JPH0626162B2 - Method for manufacturing C-type anisotropic resin bonded magnet - Google Patents

Method for manufacturing C-type anisotropic resin bonded magnet

Info

Publication number
JPH0626162B2
JPH0626162B2 JP59122632A JP12263284A JPH0626162B2 JP H0626162 B2 JPH0626162 B2 JP H0626162B2 JP 59122632 A JP59122632 A JP 59122632A JP 12263284 A JP12263284 A JP 12263284A JP H0626162 B2 JPH0626162 B2 JP H0626162B2
Authority
JP
Japan
Prior art keywords
magnet
resin
magnetic field
bonded magnet
type anisotropic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59122632A
Other languages
Japanese (ja)
Other versions
JPS612305A (en
Inventor
格 小此木
清治 宮沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP59122632A priority Critical patent/JPH0626162B2/en
Publication of JPS612305A publication Critical patent/JPS612305A/en
Publication of JPH0626162B2 publication Critical patent/JPH0626162B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/083Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together in a bonding agent

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、C型異方性樹脂ボンド磁石に関するもので、
特に薄肉状C型磁石を提供でき、D.Cマイクロモータ
ーの小型化、高性能化を実現できるものである。
TECHNICAL FIELD The present invention relates to a C-type anisotropic resin bonded magnet,
In particular, it is possible to provide a thin-walled C-shaped magnet, and The C micromotor can be miniaturized and high performance can be realized.

〔従来技術〕[Prior art]

従来、D.Cマイクロモーターに使用されているC型磁
石は、第1にフェライト系焼結磁石がある。第2にはゴ
ム又はプラスチック磁石がある。しかし、従来品はそれ
ぞれ次のような欠点を有していた。まず第1の例は、等
方性焼結品で、磁気性能は|BH|max0.9〜1.1MGOe程度
の低性能である。また一軸異方性焼結磁石は|BH|max
3.5〜4.0MGOeまで高められるが、肉厚tは2m/m以上、
角度θは130゜以下のものしかできない問題があった。
したがってどうしても、D.Cマイクロモーターは、出
力特性面および寸法形状で制約条件があった。またラジ
アル異方性を付与しても、焼結時に割れるという欠点が
あった。
Conventionally, D.I. The C-type magnet used in the C micromotor is, firstly, a ferrite-based sintered magnet. The second is a rubber or plastic magnet. However, the conventional products have the following drawbacks. First, the first example is an isotropic sintered product, which has a low magnetic performance of about | BH | max 0.9 to 1.1 MGOe. For uniaxial anisotropic sintered magnets, use | BH | max
It can be increased from 3.5 to 4.0 MGOe, but the wall thickness t is 2 m / m or more,
There was a problem that the angle θ could only be less than 130 °.
Therefore, by all means, D. The C micromotor had constraints in terms of output characteristics and dimensions. Further, even if radial anisotropy is imparted, there is a drawback that it cracks during sintering.

第2の例のゴムプラスチックフェライト磁石は、異方性
を与えたものでも、|BH|max0.6MGOeと低性能であり、
用途は限定されてしまう問題があった。
The rubber plastic ferrite magnet of the second example has a low performance of | BH | max0.6MGOe even if it is given anisotropy.
There was a problem that the use was limited.

〔目的〕 本発明は、このような欠点を解消し、C型異方性樹脂ボ
ンド磁石の高性能化および製造コストが安く量産性の高
い方法を提供することを目的とする。また本発明は、異
方性は一軸、ラジアルいずれでも可能で且つ厚み及び長
さの制限を受けないC型異方性樹脂ボンド磁石を提供す
ることである。
[Purpose] It is an object of the present invention to eliminate such drawbacks and to provide a method of improving the performance of a C-type anisotropic resin bonded magnet and of low manufacturing cost and high mass productivity. Another object of the present invention is to provide a C-type anisotropic resin bonded magnet which can be anisotropically uniaxially or radially and is not limited in thickness and length.

