JP2911017B2 - Manufacturing method of radial anisotropic rare earth sintered magnet - Google Patents

Manufacturing method of radial anisotropic rare earth sintered magnet

Info

Publication number
JP2911017B2
JP2911017B2 JP5310139A JP31013993A JP2911017B2 JP 2911017 B2 JP2911017 B2 JP 2911017B2 JP 5310139 A JP5310139 A JP 5310139A JP 31013993 A JP31013993 A JP 31013993A JP 2911017 B2 JP2911017 B2 JP 2911017B2
Authority
JP
Japan
Prior art keywords
rare earth
sintered magnet
magnetic field
earth sintered
radial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5310139A
Other languages
Japanese (ja)
Other versions
JPH07161512A (en
Inventor
孝治 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP5310139A priority Critical patent/JP2911017B2/en
Publication of JPH07161512A publication Critical patent/JPH07161512A/en
Application granted granted Critical
Publication of JP2911017B2 publication Critical patent/JP2911017B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はラジアル異方性希土類焼
結磁石の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a radially anisotropic rare earth sintered magnet.

【0002】[0002]

【従来の技術】フェライトや希土類合金のような結晶磁
気異方性材料を微粉砕し、特定の磁場中でプレス成形し
て作られる異方性磁石は、スピーカ、モータ、計測器、
その他電気機器に広く使用されている。この内特にラジ
アル方向に異方性を有する希土類焼結磁石は、磁気特性
に優れ、また軸方向へ自由な着磁が可能であり、多極着
磁やコギングを抑えるスキュー着磁等を行い易い。また
セグメント磁石を貼り合わせて円筒磁石とする場合、モ
ータの高速回転による遠心力から磁石のはがれを防ぐた
めに何等かの補強が必要であり、このためロータとステ
ータの間のギャップが大きくなりモータの特性が低下す
るが、ラジアル異方性磁石では補強の必要がなくモータ
特性に優れている。この様な理由からラジアル異方性磁
石は、ACサーボモータ、DCブラシレスモータ等に使用さ
れている。特に近年モータの高特性化に伴い長尺のラジ
アル異方性磁石が要求されている。
2. Description of the Related Art Anisotropic magnets made by finely pulverizing crystalline magnetic anisotropic materials such as ferrites and rare earth alloys and press-molding them under a specific magnetic field are used for speakers, motors, measuring instruments,
Widely used for other electrical equipment. Of these, rare earth sintered magnets having anisotropy in the radial direction in particular have excellent magnetic properties, can be freely magnetized in the axial direction, and are easy to perform multipolar magnetization and skew magnetization to suppress cogging. . When the segment magnets are bonded to form a cylindrical magnet, some reinforcement is necessary to prevent the magnet from peeling off due to the centrifugal force caused by the high-speed rotation of the motor. Although the characteristics are deteriorated, the radial anisotropic magnet does not require reinforcement and has excellent motor characteristics. For these reasons, radial anisotropic magnets are used in AC servomotors, DC brushless motors, and the like. In particular, in recent years, a long radial anisotropic magnet has been demanded with the improvement of motor characteristics.

【0003】[0003]

