JPH06295806A - Mn-al-c based thin plate magnet and production thereof - Google Patents

Mn-al-c based thin plate magnet and production thereof

Info

Publication number
JPH06295806A
JPH06295806A JP5106276A JP10627693A JPH06295806A JP H06295806 A JPH06295806 A JP H06295806A JP 5106276 A JP5106276 A JP 5106276A JP 10627693 A JP10627693 A JP 10627693A JP H06295806 A JPH06295806 A JP H06295806A
Authority
JP
Japan
Prior art keywords
magnet
thin plate
powder
magnetized
rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5106276A
Other languages
Japanese (ja)
Inventor
Akihiko Yanagiya
彰彦 柳谷
Masaru Yanagimoto
勝 柳本
Atsushi Okawa
淳 大川
Naoto Kuroda
直人 黒田
Noriyuki Umano
則之 馬野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP5106276A priority Critical patent/JPH06295806A/en
Publication of JPH06295806A publication Critical patent/JPH06295806A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition

Abstract

PURPOSE:To ensure practical strength and magnetism by heating a quenching powder of Mn-Al-C based magnet powder and extrusion molding the powder into a rod which is then sliced and magnetized. CONSTITUTION:A quenching powder of Mn-Al-C based magnet alloy is encapsulated in an easily machinable capsule and heated. It is then extrusion molded into a rod having density of substantially 100%. The rod is then sliced in the direction normal to the extruding direction to produce a thin plate magnet having a thickness of 1.5mm or less which is then magnetized to produce a slice cut magnetized body. The slice cut magnetized body has a breakage resistance of 20kgf/mm<2>, and energy product lowering rate of 30% or less with respect to the basic material prior to cutting. This method ensures practical strength and magnetism.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超薄型モーターや精密
磁気シールなどに使用される強度の高い薄板磁石および
その製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength thin plate magnet used for ultra-thin motors, precision magnetic seals and the like, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年コンピュータ等のOA機器やビデオ
等のAV機器は大幅に小型化、高性能化されてきてい
る。それに伴ってそれらの機器に使用されるモーターや
磁気シール等の部品も小型化、高性能化する必要があ
り、特にそれらに使用される薄板磁石については高強
度、高特性を達成するべくさまざまな研究や開発がなさ
れている。
2. Description of the Related Art In recent years, OA equipment such as computers and AV equipment such as videos have been greatly reduced in size and improved in performance. Along with that, it is necessary to reduce the size and performance of parts such as motors and magnetic seals used in those devices. Especially, the thin plate magnets used for them have various strengths and characteristics. Research and development are being done.

【0003】従来小型モーターや磁気シールに使用され
る薄板磁石としては、フェライト等の粉末磁石をバイン
ダーと混合し射出成形や圧縮成形することにより製造さ
れるプラスチックマグネット(プラマグ)や、希土類磁
石粉末を所望の形状に成形した後焼結させたり、その焼
結体を切断して製造される希土類系やフェライト系の磁
石(焼結磁石)等があった。
Conventionally, as thin plate magnets used for small motors and magnetic seals, plastic magnets (plamag) produced by mixing powder magnets such as ferrite with a binder and injection molding or compression molding, and rare earth magnet powders. There have been rare earth magnets and ferrite magnets (sintered magnets) manufactured by sintering after being formed into a desired shape or cutting the sintered body.

【0004】しかし、これらの方法で得られる薄板磁石
は強度と特性の点で以下に記述するような問題点がある
ため製造できる厚さに限界があり、1.5mm以下で実用
的な強度と磁気特性を有する薄板磁石はなく、近年の小
型化要求を満足させることが困難であった。
However, the thin plate magnets obtained by these methods have the following problems in terms of strength and characteristics, so that there is a limit to the thickness that can be manufactured. Since there is no thin plate magnet having magnetic characteristics, it has been difficult to satisfy the recent demand for miniaturization.