〔概要〕〔Overview〕

以下本発明の具体的構成について説明する。本発明のC
型状磁石とは、次のようなものをさす。
The specific configuration of the present invention will be described below. C of the present invention
The shaped magnet refers to the following.

第1図−Cに示す同磁石断面形状は、r1・r2の組み合わ
せ、扇角θ、肉厚tで表わせば以下のようになる。
The cross-sectional shape of the same magnet shown in FIG. 1-C is as follows when expressed by the combination of r 1 and r 2 , the fan angle θ, and the wall thickness t.

r1……4 mm r1以上 r2……3.8 m/m r2以上 t……r1−r2=0.2 m/m以上 θ……180゜以下 磁石粉末はイットリウムおよびラントナイド系希土類金
属と遷移金属で構成された組成合金である。具体的に
は、一般式で表わせば次のような希土類金属間化合物合
金である。SmCo5 Sm(Co0.9Cu0.1)5 Sm(Cobal Fe0.1 Cu
0.1)7.2, Sm(Cobal Cu0.1Fe0.2 Zr0.01)7.3 , Sm(Cobal
Cu0.07 Fe0.15 Ti0.015)7.4,Sm(Cobal Cu0.08 Fe0.22
Zr0.028)8.35, Sm(Cobal Cu0.06 Fe0.32 Zr0.018)7.6 ,
Sm0.7Pr0.3(Cobal Cu0.07 Fe0.24 Zr0.02)7.6 Sm(Co
balNi0.1 Fe0.2 Cu0.10)7.2 , Sm0.8Ce0.2(Cobal Cu0.1
Fe0.15 Zr0.01)7.4 , Sm0.8Y0.2(CobalCu0.12 Fe0.20)
7.4その他希土類金属と遷移金属からなる結晶異方性強
磁性材料を適用できる。
r 1 …… 4 mm r 1 or more r 2 …… 3.8 m / mr 2 or more t …… r 1 −r 2 = 0.2 m / m or more θ …… 180 ° or less Magnet powder transitions with yttrium and runtnide rare earth metals It is a compositional alloy composed of metals. Specifically, the following rare earth intermetallic compound alloys are represented by the general formula. SmCo 5 Sm (Co 0.9 Cu 0.1 ) 5 Sm (Co bal Fe 0.1 Cu
0.1 ) 7.2 , Sm (Co bal Cu 0.1 Fe 0.2 Zr 0.01 ) 7.3 , Sm (Co bal
Cu 0.07 Fe 0.15 Ti 0.015 ) 7.4 , Sm (Co bal Cu 0.08 Fe 0.22
Zr 0.028 ) 8.35 , Sm (Co bal Cu 0.06 Fe 0.32 Zr 0.018 ) 7.6 ,
Sm 0.7 Pr 0.3 (Co bal Cu 0.07 Fe 0.24 Zr 0.02 ) 7.6 Sm (Co
bal Ni 0.1 Fe 0.2 Cu 0.10 ) 7.2 , Sm 0.8 Ce 0.2 (Co bal Cu 0.1
Fe 0.15 Zr 0.01 ) 7.4 , Sm 0.8 Y 0.2 (Co bal Cu 0.12 Fe 0.20 )
7.4 Others Crystal anisotropic ferromagnetic materials composed of rare earth metals and transition metals can be applied.