【発明が解決しようとする課題】ラジアル配向を有する
焼結磁石は、磁場中成形の際、ラジアル配向を有する金
型内において成形すれば良く、図4に示すような金型内
成形部6に微粉砕した磁粉を充填した後、コイルによっ
て矢印の方向に磁場を形成する。この時のA−A’断面
における磁場配向の様子を図5に示す。図5に示される
ようにコア2より金型内に向かってラジアル方向の磁場
を得ることができる。この後プレスにより圧縮成形を行
なうことでラジアル異方性成形体を得る。該金型の配向
磁場は金型外周、内周、高さにより決定され、(1)式
で表される。 k=I2 s/4hO ・・・(1) (ここに、O:外周、I:内周、h:高さ、s:コアの
飽和磁化、k:配向磁場とする)sは強さが2テスラー
程度であり、kは1テスラー程度であるので十分な配向
の得られる金型高さは(2)式で表される。 h≦I2 /2・O ・・・(2) 以上のことにより均一な配向磁場の得られる高さは内周
が小さく外周が大きなものでは低くなり、(2)式のh
以上の高さに金型高さを定めるとラジアル配向に十分な
磁場が得られなってしまう。このため高性能モータに要
求される長尺のラジアル異方性磁石の製造は困難であっ
た。本発明は、かかる問題点を解決するためになされた
もので、継ぎ目がなく、高さ方向においても均一な配向
を有し長尺とすることの出来るラジアル異方性希土類焼
結磁石を提供する製造方法である。
A sintered magnet having a radial orientation may be molded in a mold having a radial orientation during molding in a magnetic field. After filling the pulverized magnetic powder, a coil forms a magnetic field in the direction of the arrow. FIG. 5 shows the state of the magnetic field orientation in the AA 'cross section at this time. As shown in FIG. 5, a magnetic field in the radial direction can be obtained from the core 2 into the mold. Thereafter, compression molding is performed by pressing to obtain a radially anisotropic molded body. The orientation magnetic field of the mold is determined by the outer periphery, the inner periphery, and the height of the mold, and is represented by the formula (1). k = I 2 s / 4hO (1) (where O: outer circumference, I: inner circumference, h: height, s: saturation magnetization of the core, k: orientation magnetic field) Since it is about 2 Tesla and k is about 1 Tesla, the mold height at which a sufficient orientation can be obtained is expressed by the following equation (2). h ≦ I 2/2 · O ··· (2) is uniform height obtained orientation magnetic field is the inner circumference smaller outer circumference by more than that lower than large, (2) the h
If the mold height is set to the above height, a magnetic field sufficient for radial alignment will not be obtained. Therefore, it has been difficult to produce a long radial anisotropic magnet required for a high-performance motor. The present invention has been made in order to solve such problems, and provides a radially anisotropic rare earth sintered magnet having no seams, having a uniform orientation even in a height direction, and having a long length. It is a manufacturing method.

【0004】[0004]

【課題を解決するための手段】本発明者は上記課題を解
決すべく鋭意研究を重ねた結果、ラジアル異方性を有す
る円弧状成形体を結合させ焼結することにより長尺のラ
ジアル異方性磁石を製造することに成功したもので、そ
の要旨は、Nd-Fe-B系ラジアル異方性希土類焼結磁石
を製造するにあたり、先ずラジアル異方性を有する円弧
状成形体を作製し、次いでこれらを円筒状に結合剤で組
合せ、圧縮成形して結合し、焼結することを特徴とする
ラジアル異方性希土類焼結磁石の製造方法にある。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, a long radially anisotropic member is formed by bonding and sintering an arc-shaped compact having radial anisotropy. In the manufacture of Nd-Fe-B-based radial anisotropic rare earth sintered magnets, first, an arc-shaped molded body having radial anisotropy was prepared. Next, a method for producing a radially anisotropic rare earth sintered magnet is characterized in that these are combined in a cylindrical shape with a binder, compression molded, combined and sintered.

【0005】以下、本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.

【作用】本発明によるNd-Fe-B系ラジアル異方性希土
類焼結磁石はラジアル異方性を有する円弧状の成形体を
円筒状に組合わせて結合し、円筒状成形体を得ることか
らその磁気特性は円弧状成形体の配向度により決定され
る。円弧状成形体はコイルに発生した磁場を強磁性体を
介して金型内に印加するすることでラジアル配向した磁
場を得る。この方法によると強磁性コアの断面積と金型
断面積がほぼ等しいので金型内に配向に十分な磁場を得
ることができる。従ってこのようなラジアル異方性円弧
状成形体の組合わせによる円筒状成形体は、高さ方向に
おいても均一な配向を有し長尺とすることができる。ま
たこの成形体は再び外圧によりプレスするので、その後
の焼結による収縮緻密化により各円弧状成形体は結合し
円筒焼結体となる。しかし好ましくは各円弧状成形体の
境界に生じる亀裂を防ぐために、この境界に希土類リッ
チな磁性合金粉末を接合剤として介在させることが良
い。このようにして得られた円筒ラジアル異方性希土類
焼結磁石は、セグメント焼結磁石を貼り付けた場合のよ
うに磁石外周に補強をする必要もなく、ロータとステー
タの間のギャップを小さくすることができ、モータ効率
を向上することができる。このように本発明によれば高
さの高いR- Fe-B系円筒状ラジアル異方性希土類焼結
磁石を容易に得ることができる。
The Nd-Fe-B-based radially anisotropic rare earth sintered magnet according to the present invention is obtained by combining cylindrical shaped bodies having radial anisotropy into a cylindrical shape to obtain a cylindrical shaped body. The magnetic properties are determined by the degree of orientation of the arc-shaped molded body. The arc-shaped molded body obtains a radially oriented magnetic field by applying a magnetic field generated in a coil to a mold through a ferromagnetic material. According to this method, since the cross-sectional area of the ferromagnetic core is substantially equal to the cross-sectional area of the mold, a magnetic field sufficient for orientation can be obtained in the mold. Therefore, a cylindrical molded product obtained by combining such radially anisotropic arc-shaped molded products can have a uniform orientation even in the height direction and can be made long. Further, since this compact is pressed again by the external pressure, the arc-shaped compacts are combined by the subsequent shrinkage and densification by sintering to form a cylindrical sintered compact. However, preferably, in order to prevent cracks occurring at the boundaries between the respective arc-shaped compacts, it is preferable that rare-earth-rich magnetic alloy powder be interposed at these boundaries as a bonding agent. The cylindrical radially anisotropic rare earth sintered magnet thus obtained does not need to reinforce the outer periphery of the magnet as in the case where the segment sintered magnet is attached, and reduces the gap between the rotor and the stator. Therefore, the motor efficiency can be improved. Thus, according to the present invention, an R-Fe-B-based cylindrical radially anisotropic rare earth sintered magnet having a high height can be easily obtained.