【0005】フェライト系や希土類系の焼結磁石の薄板
は粉末を常温でプレス成形した後高温に保持して焼結す
るが、常温のプレス成形で粉末を100%密度に成形す
ることは不可能であり、また焼結を施してもそれらの空
孔が残留空孔として焼結体中に残る。体積の大きな磁石
の場合にはこれらの残留空孔はあまり問題にならない
が、薄板の成形体ではこれらの残留空孔が容易に破断の
起点となるため1.5mm以下で20kgf/mm2 以上の実用
的な強度を有するものを得るのが困難である。従って両
者共それらの限界よりもさらに薄型の要求には補強板を
つける等の方法で対処しているのが現状である。
Although a thin plate of a ferrite-based or rare-earth-based sintered magnet is formed by pressing powder at room temperature and then holding it at a high temperature for sintering, it is impossible to form the powder to 100% density by press forming at room temperature. Further, even if the sintering is performed, those holes remain in the sintered body as residual holes. In the case of a magnet with a large volume, these residual voids do not cause much problems, but in the case of a thin plate molded body, these residual voids easily become the starting points of fracture, so 1.5 mm or less and 20 kgf / mm 2 or more. It is difficult to obtain one having practical strength. Therefore, in the current situation, both of them are required to be thinner than those limits by a method such as attaching a reinforcing plate.

【0006】また磁性に関しても、プラマグは混合され
るバインダーの量が増加するに従って磁石としての特性
が低下するため高性能化の要求を満足させることができ
ない。このため現在の高性能化要求に応えるには磁石単
体で充分な強度や磁気特性を有する磁石の開発が必要で
あった。希土類磁石は体積が大きなバルク状態では極め
て高い磁気特性が得られるが、結晶粒が大きいため厚み
が減少するに従って切断によって磁性を失う結晶の割合
が増えたり、その後の酸化により磁気特性が劣化し薄型
で高性能の磁石を得るのが困難である。
As for magnetism, the characteristics of the magnet as the magnet deteriorates as the amount of the binder mixed increases, so that the requirement for high performance cannot be satisfied. Therefore, in order to meet the current demand for higher performance, it was necessary to develop a magnet that has sufficient strength and magnetic properties as a single magnet. Rare earth magnets have extremely high magnetic properties in a bulk state with a large volume, but since the crystal grains are large, the proportion of crystals that lose magnetism due to cutting increases as the thickness decreases, and the magnetic properties deteriorate due to subsequent oxidation, resulting in a low profile. It is difficult to obtain a high performance magnet.

【0007】以上の如く、薄板磁石のますますの薄型化
および高性能化の要求に対しては従来の技術や材料では
対処できる範囲に限界があった。
As described above, there has been a limit to the range in which the conventional techniques and materials can cope with the demand for ever thinner thin plate magnets and higher performance.