前記強磁性粉末50 vol(容量)%〜85vol%、残部樹脂
バインダー(結合剤)からなる混合物を予め混練機にて
250〜350℃に加熱混練しコンパウンドをつくらなければ
ならない。強磁性粉末50体積%以上としたのは、強磁
性粉末と樹脂バインダーからなる樹脂結合型磁石におい
ては、磁気性能は強磁性粉末の体積率に依存するからで
ある。85体積%以下としたのは、強磁性粉末の体積率
が高すぎても、材料中の粉末は成形抵抗となり加工率を
低下させるからである。ここで熱可塑性樹脂は次のよう
な材料を使用する。ナイロン6、ナイロン6−6、ナイ
ロン12、ポリエチレン、EVA、PP、PES、PB
T、PS、PEEK熱硬化性樹脂としては、エポキシ樹
脂、フェノール樹脂などを用いる。次に前記混合物(コ
ンパウンド)は、ペレット状に細断され、磁場押出成形
装置に挿入し、120〜380℃に加熱し、流動状態で、ダイ
ス空間部を加圧押出されることにより製品形状及び性能
を決める。120℃以上としたのは、耐熱性の良い磁石
を得るためであり、380℃以下としたのは、強磁性粉
末が酸化し易くなるからである。この時ダイス空間部磁
場は大略6KOe〜20KOe印加しなければ、磁場中配向
上好ましくない。押出成形されたC型状磁石は、所望の
長さに切断され、モーターに組み込まれ使用される。本
発明C型樹脂ボンド磁石は、D.Cモータ、メータ、セ
ンサ、リレーなどに用いられる。
A mixture consisting of 50 vol% to 85 vol% of the ferromagnetic powder and the balance resin binder (binder) was previously kneaded with a kneader.
A compound must be prepared by heating and kneading at 250 to 350 ° C. The ferromagnetic powder is set to 50% by volume or more because the magnetic performance of the resin-bonded magnet including the ferromagnetic powder and the resin binder depends on the volume ratio of the ferromagnetic powder. The reason why it is set to 85% by volume or less is that, even if the volume ratio of the ferromagnetic powder is too high, the powder in the material becomes a molding resistance and reduces the processing rate. Here, as the thermoplastic resin, the following materials are used. Nylon 6, Nylon 6-6, Nylon 12, Polyethylene, EVA, PP, PES, PB
An epoxy resin, a phenol resin, or the like is used as the T, PS, or PEEK thermosetting resin. Next, the mixture (compound) is chopped into pellets, inserted into a magnetic field extrusion molding apparatus, heated to 120 to 380 ° C., and in a fluid state, the die space is extruded under pressure to obtain the product shape and Determine performance. The temperature is set to 120 ° C. or higher in order to obtain a magnet having good heat resistance, and the temperature is set to 380 ° C. or lower because the ferromagnetic powder is easily oxidized. At this time, the magnetic field in the space of the die is not preferably applied in the magnetic field unless approximately 6 KOe to 20 KOe is applied. The extruded C-shaped magnet is cut into a desired length and incorporated into a motor for use. The C-type resin-bonded magnet of the present invention is Used for C motors, meters, sensors, relays, etc.

〔実施例−1〕 第1図−Aは、従来法のフェライト磁石をC型状につく
るときの磁場中圧縮成形装置の断面図である。従来法は
ポールピースと加圧ラムを兼ねた1,2および金型3,
4によって磁場中で、フェライト粉末を7で加圧成形し
た。この時の圧力は1ton/cm2、磁場は6KOeであっ
た。なお磁場は、コイル5,6にD.C電流を加えた。
また圧力は1,2間に油圧により1ton/cm2加えた。次
に脱磁して第1図−Bのグリーンボディを得た。ここで
はまだ成形物はこわれ易く、扱いは大変である。次に大
気炉中1100℃×1時間加熱し、焼結した磁石はこのまま
では収縮による変形がひどく、寸法、形状精度が悪いの
で研削加工によってC型状磁石を得た。
[Example-1] Fig. 1-A is a sectional view of a magnetic field compression molding apparatus when a conventional ferrite magnet is formed into a C shape. The conventional method is 1, 2, which also functions as a pole piece and a pressure ram, and a mold 3,
Ferrite powder was pressure molded at 7 in a magnetic field at 4. The pressure at this time was 1 ton / cm 2 , and the magnetic field was 6 KOe. The magnetic field is applied to the coils 5 and 6 by the D.I. A C current was applied.
The pressure was 1 ton / cm 2 between the first and second hydraulic pressures. Next, demagnetization was performed to obtain a green body shown in FIG. 1-B. Here, the moldings are still fragile and difficult to handle. Next, the magnet sintered by heating at 1100 ° C. for 1 hour in an atmospheric furnace was severely deformed by shrinkage and the dimensional and shape accuracy was poor, so a C-shaped magnet was obtained by grinding.