【0006】本発明のラジアル異方性を有する円弧状成
形体の製造方法の一例を以下に述べる。予め磁石組成元
素を所定の合金組成比となるように秤量し、高周波炉で
溶解凝固しインゴットを作製する。このインゴットをジ
ョークラッシャーで粗粉砕し、さらにN2 ガスによるジ
ェットミルで微粉砕を行なって平均粒度が 3.5μmの微
粉末とする。次に図1に示される磁場成形部を使用して
円弧状ラジアル異方性成形体を作製する。この磁場成形
部は中央部に強磁性コア2を、金型内成形部6の外に磁
路用強磁性体7を配置した金型内で1ton/cm2 の圧力で
成形する。図2は円弧状成形体8で、その円弧の中心角
θは90度である。この円弧状成形体を4枚組合わせ、静
水圧2ton/cm2 の圧力で再度成形を行い円筒とするが、
この際接合剤を使用して成形体の接合強度を高め、亀裂
の発生を防止してもよい。この円筒状成形体を真空中10
00〜1200℃で1〜3時間焼結し、さらに 500〜 600℃で
1〜3時間時効処理を施してラジアル異方性焼結磁石と
する。
An example of the method for producing an arc-shaped formed body having radial anisotropy of the present invention will be described below. The magnet composition elements are weighed in advance so as to have a predetermined alloy composition ratio, and are melted and solidified in a high-frequency furnace to produce an ingot. The ingot is roughly pulverized with a jaw crusher and further finely pulverized with a jet mill using N 2 gas to obtain a fine powder having an average particle size of 3.5 μm. Next, an arc-shaped radially anisotropic molded article is produced using the magnetic field molding section shown in FIG. In the magnetic field forming section, the ferromagnetic core 2 is formed at the center and the ferromagnetic material 7 for the magnetic path is arranged outside the in-mold forming section 6 at a pressure of 1 ton / cm 2 . FIG. 2 shows an arc-shaped molded body 8 whose central angle θ is 90 degrees. The four arc-shaped moldings are combined and molded again at a hydrostatic pressure of 2 ton / cm 2 to form a cylinder.
At this time, a bonding agent may be used to increase the bonding strength of the molded body and prevent the occurrence of cracks. This cylindrical compact is placed in a vacuum for 10
Sintering is performed at 00 to 1200 ° C for 1 to 3 hours, and then aging treatment is performed at 500 to 600 ° C for 1 to 3 hours to obtain a radially anisotropic sintered magnet.

【0007】本発明が適用されるR- Fe-B系希土類磁
石合金の組成範囲は、希土類元素RとしてはYを含むL
a、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuから
成る群から選択される1種または2種以上から成る混合
元素であり、Fe (Co 置換可能)、B、その他添加元
素から構成される。
[0007] The composition range of the R-Fe-B based rare earth magnet alloy to which the present invention is applied is as follows.
a, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and a mixed element composed of two or more elements selected from the group consisting of Lu, and Fe (Co And B, and other additional elements.