【0008】[0008]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、上記の様な従来の薄板磁石の持つ欠点およ
びその製造方法の欠点のいずれをも解消し、強度が高
く、かつ、磁気特性の優れた厚さ1.5mm以下のMn−
Al−C系薄板磁石およびその製造方法を提供すること
である。
The problem to be solved by the present invention is to solve both of the above-mentioned drawbacks of the conventional thin plate magnet and the drawbacks of the manufacturing method thereof, and to have high strength and magnetic properties. Mn- with excellent characteristics and thickness of 1.5 mm or less
An Al-C based thin plate magnet and a method for manufacturing the same.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
の手段は、1)Mn−Al−C系磁石合金の急冷粉末の
易加工性カプセル充填体の加熱押出し加工による実質的
100%密度の棒状成形体の押出し方向に対する垂直方
向の1.5mm厚以下のスライスカット着磁体で抗折力2
0kgf/mm2 以上で切断前の母材に対するエネルギー積の
低下率が30%以下であるMn−Al−C系薄板磁石、
および、2)Mn−Al−C系磁石合金の急冷粉末を易
加工性カプセルに入れて加熱し、押出し加工により実質
的に100%の密度の棒状成形体を得、該成形体を押出
し方向に対し垂直方向にスライスカットし、1.5mm以
下の薄板磁石材を得、これに着磁するMn−Al−C系
薄板磁石の製造方法である。
Means for solving the above-mentioned problems are as follows: 1) A processable capsule-filled body of a quenched powder of Mn-Al-C magnet alloy is heated to a substantially 100% density. With a slice-cut magnetized body with a thickness of 1.5 mm or less in the direction perpendicular to the extrusion direction of the rod-shaped body, the bending strength is 2
An Mn-Al-C thin plate magnet having a reduction rate of the energy product with respect to the base material before cutting of 0 kgf / mm 2 or more of 30% or less,
And 2) A quenching powder of Mn-Al-C based magnet alloy is put into an easily processable capsule and heated to obtain a rod-shaped compact having a density of substantially 100% by extrusion, and the compact is extruded in the extrusion direction. On the other hand, it is a method for manufacturing a Mn-Al-C based thin plate magnet in which a thin plate magnet material of 1.5 mm or less is obtained by slice cutting in the vertical direction and magnetized.

【0010】[0010]

【作用】Mn−Al−C系磁石は、重量%で、Mn:6
5〜74%、Al:25〜34%、C:0.2〜4.0
%を基本組成とする異方性磁石であって、現在は、一般
に出願人等が先に出願した特願昭62−237616号
の明細書に記載した、粉末押出しによる製造方法をベー
スにした方法によって製造されている。これは、Mn−
Al−C系合金の溶湯をガスアトマイジングにより粉末
にし、適切な粒度分布の当該粉末を易加工性材料の押出
し用カプセルに入れ、加熱して押出し、ほぼ100%密
度の丸あるいは多角形の棒状成形体を得、これを短く切
断して、単体磁石材を得るものである。
The Mn-Al-C magnet has a weight ratio of Mn: 6.
5 to 74%, Al: 25 to 34%, C: 0.2 to 4.0
An anisotropic magnet having a basic composition of 10% by weight, which is based on a manufacturing method by powder extrusion described in the specification of Japanese Patent Application No. 62-237616 currently filed by the applicants in general. Is manufactured by. This is Mn-
The molten metal of the Al-C alloy is made into powder by gas atomizing, and the powder having an appropriate particle size distribution is put into an extruding capsule of a readily processable material and extruded by heating to obtain a round or polygonal rod shape having almost 100% density. A molded body is obtained and cut into short pieces to obtain a single magnet material.

【0011】発明者らは、押出し後の棒材の切断におい
て、どこまで薄く切断できるか試みたところ、従来考え
られなかった薄さで実用的強度と磁性が確保できるこ
と、すなわち従来存在しなかった薄さの薄板磁石が得ら
れることを見いだしたものである。
The inventors of the present invention tried to find out how thinly a rod can be cut after extrusion, and it was confirmed that practical strength and magnetism can be secured with a thinness that has not been considered in the past, that is, a thinness that did not exist in the past. It was found that a thin plate magnet of Sasano can be obtained.

【0012】[0012]

【表1】[Table 1]

【0013】 先の出願に述べたとおり、従来の薄板磁石として高性能
のものはNd系磁石ではないかと思われる。Nd系磁石
は磁石の中で最も高いBHmax を有しているが、図1に
示すとおり厚さが減少するに従って急激に磁気特性が低
下するのに対し、本発明の薄板磁石は低下が少ない。即
ち、表1に示すとおりMn−Al−C系磁石は低下率が
極めて小さく1.5mm以下の薄さでも良好な磁気特性を
維持している。
[0013] As described in the previous application, it is considered that the high performance conventional thin plate magnet is an Nd-based magnet. Although the Nd-based magnet has the highest BH max among the magnets, the magnetic characteristics sharply decrease as the thickness decreases as shown in FIG. 1, whereas the thin plate magnet of the present invention does not decrease much. . That is, as shown in Table 1, the decrease rate of the Mn-Al-C based magnet is extremely small and good magnetic characteristics are maintained even when the thickness is 1.5 mm or less.