本発明方法は次の条件で、C型状磁石をつくった。Sm C
o5(サマリウムコバルト)合金を粒度3μm〜10μm
平均粒度、4.8μmに粒度調整した磁石粉末2kgを用
意した。次に樹脂バインダーとして、ナイロン12を混
合した。磁石粉末と樹脂バインダーの比率は、65磁石
vol%/35vol%バインダーとしこの混合物をPCM−
45型(池貝鉄工)混練機で320℃で加熱混練した。次
に得られたコンバウンドは、第2図−Aに示す、磁場中
押出成形機によってC型状樹脂ボンド磁石第2図−B,
Cを得た。本発明法C型磁石は、コンパウンド10は、
7のホッパーより挿入し、スクリュー8によって前方に
押し出される。コンパウンド10は、14ダイス空間部
で280℃にヒーター11で加熱され、流動状態となり磁
場中配向し易くなる。この時磁場は13−a,bコイ
ル、12−a,bポールピース電磁石にD.C電流を通
電し、14ダイス空間に約10KOeの磁場を発生させ
た。
The method of the present invention produced a C-shaped magnet under the following conditions. Sm C
o 5 (samarium cobalt) alloy with a grain size of 3 μm to 10 μm
2 kg of magnetic powder whose particle size was adjusted to an average particle size of 4.8 μm was prepared. Next, nylon 12 was mixed as a resin binder. The ratio of magnet powder to resin binder is 65 magnets.
This mixture is used as PCM- with vol% / 35vol% binder.
The mixture was heated and kneaded at 320 ° C. with a 45-type (Ikegai Tekko) kneader. Next, the obtained bounds are C-shaped resin-bonded magnets shown in FIG. 2A by an extruder in a magnetic field.
I got C. The compound C of the present invention C-type magnet is
It is inserted from the hopper 7 and pushed forward by the screw 8. The compound 10 is heated to 280 ° C. by the heater 11 in the space of 14 dies, becomes a fluid state, and is easily oriented in the magnetic field. At this time, the magnetic field is applied to the 13-a, b coil, 12-a, b pole piece electromagnet by D. A C current was applied to generate a magnetic field of about 10 KOe in a 14-die space.

磁場方向は、C型磁石厚さ方向一軸異方性である。C型
状磁石の厚みtは1.0m/m、r1 9m/m、r2 8m/m
で、θは130゜の扇形である。こうして磁場中押出成形
し、15の冷却コイルで冷却固化された本発明磁石は、
所望の長さに切断加工して磁石として完成される。ここ
で本発明方法でつくられたC型状磁石の特性を第1表に
示す。
The magnetic field direction is uniaxial anisotropy in the C-type magnet thickness direction. The thickness t of the C-shaped magnet is 1.0 m / m, r 1 9 m / m, r 2 8 m / m
Then, θ is a fan shape of 130 °. Thus, the magnet of the present invention extruded in a magnetic field and cooled and solidified by 15 cooling coils is
It is cut into a desired length and completed as a magnet. The characteristics of the C-shaped magnet produced by the method of the present invention are shown in Table 1.