【0008】[0008]

【実施例】以下本発明の実施態様を実施例を挙げて具体
的に説明するが、本発明はこれらに限定されるものでは
ない。 (実施例1)夫々純度99.9%のNd、Dy、Fe、Al と純度
99.5%のBをNd 14.0- Dy 1.0-Fe 77.0- A1 1.0-B
7.0の原子配合比となるように秤量し、高周波炉で溶解
凝固しインゴットを作製した。このインゴットをジョー
クラッシャーで粗粉砕し、さらにN2 ガスによるジェッ
トミルで微粉砕を行なって平均粒度が 3.5μmの微粉末
を得た。次に図1に示される中央部に強磁性コア2を配
置した金型内で1ton/cm2 の圧力で円弧状ラジアル異方
性成形体を作製した。得られた成形体8のθは90度、内
周半径10.8mm、外周半径15.2mm、長さ18.0mmであった。
これを図2に示す。この円弧状成形体を4枚組合わせ、
静水圧2ton/cm2 の圧力で再度成形を行い円筒とした。
得られた成形体寸法は内径19.4mm、外径27.4mm、高さ1
6.2mmであった。この成形体を真空中1090℃で2時間焼
結し、さらに 580℃で1時間時効処理を施して永久磁石
とした。得られた焼結磁石10より図3で示されるように
高さ方向に上部より次々に2mm×2mm×2mmの立方体試
験片11を切り出した。この試験片を5Tのパルス磁場で
着磁を行ない、その後V.S.M.(振動試料型磁力計)を用
いて磁気測定を行ない、その結果を表1に示した。ここ
で1から6は焼結磁石10の上方より2mm角の立方体11を
切り出した時の位置を示す。得られた磁気特性は高さ方
向に均一であった。また周方向にも同様に均一な磁気特
性が得られた。
EXAMPLES The embodiments of the present invention will be specifically described below with reference to examples, but the present invention is not limited thereto. (Example 1) Nd, Dy, Fe, Al of 99.9% purity and purity respectively
99.5% of B is Nd 14.0- Dy 1.0-Fe 77.0- A1 1.0-B
It was weighed so as to have an atomic mixture ratio of 7.0, and was melted and solidified in a high frequency furnace to produce an ingot. The ingot was coarsely pulverized with a jaw crusher and further finely pulverized with a jet mill using N 2 gas to obtain a fine powder having an average particle size of 3.5 μm. Next, an arc-shaped radially anisotropic molded body was produced at a pressure of 1 ton / cm 2 in a mold in which the ferromagnetic core 2 was arranged at the center shown in FIG. Θ of the obtained molded body 8 was 90 degrees, the inner radius was 10.8 mm, the outer radius was 15.2 mm, and the length was 18.0 mm.
This is shown in FIG. Combine four arc-shaped molded bodies,
Molding was again performed at a hydrostatic pressure of 2 ton / cm 2 to obtain a cylinder.
The obtained molded body dimensions are 19.4 mm inside diameter, 27.4 mm outside diameter, and 1 height.
6.2 mm. The molded body was sintered in vacuum at 1090 ° C. for 2 hours, and further subjected to aging treatment at 580 ° C. for 1 hour to obtain a permanent magnet. As shown in FIG. 3, cubic test pieces 11 of 2 mm × 2 mm × 2 mm were cut out from the obtained sintered magnet 10 one after another in the height direction. The test piece was magnetized with a pulse magnetic field of 5 T, and then subjected to magnetic measurement using a VSM (vibrating sample magnetometer). The results are shown in Table 1. Here, 1 to 6 indicate positions when a cube 11 of 2 mm square is cut out from above the sintered magnet 10. The obtained magnetic properties were uniform in the height direction. Similarly, uniform magnetic characteristics were obtained in the circumferential direction.

【0009】(比較例1)比較のため実施例と同一組
成、同一の製法で作製した平均粒径 3.5μmの微粉末を
用い図4の磁場成形装置内で従来法により磁場中成形を
行なった。図5は磁場成形部の図4におけるA−A’断
面図である。こうして得られた成形体の寸法は、外径3
0.4mm、内径21.5mm、高さ18.7mm、であった。この成形
体を真空中1090℃で2時間焼結し、さらに図3で示され
るように高さ方向に上部よりつぎつぎ2mm×2mm×2mm
の立方体試験片11を切り出した。この試験片を5Tのパ
ルス磁場で着磁を行ない、その後V.S.M.(振動試料型磁
力計)を用いて磁気測定を行ない、その結果を表1に示
した。これより本発明により作製されたラジアル異方性
焼結磁石は高さ方向均一で優れた磁気特性を有すること
がわかった。
(Comparative Example 1) For comparison, using a fine powder having the same composition and the same manufacturing method as in the Example and having an average particle diameter of 3.5 μm, compacting in a magnetic field was performed in a magnetic field compacting apparatus shown in FIG. 4 by a conventional method. . FIG. 5 is a sectional view of the magnetic field forming section taken along line AA ′ in FIG. The dimensions of the molded body thus obtained are
0.4 mm, inner diameter 21.5 mm, height 18.7 mm. This molded body was sintered at 1090 ° C. for 2 hours in a vacuum, and then, as shown in FIG.
Was cut out. The test piece was magnetized with a pulse magnetic field of 5 T, and then subjected to magnetic measurement using a VSM (vibrating sample magnetometer). The results are shown in Table 1. From this, it was found that the radially anisotropic sintered magnet produced according to the present invention had uniform magnetic properties in the height direction and excellent magnetic properties.