【0014】また、抗折力については、Nd磁石はもと
もとベースが10kgf/mm2 以下であるため1.5mm以下
で実用強度を有する単体薄板磁石を得るのが困難であ
る。それに対しMn−Al−C系磁石は20kgf/mm2
上の極めて高い抗折強度を有する。従って、実際の切断
に際しては、表1に示すように、本発明の磁石では0.
15mmまで切断できたのに対し、Nd磁石では1mm以下
に切断すること自体が難しく、例え切断できても脆くて
実用にならないと考えられる。
Regarding the transverse rupture strength, since the base of the Nd magnet is originally 10 kgf / mm 2 or less, it is difficult to obtain a single-piece thin plate magnet having a practical strength of 1.5 mm or less. On the other hand, the Mn-Al-C magnet has an extremely high bending strength of 20 kgf / mm 2 or more. Therefore, when actually cutting, as shown in Table 1, the magnet of the present invention has a resistance of 0.
Although it was possible to cut up to 15 mm, it is difficult to cut to 1 mm or less with an Nd magnet, and even if it can be cut, it is considered to be brittle and not practical.

【0015】本発明は、上記したとおり磁石材としてM
n−Al−C系磁石材を用い、これをカプセルに入れて
棒状体に押し出したものを極めて薄くスライスカットし
て、これに着磁したものおよびその製造方法である。す
なわち、Mn−Al−C系合金が基本的特性としても持
つ機械的強度の高さと、急冷により結晶粒が微細均一化
していることによる磁石に対する薄さの悪影響が小さい
こととが総合的に働いて、従来にない高特性の薄板磁石
を実現したものである。
The present invention uses M as a magnet material as described above.
An n-Al-C-based magnet material is used, which is put into a capsule and extruded into a rod-shaped body, sliced and cut into very thin pieces, and then magnetized, and a manufacturing method thereof. That is, the high mechanical strength that the Mn-Al-C based alloy also has as a basic characteristic and the fact that the crystal grains are finely homogenized by quenching have a small adverse effect of the thinness on the magnet work comprehensively. This is the realization of a thin plate magnet with high characteristics that has never existed before.

【0016】[0016]

【実施例】重量%で、Mn:68.8%、C:0.44
%、Ni:0.78%、残部Alからなる合金の溶湯を
Arガスでアトマイズして、平均粒径68μm の球状粉
末を得た。これを軟鋼板製の直径58mm、高さ80mmの
円筒カプセルに流し込み充填し、密封して720℃に加
熱し、ダイス押出し2回で16.3mm丸にし、冷却後カ
プセル材を切削除去して直径16.0mmの丸棒成形体を
得た。成形体の密度は5.08g/cm3 、押出し材の平均
結晶粒径は0.5μm 、軸方向に対して垂直方向に取っ
た試料の抗折力は112kgf/mm2 であった。これをワイ
ヤカットにより軸方向に対して垂直方向に2.0mm以下
の各厚さに切断した。表1にその結果を示す。
EXAMPLES Mn: 68.8%, C: 0.44 in% by weight
%, Ni: 0.78%, the balance being Al, the molten metal of the alloy was atomized with Ar gas to obtain a spherical powder having an average particle size of 68 μm. This is poured and filled into a cylindrical capsule made of mild steel plate and having a diameter of 58 mm and a height of 80 mm, which is sealed and heated to 720 ° C., and the die is extruded twice to make a 16.3 mm round, and after cooling, the capsule material is removed by cutting to a diameter A round bar molded body of 16.0 mm was obtained. The density of the molded body was 5.08 g / cm 3 , the average grain size of the extruded material was 0.5 μm, and the transverse rupture strength of the sample taken in the direction perpendicular to the axial direction was 112 kgf / mm 2 . This was cut into each thickness of 2.0 mm or less in the direction perpendicular to the axial direction by wire cutting. The results are shown in Table 1.