磁気性能は、VSM(振動試料型磁気測定機)にて測定
した。従来法の約2倍の磁気エネルギー積を得た。従来
法は前述したように、バリウムフェライ磁石粉末を磁場
中成形後焼結したものである。耐衝撃性は、高さ1.5
mよりコンクリート床上に落下させたときの、C型状磁
石の割れ、欠けを調べた。従来法は試料5個中全部割れ
が発生し取り扱い上注意が必要である。一方本発明C型
状磁石は、割れ欠けは発生せず機械的性質にすぐれたこ
とが証明された。次に第3図に示す方法でC型磁石の圧
壊強度を調べた。磁石18は19の平板上に置かれ矢印
方向に上部、押し棒20、バネ21、メーター22を介
して押され、その時の壊れるまでの強度を比較した。本
発明C型状樹脂ボンド磁石は、約1.5倍程度強いこと
がわかった。
The magnetic performance was measured with a VSM (vibrating sample type magnetometer). The magnetic energy product about twice that of the conventional method was obtained. As described above, the conventional method is one in which barium ferrite magnet powder is molded in a magnetic field and then sintered. Impact resistance is height 1.5
The cracks and cracks of the C-shaped magnet when dropped on the concrete floor from m were examined. In the conventional method, all 5 specimens were cracked, requiring careful handling. On the other hand, it was proved that the C-shaped magnet of the present invention was excellent in mechanical properties without causing cracking and chipping. Next, the crush strength of the C-shaped magnet was examined by the method shown in FIG. The magnet 18 was placed on a flat plate 19 and pushed in the direction of the arrow through the upper part, the push rod 20, the spring 21, and the meter 22, and the strengths until the magnet breaks were compared. It was found that the C-shaped resin bonded magnet of the present invention was about 1.5 times stronger.

〔実施例−2〕 本実施例では、D.Cマイクロモーター用C型磁石、各
種形状のものをつくった。第4図−Aは、比較例のバリ
ウムフェライト磁石でつくられた磁石をD.Cモーター
ヨークに組み込んだ時の断面図である。第4図−B,C
は、本発明法によるC型状樹脂ボンド磁石であり、ラジ
アル異方性を付与させて押出成形により製造した。磁石
粉末は、2−17系Sm0.8Y0.2(CobalCu0.1Fe0.22 Ti
0.01)7.4なる合金組成で、もちろん磁気硬化熱処理を行
ってある。粒度分布は3μm〜80μmである。このよ
うな範囲としたのは、磁気性能を高めるためには磁石の
体積率を高めなければならないが、それだけでは足りず
強磁性粉末の粒度がある程度分布を持つことが必要だか
らである。バインダーはナイロン12を35vol%加えて
根れしたコンパウンドを使用した。このコンパウンドを
第2図−Aに示す押出成形装置で(280℃)加熱磁場1
2KOeを加えながらラジアル配向させて、C型異方性樹
脂ボンド磁石を得た。
Example-2 In this example, D. C-shaped magnets for C-micromotors and various shapes were made. FIG. 4-A shows a magnet made of the barium ferrite magnet of the comparative example. FIG. 6 is a cross-sectional view when assembled in a C motor yoke. Fig. 4-B, C
Is a C-shaped resin-bonded magnet according to the method of the present invention, which was produced by extrusion molding while imparting radial anisotropy. The magnet powder is 2-17 system Sm 0.8 Y 0.2 (Co bal Cu 0.1 Fe 0.22 Ti
0.01 ) 7.4 alloy composition, of course, magnetic hardening heat treatment. The particle size distribution is 3 μm to 80 μm. The reason for setting such a range is that the volume ratio of the magnet must be increased in order to improve the magnetic performance, but this is not enough and the particle size of the ferromagnetic powder needs to have a certain degree of distribution. As the binder, a compound in which 35 vol% of nylon 12 was added and rooted was used. This compound was heated (280 ° C.) in a heating magnetic field 1 using an extrusion molding apparatus shown in FIG. 2A.
Radial orientation was performed while adding 2 KOe to obtain a C-type anisotropic resin bonded magnet.

