同様に測定したと
ころ、5.91g/cmであった。
[0027]Comparative Example 2  The same Nd-Fe-B quenched magnet powder as in Comparative Example 1 was used.
In the same manner as in Example 2, the outer diameter is 28 mm and the inner diameter is 24 m
m, a ring-shaped bonded magnet having a height of 5 mm was produced. Profit
The density of the bonded magnet thus obtained was measured in the same manner as in Example 1.
Roller 5.91 g / cm3Met.

【0028】このボンド磁石を実施例2と同様に着磁ヨ
ークを用いて8極に多極着磁したところ、得られた永久
磁石は磁束密度が最大で2.4kGであった。また,こ
の永久磁石を用いて実施例1と同様に永久磁石型モータ
を作製したところ、そのトルクは85g・cmであっ
た。
When this bonded magnet was magnetized into eight poles using a magnetized yoke as in Example 2, the resulting permanent magnet had a maximum magnetic flux density of 2.4 kG. When a permanent magnet type motor was manufactured using this permanent magnet in the same manner as in Example 1, the torque was 85 g · cm.

【0029】[0029]

【発明の効果】本発明によれば、希土類元素−鉄−窒素
系磁石粉末を用いることにより、生産性に優れ、強い磁
力を有する異方性ボンド磁石を安価に提供することがで
きる。従って、この異方性ボンド磁石を用いることによ
り、従来よりも一層の小型化で且つ高性能化な永久磁石
型モータを低コストで作製することが可能である。
According to the present invention, an anisotropic bonded magnet having excellent productivity and strong magnetic force can be provided at low cost by using a rare earth element-iron-nitrogen magnet powder. Therefore, by using this anisotropic bonded magnet, it is possible to manufacture a permanent magnet type motor with further downsizing and higher performance than ever before at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】多極着磁したリング状の異方性ボンド磁石のN
S極を模式的に示す平面図である。
FIG. 1 shows the N of a multipolar magnetized ring-shaped anisotropic bonded magnet.
It is a top view which shows an S pole typically.

【図2】多極着磁した平板状の異方性ボンド磁石のNS
極を模式的に示す平面図である。
FIG. 2 NS of a multi-polar magnetized flat anisotropic bonded magnet
It is a top view which shows a pole typically.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 キャビティ内に収容された磁性材料に対
して、キャビティ外部から磁場を印加して磁場配向した
永久磁石であって、磁性材料が異方性希土類元素−鉄−
窒素系磁石粉末を樹脂結合剤で結合したボンド磁石であ
ることを特徴とする異方性ボンド磁石。
1. A permanent magnet which is magnetically oriented by applying a magnetic field from outside the cavity to a magnetic material accommodated in the cavity, wherein the magnetic material is anisotropic rare earth element-iron-
An anisotropic bonded magnet, which is a bonded magnet obtained by bonding nitrogen-based magnet powder with a resin binder.
【請求項2】 磁石の密度が4.45〜4.85g/cm
であることを特徴とする、請求項1に記載の異方性ボ
ンド磁石。
2. The magnet has a density of 4.45 to 4.85 g / cm.
Characterized in that it is a 3, anisotropic bonded magnet according to claim 1.
【請求項3】 磁石形状がリング状であることを特徴と
する、請求項1又は2に記載の異方性ボンド磁石。
3. The anisotropic bonded magnet according to claim 1, wherein the magnet has a ring shape.
【請求項4】 前記磁石粉末が、サマリウム−鉄−窒素
系磁石粉末であることを特徴とする、請求項1〜3のい
ずれかに記載の異方性ボンド磁石。
4. The anisotropic bonded magnet according to claim 1, wherein the magnet powder is a samarium-iron-nitrogen magnet powder.
JP36607399A 1999-12-24 1999-12-24 Anisotropic bonded magnet Pending JP2001185412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36607399A JP2001185412A (en) 1999-12-24 1999-12-24 Anisotropic bonded magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36607399A JP2001185412A (en) 1999-12-24 1999-12-24 Anisotropic bonded magnet

Publications (1)

Publication Number Publication Date
JP2001185412A true JP2001185412A (en) 2001-07-06

Family

ID=18485863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36607399A Pending JP2001185412A (en) 1999-12-24 1999-12-24 Anisotropic bonded magnet

Country Status (1)

Country Link
JP (1) JP2001185412A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018046624A (en) * 2016-09-13 2018-03-22 日立アプライアンス株式会社 Vibration damping device and washing machine
JP2018153053A (en) * 2017-03-15 2018-09-27 日立アプライアンス株式会社 Vibration control device and washing machine
JP7298804B1 (en) * 2022-12-26 2023-06-27 株式会社レゾナック Method for manufacturing magnetic compact and method for manufacturing anisotropic bonded magnet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018046624A (en) * 2016-09-13 2018-03-22 日立アプライアンス株式会社 Vibration damping device and washing machine
JP2018153053A (en) * 2017-03-15 2018-09-27 日立アプライアンス株式会社 Vibration control device and washing machine
JP7298804B1 (en) * 2022-12-26 2023-06-27 株式会社レゾナック Method for manufacturing magnetic compact and method for manufacturing anisotropic bonded magnet

Similar Documents

Publication Publication Date Title
JP4796788B2 (en) Coreless motor
EP1308970B1 (en) Radial anisotropic sintered magnet production method
WO2007119393A1 (en) Radial anisotropic magnet manufacturing method, permanent magnet motor using radial anisotropic magnet, iron core-equipped permanent magnet motor
JP2005064448A (en) Method of manufacturing laminated polar anisotropic hybrid magnet
JP2000060080A (en) Permanent-magnet motor and other device applied thereon
US6605162B2 (en) Anisotropic magnet and process of producing the same
JP4478869B2 (en) Method for manufacturing anisotropic bonded magnet
JP2002057015A (en) Anisotropic magnet, its manufacturing method, and motor using the same
JP2911017B2 (en) Manufacturing method of radial anisotropic rare earth sintered magnet
JP2005093729A (en) Anisotropic magnet, its manufacturing method, and motor using it
JP2004153867A (en) Radial anisotropic sintered magnet, its manufacturing method, and magnet rotor and motor
JP2003124012A (en) Composite magnet, composite magnetic material, and motor
JP3680648B2 (en) Permanent magnet type motor and other permanent magnet application equipment
JP2001185412A (en) Anisotropic bonded magnet
JP3618647B2 (en) Anisotropic magnet, method for manufacturing the same, and motor using the same
JP4577604B2 (en) Method for producing anisotropic rare earth bonded magnet
JP2006180677A (en) Integrated skew magnetic rotor with core, and its manufacturing method
JPH0687634B2 (en) Permanent magnet type motor
JP4370877B2 (en) Method for orienting permanent magnet powder and method for producing permanent magnet
JPH08322175A (en) Permanent magnet stepping motor
JP3538762B2 (en) Method for producing anisotropic bonded magnet and anisotropic bonded magnet
JPH0559572B2 (en)
JP4120147B2 (en) Method for manufacturing permanent magnet field type small DC motor
JP4508019B2 (en) Anisotropic bond sheet magnet and manufacturing apparatus thereof
JP2001037106A (en) Yoke for motor