【0017】なお、本実施例においては、切断方法とし
てワイヤカットを用いたが、精密薄刃回転砥石を用いる
のが工業的には有利で、またこれによってもワイヤカッ
トとほぼ同様に切断し得る。
In the present embodiment, wire cutting was used as the cutting method, but it is industrially advantageous to use a precision thin blade rotary grindstone, and this also makes it possible to perform cutting in substantially the same manner as wire cutting.

【0018】表1に記載の各厚さのサンプルに対し、板
面に垂直方向に着磁して薄板磁石を得た。これらの磁力
を測定した結果を同表に示した。いずれも薄板磁石とし
て実用性を有する諸特性を示している。
The samples with the respective thicknesses shown in Table 1 were magnetized in the direction perpendicular to the plate surface to obtain thin plate magnets. The results of measuring these magnetic forces are shown in the same table. All of them show various properties that are practical as a thin plate magnet.

【0019】[0019]

【発明の効果】本発明の実施により、超小型モーター用
磁石としてあるいは磁気シール材として従来なかった薄
さの高機能の磁石を提供できるようになり、OA機器や
ビデオ、カメラ等の一層の小型化、高性能化に多大の寄
与をなすものである。
By implementing the present invention, it is possible to provide a highly functional magnet having a thinness which has never been used as a magnet for a micro motor or as a magnetic sealing material, and it is possible to further reduce the size of OA equipment, video cameras, cameras and the like. And contributes to higher performance and higher performance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の薄板磁石と比較材としてのNd磁石の
厚さと磁力低下の関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the thickness and the decrease in magnetic force of a thin plate magnet of the present invention and an Nd magnet as a comparative material.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 B22F 3/24 G C22C 22/00 C22F 1/16 C H01F 41/02 G 8019−5E (72)発明者 黒田 直人 兵庫県姫路市飾磨区中島字一文字3007番地 山陽特殊製鋼株式会社内 (72)発明者 馬野 則之 兵庫県姫路市飾磨区中島字一文字3007番地 山陽特殊製鋼株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical display location B22F 3/24 G C22C 22/00 C22F 1/16 C H01F 41/02 G 8019-5E (72) Inventor Naoto Kuroda 3007 Nakajima, Shikoma-ku, Himeji-shi, Hyogo Sanyo Special Steel Co., Ltd. (72) Noriyuki Mano Nakajima, Shimo-ku, Himeji-shi, Hyogo 3007 Sanyo Special Steel Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Mn−Al−C系磁石合金の急冷粉末の
易加工性カプセル充填体の加熱押出し加工による実質的
100%密度の棒状成形体の押出し方向に対する垂直方
向の1.5mm厚以下のスライスカット着磁体で抗折力2
0kgf/mm2 以上で切断前の母材に対するエネルギー積の
低下率が30%以下であることを特徴とするMn−Al
−C系薄板磁石
1. A Mn-Al-C-based magnet alloy, which has a substantially 100% density in the direction perpendicular to the extrusion direction of a rod-shaped compact having a substantially 100% density obtained by heat-extruding a rapidly processable capsule-filled body of a powder having a thickness of 1.5 mm or less. Slice-cut magnetized body with 2 bending strength
Mn-Al having a reduction rate of 30% or less with respect to the base material before cutting at 0 kgf / mm 2 or more
-C type thin plate magnet
【請求項2】 Mn−Al−C系磁石合金の急冷粉末を
易加工性カプセルに入れて加熱し、押出し加工により実
質的に100%の密度の棒状成形体を得、該成形体を押
出し方向に対し垂直方向にスライスカットし、1.5mm
以下の薄板型磁石材を得、これに着磁することを特徴と
するMn−Al−C系薄板磁石の製造方法。
2. A quenched powder of a Mn-Al-C based magnet alloy is put into an easily processable capsule and heated, and a rod-shaped molded body having a density of substantially 100% is obtained by extrusion processing, and the molded body is extruded in the extrusion direction. Slice cut vertically to 1.5mm
A method for producing a Mn-Al-C thin plate magnet, characterized in that the following thin plate magnet material is obtained and magnetized.
JP5106276A 1993-04-08 1993-04-08 Mn-al-c based thin plate magnet and production thereof Pending JPH06295806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5106276A JPH06295806A (en) 1993-04-08 1993-04-08 Mn-al-c based thin plate magnet and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5106276A JPH06295806A (en) 1993-04-08 1993-04-08 Mn-al-c based thin plate magnet and production thereof