次に純鉄製のモーターケースに、組み込み、パルス着磁
を行って、磁束分布測定を行った。モーター空間部にサ
ーチコイルを入れそのフラックス変化を調べた。第5図
にデータを示したが、本発明磁石B,Cは、第4図B,
Cに対応し従来例に比べ高値(フラックス)が大きく且
つその面積は大きい。モーターとして、トルクを大きく
とれ、効率の良い、マイクロモーターができた。
Next, it was incorporated in a pure iron motor case, pulse-magnetized, and the magnetic flux distribution was measured. A search coil was placed in the motor space and the change in the flux was investigated. Although the data are shown in FIG. 5, the magnets B and C of the present invention are shown in FIG.
Corresponding to C, the high value (flux) is large and the area is large compared to the conventional example. As a motor, we have developed a micro motor that can take large torque and is highly efficient.

〔効果〕〔effect〕

以上詳記したように本発明C型異方性樹脂ボンド磁石
は、次のような利点がある。押出成形によって、1回の
加工で磁気性能を付与させるための磁場配向処理、磁石
粉末の高充填化、そして寸法形状の作り込みを行うた
め、極めて量産性が高く、低コスト化を容易に達成でき
る利点がある。また、表面磁束密度も従来品より30%
〜50%も高い利点がある。さらにC型形状も円周方向
に対して、肉厚の変化を付けられる上、薄肉化し易いの
で、D.Cモーターのコギングトルクの減少化をはかり
易い利点がある。これらの利点を生かしてD.Cモータ
ー用磁石、発電機用磁石、メーター用磁石などの分野に
用途がある。
As described above in detail, the C-type anisotropic resin bonded magnet of the present invention has the following advantages. By extrusion molding, magnetic field orientation treatment to give magnetic performance in one process, high filling of magnet powder, and fabrication of dimension and shape are performed, so mass productivity is extremely high and cost reduction can be easily achieved. There are advantages. Also, the surface magnetic flux density is 30% compared to the conventional product.
There is a high advantage of up to 50%. Furthermore, since the C-shaped shape can be changed in thickness in the circumferential direction and can be easily thinned, D.I. There is an advantage that the cogging torque of the C motor can be easily reduced. Taking advantage of these advantages, D. It has applications in fields such as C motor magnets, generator magnets, and meter magnets.

【図面の簡単な説明】[Brief description of drawings]

第1図A,B,Cは比較例のC型磁石製造のための磁場
プレス…A、成形部…B、断面形状…Cを示す。 第2図は本発明法におけるC型異方性樹脂ボンド磁石製
造のための押出成形装置…A、磁石外観…B、磁石断面
図…Cである。 第3図は本発明法における磁石圧壊試験方法。 第4図は、モーターに組み込んだC型磁石のレイマウト
及び形状後 A…従来法の例 B,C…本発明法であ
る。 第5図は、第4図−A,B,Cモーター磁石内の磁界分
布を表わすグラフ。 A……従来法(第4図−Aのモーター) B……本発明法(第4図−Bのモーター) C……本発明法(第4図−Cのモーター)
FIGS. 1A, 1B, 1C show a magnetic field press ... A, a molding portion ... B, and a sectional shape ... C for manufacturing a C-shaped magnet of a comparative example. FIG. 2 is an extrusion molding apparatus for producing a C-type anisotropic resin bonded magnet in the method of the present invention ... A, a magnet appearance ... B, and a magnet cross-sectional view ... C. FIG. 3 shows a magnet collapse test method in the method of the present invention. FIG. 4 is a ray mout of a C-shaped magnet incorporated in a motor and after shape A ... Examples of conventional method B, C ... Method of the present invention. FIG. 5 is a graph showing the magnetic field distribution in the motor magnets of FIGS. A: Conventional method (motor of FIG. 4-A) B: Inventive method (motor of FIG. 4-B) C: Inventive method (motor of FIG. 4-C)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】希土類磁石粉末を樹脂で結合したC型異方
性磁石の製造方法において、粒径3μm〜80μmの前
記希土類磁石粉末を50体積%〜85体積%含み残部が
樹脂からなる混合物を磁場を加えながら前記希土類磁石
粉末を配向させ且つ120℃〜380℃に加熱した状態
下で加圧成形法によりつくることを特徴とするC型異方
性樹脂ボンド磁石の製造方法。
1. A method for producing a C-type anisotropic magnet in which a rare earth magnet powder is bonded with a resin, wherein a mixture containing 50% by volume to 85% by volume of the rare earth magnet powder having a particle diameter of 3 μm to 80 μm and the remainder being resin. A method for producing a C-type anisotropic resin-bonded magnet, which comprises orienting the rare earth magnet powder while applying a magnetic field and making it by a pressure molding method in a state of being heated to 120 ° C to 380 ° C.
JP59122632A 1984-06-14 1984-06-14 Method for manufacturing C-type anisotropic resin bonded magnet Expired - Lifetime JPH0626162B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59122632A JPH0626162B2 (en) 1984-06-14 1984-06-14 Method for manufacturing C-type anisotropic resin bonded magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59122632A JPH0626162B2 (en) 1984-06-14 1984-06-14 Method for manufacturing C-type anisotropic resin bonded magnet

Publications (2)

Publication Number Publication Date
JPS612305A JPS612305A (en) 1986-01-08
JPH0626162B2 true JPH0626162B2 (en) 1994-04-06

Family

ID=14840772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59122632A Expired - Lifetime JPH0626162B2 (en) 1984-06-14 1984-06-14 Method for manufacturing C-type anisotropic resin bonded magnet

Country Status (1)

Country Link
JP (1) JPH0626162B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63147301A (en) * 1986-12-11 1988-06-20 Inoue Japax Res Inc Manufacture of resinated magnet
JP2920638B2 (en) * 1989-03-24 1999-07-19 セイコーエプソン株式会社 Method for manufacturing resin-bonded magnet

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4830092A (en) * 1971-08-23 1973-04-20

Also Published As

Publication number Publication date
JPS612305A (en) 1986-01-08

Similar Documents

Publication Publication Date Title
JP2530641B2 (en) Magnetically anisotropic bonded magnet, magnetic powder used therefor, and method for producing the same
JPH0669003B2 (en) Powder for permanent magnet and method for manufacturing permanent magnet
JP3618648B2 (en) Anisotropic magnet, method for manufacturing the same, and motor using the same
JP2911017B2 (en) Manufacturing method of radial anisotropic rare earth sintered magnet
EP1180772B1 (en) Anisotropic magnet and process of producing the same
JPH0626162B2 (en) Method for manufacturing C-type anisotropic resin bonded magnet
JPS59103309A (en) Manufacture of permanent magnet
JP3883138B2 (en) Manufacturing method of resin bonded magnet
JP3618647B2 (en) Anisotropic magnet, method for manufacturing the same, and motor using the same
JPH0559572B2 (en)
JP3538762B2 (en) Method for producing anisotropic bonded magnet and anisotropic bonded magnet
JPH05211102A (en) Powder for permanent magnet and permanent magnet
JPH10199717A (en) Anisotropic magnet and its manufacturing method
JP2001185412A (en) Anisotropic bonded magnet
JPH06215967A (en) Manufacture of transferred integrally-molded magnetic circuit
JPS62261102A (en) Bonded magnet for starter motor
JPH0786070A (en) Manufacture of bond magnet
JPS63229707A (en) Manufacture of plastic permanent magnet
JPH06295806A (en) Mn-al-c based thin plate magnet and production thereof
JPH0314215A (en) Manufacturing process and device for magnetic anisotropical magnet
JPS60208817A (en) Manufacture of anisotropic resin magnet
JPH07161524A (en) Production of radial anisotropic rare earth magnet
JPH0419685B2 (en)
JP2739329B2 (en) Method for producing alloy powder for polymer composite type rare earth magnet
JPH0256904A (en) Manufacture of resin-bound rare-earth magnet

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term