【0010】[0010]

【表1】 [Table 1]

【0011】[0011]

【発明の効果】本発明によれば、高さ方向に均一で優れ
た磁気特性を有するラジアル異方性焼結円筒磁石を安定
して生産でき、ACサーボモータ、DCブラシレスモータ、
スピーカ用磁石等の高性能化、ハイパワー化、小型化等
に有用であり、産業上その利用価値は極めて高い。
According to the present invention, a radially anisotropic sintered cylindrical magnet having uniform and excellent magnetic properties in the height direction can be stably produced, and an AC servo motor, a DC brushless motor,
It is useful for high performance, high power, miniaturization, and the like of speaker magnets and the like, and its industrial value is extremely high.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に使用される円弧状ラジアル異方性成形
体用金型を示す断面図である。
FIG. 1 is a cross-sectional view showing a mold for an arc-shaped radially anisotropic molded product used in the present invention.

【図2】本発明の円弧状ラジアル異方性成形体を示す斜
視図である。
FIG. 2 is a perspective view showing an arc-shaped radially anisotropic molded article of the present invention.

【図3】本発明のラジアル異方性焼結磁石とこれより切
り出した試験片を示す斜視図である。
FIG. 3 is a perspective view showing a radially anisotropic sintered magnet of the present invention and a test piece cut out therefrom.

【図4】従来の磁場成形部の配置断面図である。FIG. 4 is a sectional view showing the arrangement of a conventional magnetic field shaping unit.

【図5】図4におけるA−A’断面図である。FIG. 5 is a sectional view taken along line A-A 'in FIG.

【符号の説明】[Explanation of symbols]

1 強磁性ダイ 2 強磁性コア 3 下パンチ 4 上パンチ 5 コイル 6 金型内成形部 7 磁路用強磁性体 8 成形体 9 ラジアル磁場 10 焼結磁石 11 試験片 ← 磁力線 REFERENCE SIGNS LIST 1 ferromagnetic die 2 ferromagnetic core 3 lower punch 4 upper punch 5 coil 6 molded part in mold 7 ferromagnetic material for magnetic path 8 molded body 9 radial magnetic field 10 sintered magnet 11 test piece ← line of magnetic force

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Nd-Fe-B系ラジアル異方性希土類焼結磁
石を製造するにあたり、予めラジアル異方性を有する円
弧状成形体を作製し、次いでこれらを円筒状に組合せ、
圧縮成形して結合し、焼結することを特徴とするラジア
ル異方性希土類焼結磁石の製造方法。
1. An Nd-Fe-B-based radially anisotropic rare earth sintered magnet is produced by first forming an arc-shaped compact having radial anisotropy, and then combining them into a cylindrical shape.
A method for producing a radially anisotropic rare earth sintered magnet, which comprises compression molding, bonding and sintering.
JP5310139A 1993-12-10 1993-12-10 Manufacturing method of radial anisotropic rare earth sintered magnet Expired - Fee Related JP2911017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5310139A JP2911017B2 (en) 1993-12-10 1993-12-10 Manufacturing method of radial anisotropic rare earth sintered magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5310139A JP2911017B2 (en) 1993-12-10 1993-12-10 Manufacturing method of radial anisotropic rare earth sintered magnet

Publications (2)

Publication Number Publication Date
JPH07161512A JPH07161512A (en) 1995-06-23
JP2911017B2 true JP2911017B2 (en) 1999-06-23

Family

ID=18001639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5310139A Expired - Fee Related JP2911017B2 (en) 1993-12-10 1993-12-10 Manufacturing method of radial anisotropic rare earth sintered magnet

Country Status (1)