Publications (1)

Publication Number Publication Date
JPH06295806A true JPH06295806A (en) 1994-10-21

Family

ID=14429562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5106276A Pending JPH06295806A (en) 1993-04-08 1993-04-08 Mn-al-c based thin plate magnet and production thereof

Country Status (1)

Country Link
JP (1) JPH06295806A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0786785A1 (en) * 1995-08-10 1997-07-30 Yutaro Iso Manganese-aluminum magnet with far-infrared radiation properties and method of manufacturing the same
CN107312982A (en) * 2017-06-13 2017-11-03 同济大学 A kind of pure τ phases MnAl base magnetically hard alloy and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0786785A1 (en) * 1995-08-10 1997-07-30 Yutaro Iso Manganese-aluminum magnet with far-infrared radiation properties and method of manufacturing the same
CN107312982A (en) * 2017-06-13 2017-11-03 同济大学 A kind of pure τ phases MnAl base magnetically hard alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
US5085715A (en) Magnetically anisotropic bond magnet, magnetic powder for the magnet and manufacturing method of the powder
EP0898778B1 (en) Bonded magnet with low losses and easy saturation
JP3405806B2 (en) Magnet and manufacturing method thereof
EP0249973B1 (en) Permanent magnetic material and method for producing the same
JPH0669003B2 (en) Powder for permanent magnet and method for manufacturing permanent magnet
JP4968519B2 (en) Permanent magnet and method for manufacturing the same
WO2003085684A1 (en) Composite rare earth anisotropic bonded magnet, compound for composite rare earth anisotropic bonded magnet, and method for production thereof
KR101918975B1 (en) MAGNET of Nd-Fe-B SYSTEM AND THE MANUFACTURING METHOD THEREOF
WO1988006797A1 (en) Rare earth element-iron base permanent magnet and process for its production
JP2000096102A (en) Heat resistant rare earth alloy anisotropy magnet powder
US3655464A (en) Process of preparing a liquid sintered cobalt-rare earth intermetallic product
US3682714A (en) Sintered cobalt-rare earth intermetallic product and permanent magnets produced therefrom
JP2576672B2 (en) Rare earth-Fe-Co-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JPH06295806A (en) Mn-al-c based thin plate magnet and production thereof
JPWO2004094090A1 (en) Method for producing rare earth alloy powder and method for producing rare earth sintered magnet
US3682715A (en) Sintered cobalt-rare earth intermetallic product including samarium and lanthanum and permanent magnets produced therefrom
JPH061726B2 (en) Method of manufacturing permanent magnet material
JPH02208902A (en) Hot-worked magnet and manufacture thereof
JP2708578B2 (en) Bonded magnet
JPS61179801A (en) Alloy powder for bond magnet and its production
JPH01155603A (en) Manufacture of oxidation-resistant rare-earth permanent magnet
JPH01239901A (en) Rare-earth magnet and its manufacture
JPH0626162B2 (en) Method for manufacturing C-type anisotropic resin bonded magnet
JP3474683B2 (en) High performance R-Fe-BC system magnet material with excellent corrosion resistance
JPS61239608A (en) Anisotropic magnet and manufacture thereof