Country Link
JP (1) JP2911017B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2226814A1 (en) 2009-02-27 2010-09-08 MINEBEA Co., Ltd. Rare-earth iron -based magnet with self-recoverability
DE102021201413A1 (en) 2021-02-15 2022-08-18 Mimplus Technologies Gmbh & Co. Kg Method of manufacturing a raw magnet
DE102021006524A1 (en) 2021-02-15 2022-08-18 Mimplus Technologies Gmbh & Co. Kg Method of manufacturing a raw magnet

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030035852A (en) * 2001-10-31 2003-05-09 신에쓰 가가꾸 고교 가부시끼가이샤 Radial Anisotropic Sintered Magnet and Its Preparation Process, and Magnet Rotor and Motor
JP4645806B2 (en) * 2004-11-25 2011-03-09 Tdk株式会社 Magnetic field forming method, radial anisotropic segment magnet manufacturing method, and magnetic field forming apparatus
JP2009111418A (en) * 2009-01-19 2009-05-21 Shin Etsu Chem Co Ltd Die, molding machine and method used for manufacturing anisotropic magnet, and magnet manufactured thereby
FR3008224B1 (en) * 2013-07-08 2015-08-07 Commissariat Energie Atomique RADIALLY MAGNIFYING FRITTE ANNULAR MAGNET HAVING A REINFORCED MECHANICAL STRENGTH
JP6331317B2 (en) * 2013-10-04 2018-05-30 大同特殊鋼株式会社 Coupled RFeB magnet and method for manufacturing the same
CN110783051A (en) * 2019-12-13 2020-02-11 烟台首钢磁性材料股份有限公司 Radiation-oriented sintered neodymium-iron-boron magnetic tile, preparation method and forming device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2226814A1 (en) 2009-02-27 2010-09-08 MINEBEA Co., Ltd. Rare-earth iron -based magnet with self-recoverability
DE102021201413A1 (en) 2021-02-15 2022-08-18 Mimplus Technologies Gmbh & Co. Kg Method of manufacturing a raw magnet
DE102021006524A1 (en) 2021-02-15 2022-08-18 Mimplus Technologies Gmbh & Co. Kg Method of manufacturing a raw magnet
DE102021006524B4 (en) 2021-02-15 2023-01-26 Mimplus Technologies Gmbh & Co. Kg Method of manufacturing a raw magnet

Also Published As

Publication number Publication date
JPH07161512A (en) 1995-06-23

Similar Documents

Publication Publication Date Title
EP1308970B1 (en) Radial anisotropic sintered magnet production method
EP1713098B1 (en) Radial anisotropic cylindrical sintered magnet and permanent magnet motor
EP1717828A1 (en) Methods of producing radial anisotropic cylinder sintered magnet and permanent magnet motor-use cylinder multi-pole magnet
KR100869999B1 (en) Radial anisotropic ring magnet and method of manufacturing the ring magnet
EP1895551A1 (en) Process for producing radially anisotropic magnet
JPH01139738A (en) Method and apparatus for magnetic material having magnetic anisotropy
JP2007180368A (en) Method for manufacturing magnetic circuit part
JP2911017B2 (en) Manufacturing method of radial anisotropic rare earth sintered magnet
JPS6181606A (en) Preparation of rare earth magnet
JP3618648B2 (en) Anisotropic magnet, method for manufacturing the same, and motor using the same
JP2004111944A (en) Radial anisotropic ring magnet and manufacturing method of the same
JPS6181603A (en) Preparation of rare earth magnet
JPH07120576B2 (en) Cast rare earth-method for manufacturing iron-based permanent magnets
JP2004153867A (en) Radial anisotropic sintered magnet, its manufacturing method, and magnet rotor and motor
JPH0732090B2 (en) permanent magnet
JPS6181607A (en) Preparation of rare earth magnet
JP5353976B2 (en) Radial anisotropic sintered magnet and magnet rotor
JP2763259B2 (en) Manufacturing method of radial anisotropic rare earth magnet
JP2002057014A (en) Anisotropic magnet, its manufacturing method, and motor using the same
JPH05144621A (en) Rare earth element-bonded magnet
KR970009409B1 (en) Permanent magnet material processing method
JP2001185412A (en) Anisotropic bonded magnet
JPH01169910A (en) Manufacture of anisotropical nd-fe-b base magnet
JPS60165702A (en) Manufacture of permanent magnet
JPH0626162B2 (en) Method for manufacturing C-type anisotropic resin bonded magnet

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080409

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees