JPS61239608A - Anisotropic magnet and manufacture thereof - Google Patents

Anisotropic magnet and manufacture thereof

Info

Publication number
JPS61239608A
JPS61239608A JP8064485A JP8064485A JPS61239608A JP S61239608 A JPS61239608 A JP S61239608A JP 8064485 A JP8064485 A JP 8064485A JP 8064485 A JP8064485 A JP 8064485A JP S61239608 A JPS61239608 A JP S61239608A
Authority
JP
Japan
Prior art keywords
magnetic
punch
anisotropic magnet
magnet
anisotropic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8064485A
Other languages
Japanese (ja)
Inventor
Akio Kobayashi
明男 小林
Izumi Nakazono
中薗 和泉
Takeshi Mizuhara
水原 猛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP8064485A priority Critical patent/JPS61239608A/en
Publication of JPS61239608A publication Critical patent/JPS61239608A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To easily obtain anisotropic magnetic characteristics as well as to manufacture the magnet to be used in the magnetic circuit such as a magnetron, a speaker and the like by a method wherein a press work is performed in such a manner that the density of magnetic flux on one punch surface is made higher than that of the other punch surface by adding magnetic field in molding space in the direction of compression. CONSTITUTION:Magnetic powder 4 is filled in the space formed by the dies 1 made of a non-magnetic material or the material having low permeability, the upper punch 2 and the lower punch 3, at least a part or more of which is made of ferromagnetic material. A coil 5, on which a magnetic field 6 is applied in the direction as shown by the arrow in the diagram, is arranged in the above-mentioned magnetic space. Magnetic space is formed in such a manner that the magnetic flux density on the surface of one punch 3 is made higher than the magnetic flux density on the surface of the other punch 2, and a press work is performed by adding magnetic field to the magnetic space in the direction of compression. An anisotropic magnet having excellent anisotropic characteristics can be manufactured easily by performing the above- mentioned processing method.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、異方性磁石とくに磁性粉末を特定の磁場中に
おいてプレス成形して成る異方性磁石およびその製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an anisotropic magnet, particularly an anisotropic magnet formed by press-molding magnetic powder in a specific magnetic field, and a method for manufacturing the same.

(従来の技術) R1Co5系合金(ただし、Rは希土類元素)お。(Conventional technology) R1Co5 alloy (where R is a rare earth element).

よびFe 、Cu 、 Ti 、 Zl 、 Hfを含
むI(2COI7系合金、また近年発明されたR−B 
−Fe系合金(特開昭59−46.00B号公報参照)
のような磁性粉末を1〜50μm(平均粒径)の状態ま
で細かく粉砕し、所定の磁場中でプレス成形し必要に応
じて焼結および熱処理して成る異方性磁石は、スピーカ
ー、モーター、その他の電気機器に広く使用されている
and I (2COI7 alloys containing Fe, Cu, Ti, Zl, Hf, and the recently invented R-B
-Fe-based alloy (see JP-A-59-46.00B)
Anisotropic magnets are made by finely pulverizing magnetic powder such as 1 to 50 μm (average particle size), press-forming in a predetermined magnetic field, and sintering and heat-treating as necessary. Widely used in other electrical equipment.

この種の磁石は、第6図(特公昭60−931号公報参
照)に示すように、非磁性体もしくけ透磁率の小さい材
料でなるダイス1と強磁性体で作、られた上パンチ2お
よび下パンチ3で形成される成形空間に磁性粉末4を充
てんし成形空間と同レベルに位置するコイル5によって
矢印方向に磁界6を印加し、プレス成形し必要に応じ1
・。
As shown in Fig. 6 (see Japanese Patent Publication No. 60-931), this type of magnet consists of a die 1 made of a non-magnetic material or a material with low magnetic permeability, and an upper punch 2 made of a ferromagnetic material. Then, the molding space formed by the lower punch 3 is filled with magnetic powder 4, and a magnetic field 6 is applied in the direction of the arrow by a coil 5 located at the same level as the molding space, and press molding is performed.
・.

て焼結および熱処理することによって製造される。It is manufactured by sintering and heat treating.

(発明の解決しようとする問題点) しかし第6図に示す如く同性、同材質の一ヒ。(Problems to be solved by the invention) However, as shown in Figure 6, it is one of the same sex and made of the same material.

下バンチを使用する従来の方法によって作られ1゜た磁
石41は第3図に示す如く、A面および3面での表面磁
束密度がほぼ同レベルであるため、!     特定の
磁気回路に使用する磁石と[2ては不適当である場合も
生じる。すなわち、特公昭53−47919号公報に開
示されている如く、一方の磁極端面が他方の磁極端面よ
り、強磁性であることを利用したマグネトロン、スピー
カーおよびモーター等の磁気回路に使用する磁石として
不利な場合がある。
As shown in FIG. 3, the 1° magnet 41 made by the conventional method using the lower bunch has surface magnetic flux densities of approximately the same level on the A side and the 3rd side. There may be cases where the magnet used in a particular magnetic circuit is inappropriate. In other words, as disclosed in Japanese Patent Publication No. 53-47919, it is disadvantageous for magnets used in magnetic circuits such as magnetrons, speakers, and motors that utilize the fact that one magnetic pole end surface is more ferromagnetic than the other magnetic pole end surface. There are cases where

本発明は、上述した従来技術の問題点を解消゛し一方の
磁極端面の特性が、他方の磁極端面の特性より高い異方
性磁石およびその製造方法を提供することを目的とする
ものである。
It is an object of the present invention to solve the above-mentioned problems of the prior art and to provide an anisotropic magnet in which the characteristics of one magnetic pole end face are higher than the characteristics of the other magnetic pole end face, and a method for manufacturing the same. .

(問題点を解決するだめの手段) 本発明は、非磁性体もしくは透磁率の小さい1・l材料
でなるダイスおよび少くとも強磁性体を含む上下パンチ
で形成される成形空間に磁性粉末(例えばRICO5系
合金粉、 R2C017系合金粉、R−’B−Fe系合
金粉)を充てんし、成形するに尚り、一方のパンチ面の
磁束密度が他方のパンチ1面に比較し高くなるように成
形空間に磁界を圧縮方向に印加し、プレス成形すること
を特徴とするものである。
(Means for Solving the Problems) The present invention provides magnetic powder (e.g. RICO5 alloy powder, R2C017 alloy powder, R-'B-Fe alloy powder) are filled and formed, so that the magnetic flux density on one punch surface is higher than that on the other punch surface. This method is characterized by applying a magnetic field in the compression direction to the molding space to perform press molding.

(作用) 以下本発明を詳述すると、本発明の磁石は第、1゜1図
又は第2図のようなプレス方法に□よって作成され第6
図に示す如く、圧縮方向に異方性化され、かつ磁石端面
Bの磁気特性が他の1riiAのものに比較し尚いもの
である。
(Function) The present invention will be described in detail below.The magnet of the present invention is manufactured by the pressing method shown in Fig. 1゜1 or Fig. 2.
As shown in the figure, it is anisotropic in the compression direction, and the magnetic properties of the magnet end face B are better than those of other 1riiA.

第1図および第2図において、微粉砕した磁゛性粉末(
例えばRICOs 、 R)Co 17およびR−B−
Fe系合金粉)4をダイス1.上パンチ2および下バン
チ3で形成される成形空間に充てんし成形空間と同レベ
ルに位置するコイル5によって矢印方向に磁界6を印加
し、プレス成形し必要1・・に応じて焼結および熱処理
を行う。ダイス1は一非磁性体もしくは透磁率の小さい
材料でないと成形空間での有効磁束量が減じ、磁気特性
が低下するためである。上下パンチは磁束を導くため少
くとも一部分以上が強磁性体であることを1゜必要とし
、上バンチが成形空間に挿入しない形状(第1図)でも
良い。
In Figures 1 and 2, finely ground magnetic powder (
For example RICOs, R)Co17 and R-B-
Fe-based alloy powder) 4 is diced into 1. The forming space formed by the upper punch 2 and the lower bunch 3 is filled, a magnetic field 6 is applied in the direction of the arrow by a coil 5 located at the same level as the forming space, press forming is performed, and sintering and heat treatment are performed as necessary. I do. This is because if the die 1 is not made of a non-magnetic material or a material with low magnetic permeability, the amount of effective magnetic flux in the molding space will decrease and the magnetic properties will deteriorate. The upper and lower punches must be at least partially made of ferromagnetic material by 1° in order to guide the magnetic flux, and may have a shape in which the upper punch is not inserted into the molding space (Fig. 1).

第1図において、上下パンチとも、同材質の強磁性体で
ある場合、上パンチ面の面積をSu、下バンチ面の面積
をSLとすると、下パンチ面 1、の磁束密度は上パン
チ面のそれに比較しS U/S L倍となり第6図にお
いて、下パンチ面側の磁極BがAに比し強磁性化する。
In Figure 1, if both the upper and lower punches are made of the same ferromagnetic material, and if the area of the upper punch surface is Su and the area of the lower bunch surface is SL, then the magnetic flux density of the lower punch surface 1 is the same as that of the upper punch surface. Compared to that, the magnetic pole B on the lower punch surface side becomes ferromagnetic compared to A, which is S U / S L times larger.

第2図は、強磁性体の上バンチ2を成形空間に挿入する
とともにパンチ外周部61を非磁性体もしくは弱い磁性
体″とし内部を上バンチと同材質の強磁性体から成る下
バンチ6を成形空間に挿入した場合である。。
FIG. 2 shows an upper bunch 2 made of ferromagnetic material inserted into the molding space, and a lower bunch 6 made of a ferromagnetic material made of the same material as the upper bunch, with the punch outer peripheral part 61 made of a non-magnetic material or weakly magnetic material. This is the case when inserted into the molding space.

第2図においても第1図と同じく下バンチ面の磁束密度
が上パンチ面のそれに比較し、増大しその結果下パンチ
面側の磁極BがAに比に強磁10性化した磁石41が得
られる。また成形空間内に。
In FIG. 2, as in FIG. 1, the magnetic flux density on the lower bunch surface increases compared to that on the upper punch surface, and as a result, the magnetic pole B on the lower punch surface side becomes ferromagnetic 10 compared to A. can get. Also inside the molding space.

非磁性体もしくは透磁率の小さいコアピンを設゛けても
、不発明の効果が失なわれるものではない; ここでコアピンとは円柱棒、角棒等であって14゜これ
を挿入することにより成形体に穴、四部、・あるいは非
磁性体もしくは透磁率の低い部分を形成する目的で使用
するものである。コアピンの形状は、いかなるものであ
っても本発明の有・幼性には無関係である。また、本発
明は、磁石・1.゛の異方性方向から見る断面が、任意
の形状でも良く、さらに、意力性方向と平行に見る断面
が円孤状の磁石(円筒状磁石を分割したもの)へも適用
できる。
Even if a core pin of non-magnetic material or low magnetic permeability is installed, the effect of the invention will not be lost; here, the core pin is a cylindrical rod, a square rod, etc., and by inserting it, It is used for the purpose of forming holes, four parts, or non-magnetic material or parts with low magnetic permeability in a molded body. The shape of the core pin has no bearing on the existence or infancy of the present invention. Further, the present invention provides a magnet.1. The cross section viewed from the anisotropic direction may have any shape, and furthermore, the present invention can be applied to a magnet (a cylindrical magnet divided) whose cross section viewed parallel to the volitional direction is circular.

以上の如く、プレス成形した磁石は、焼結後必要に応じ
熱処理、着磁をされるがプレス成形時、磁性粉末中にp
i) 、 C1l 、プラスチック、ゴム等のバイーダ
ーを混入しておけば、焼結を要しない。本発明に使用す
る磁性粉末の平均粒径は、J’i+COsタイプ希土類
COでは1−10μm 、  1゜f<vco+tタイ
プ希土類Coでは2−50μm、 R−B−Fe磁石で
は1〜10μmが所望の磁気特性を得るうえで好ましい
As mentioned above, press-formed magnets are heat-treated and magnetized as necessary after sintering, but during press-forming, there is no porosity in the magnetic powder.
i) If a binder such as C1l, plastic, or rubber is mixed, sintering is not required. The desired average particle size of the magnetic powder used in the present invention is 1-10 μm for J'i+COs type rare earth CO, 2-50 μm for 1°f<vco+t type rare earth Co, and 1-10 μm for R-B-Fe magnet. This is preferable for obtaining magnetic properties.

プレス成形時に加える磁界の強さは5KOe以上が好ま
しく、また成形圧力は1〜10t/7が良1゜い。
The strength of the magnetic field applied during press molding is preferably 5 KOe or more, and the molding pressure is preferably 1 to 10 t/7.

なお、成形後の焼結は真空中、不活性ガス、1    
還元性ガスなどの非酸化性雰囲気にて希土類コバルト磁
石では1100−1250°0.R−B−Fe磁石では
900〜1200 ’oで少くとも0.5時間の加熱保
持を行い、冷却すれば良い。
In addition, sintering after molding is performed in vacuum, inert gas, 1
In a non-oxidizing atmosphere such as a reducing gas, rare earth cobalt magnets have a temperature of 1100-1250°0. For R-B-Fe magnets, it is sufficient to heat and hold at 900 to 1200'o for at least 0.5 hour and then cool.

(実施例) 次に本発明の詳細な説明するが、下記実施例が本発明を
限定するものではない。
(Examples) Next, the present invention will be described in detail, but the following examples do not limit the present invention.

実施例1 66 、’wt % Brn残COなる組成を有する平
均粒径6.4μmの合金粉末を第6図(比較例)および
第1図(実施例)で示すプレス方法同一成形圧力および
同一磁界起磁力にて成形した。得られた成形体をArガ
スにて1140’0XIHrの焼結後1.・950’(
lX1f(rの処理後800 ’0まで1.5’o/分
の速度で冷却し、soo’oからオイル中にて急冷しろ
Example 1 An alloy powder with an average particle size of 6.4 μm having a composition of 66% Br and residual CO was pressed using the same pressing method and the same compacting pressure and the same magnetic field as shown in FIG. 6 (comparative example) and FIG. 1 (example). Molded using magnetomotive force. The obtained molded body was sintered with Ar gas at 1140'0XIHr, and then 1.・950'(
After treatment with lX1f(r), cool to 800'0 at a rate of 1.5'o/min and quench in oil from soo'o.

X30X10■(10箇方向が異方性化方向)の供試材
とした。得られた磁石41を第4及び5図に示す如く外
寸60X50’X40”lで肉厚10mのコの1゜字形
継鉄(8841’) 21に組込み、着磁後、空隙10
mでの空隙磁束密度Bfを測定した結果を第1表に示す
A test material of X30X10 (10 directions are anisotropy directions) was prepared. The obtained magnet 41 is assembled into a U-shaped yoke (8841') 21 with external dimensions of 60 x 50' x 40''l and a wall thickness of 10 m as shown in Figs.
Table 1 shows the results of measuring the air gap magnetic flux density Bf at m.

なお、第6図でのダイス1は非磁性体とし、上下バンチ
2,3は845Gの36讃角形状とじ5 。
Note that the die 1 in FIG. 6 is made of a non-magnetic material, and the upper and lower bunches 2 and 3 are 845G 36-sided square binding 5.

第1図でのダイス1および下バンチ5は第6図のものと
同様にし、上バンチ2のみ545cの45−角形状とし
た。第1図の方法により得た磁石については下パンチ側
の強磁性面を継鉄の空隙側となるよう配置した。
The die 1 and the lower bunch 5 in FIG. 1 are the same as those in FIG. 6, and only the upper bunch 2 has a 45-square shape of 545c. The magnet obtained by the method shown in FIG. 1 was arranged so that the ferromagnetic surface on the lower punch side was on the gap side of the yoke.

第1表 第1表から分る如く、強磁性面を空隙側に配置すること
によりBfが996向上し4150Gとなった。
Table 1 As can be seen from Table 1, Bf was improved by 996 to 4150G by arranging the ferromagnetic surface on the air gap side.

実施例2 重量比で、25%Sm1[3%Pe  4%ct12%
Zr残部ICOなる組成を有する平均粒径6!μmの合
金粉末を実施例1と同じく、第6図および第1図で示す
プレス方法にて成形した。得られた成形体をH2ガス中
にて1200’oX2Hrの焼結後炉冷しさらに117
0°0X6Hrの俗体化処理および急冷を行い、800
°OX3.0Hr)処理後、常温まで1°0/分の冷却
速度で徐冷し、磁気特性の評価に供した。
Example 2 Weight ratio: 25% Sm1 [3% Pe 4% ct12%
Average particle size 6 with a composition of Zr balance ICO! As in Example 1, the alloy powder of .mu.m was molded using the pressing method shown in FIGS. 6 and 1. The obtained molded body was sintered in H2 gas at 1200° x 2 Hr, then cooled in a furnace and further 117
After 0°0x6Hr generalization treatment and rapid cooling, 800
After the treatment (°OX3.0Hr), it was slowly cooled to room temperature at a cooling rate of 1°0/min, and the magnetic properties were evaluated.

評価方法および磁石形状については、実施例1と同様で
ある。なお、第1図での方法による磁石については、強
磁性面を継鉄の空隙側となる・よう配置した。結果を第
2表に示す。
The evaluation method and magnet shape are the same as in Example 1. In addition, regarding the magnet obtained by the method shown in FIG. 1, the ferromagnetic surface was arranged so as to be on the air gap side of the yoke. The results are shown in Table 2.

第2表 第2表に示す如く強磁性面を空隙側に設けることにより
B111は425oがら4500Gと6係向上したら 実施例61゜ モル比Nd(Fe O,9Bo、1 ) 5.54る組
成を有する平均粒径3.8μmの合金粉末を第6図およ
び第2図で示すプレス方法(同一成形圧力および同。
Table 2 As shown in Table 2, by providing a ferromagnetic surface on the air gap side, B111 improves by 6 coefficients from 425o to 4500G, resulting in a composition of Example 61 with a molar ratio of Nd(FeO,9Bo,1) of 5.54. An alloy powder having an average particle size of 3.8 μm was pressed using the pressing method shown in FIG. 6 and FIG.

−磁界起磁力)にて成形した。得られた成形体    
 □を10″7orr ノ真空中テ11ooυX2Hr
の焼結後、炉冷し、さらに620°tlX2Hrの処理
後、急冷し、磁気特性の評価に供した。なお、第6図で
の方法は実施例1と同様であるが、第2図においては、
ダイス1および上バンチ2は実施例1と同じであり、下
バンチ6のみ変更した。第2図の下パンチ6は、66種
角形状であり、その外周部61は5藷厚みの非磁性超硬
とし、内部の26M角柱部は545cとした。なお第4
及び5図により得られた磁石については強磁性面を継鉄
の空隙側となるよう配置した。結果を第5表に示すよ1
.1うに本発明により、Bfが約7%向上し4750 
Gとなった。
- magnetic field magnetomotive force). Obtained molded body
□10″7orr in vacuum 11ooυX2Hr
After sintering, the sample was cooled in a furnace, and then treated at 620°tl x 2 hours, rapidly cooled, and subjected to evaluation of magnetic properties. Note that the method in FIG. 6 is the same as in Example 1, but in FIG.
The die 1 and the upper bunch 2 were the same as in Example 1, and only the lower bunch 6 was changed. The lower punch 6 in FIG. 2 has a 66 seed square shape, the outer peripheral part 61 is made of non-magnetic carbide with a thickness of 5 cm, and the internal 26M square column part is made of 545c. Furthermore, the fourth
The magnets obtained in Figures 5 and 5 were arranged so that the ferromagnetic surface was on the gap side of the yoke. The results are shown in Table 51
.. 1. According to the present invention, Bf is improved by about 7% to 4750
It became G.

第3表 4      なお成形体の形状は、第3図のような形
状に限られるものではなく5又、前述のように任意形状
のコアピンを使用しても良いことは言うまでもない。
Table 3 4 Note that the shape of the molded body is not limited to the shape shown in FIG. 3, and it goes without saying that a core pin of any shape may be used as described above.

すなわち、異方性方向から見る断面は任意な形状でも良
く、さらに上下パンチ面は平面に限定する必要はなく、
円筒状磁石を分解したアーク状磁石へも本発明は適用で
きる。
In other words, the cross section viewed from the anisotropic direction may have any shape, and the upper and lower punch surfaces do not need to be limited to flat surfaces.
The present invention can also be applied to arc-shaped magnets obtained by disassembling cylindrical magnets.

さらに磁界発生用コイルを所望の強磁性面側のパンチ側
に移動することにより、本発明は、一層の効果を発揮す
る。
Further, by moving the magnetic field generating coil to the punch side of the desired ferromagnetic surface, the present invention exhibits further effects.

(発明の効果)1.。(Effects of the invention) 1. .

以上の如く、本発明は、特定の成形方法により、強磁性
面が容易に得られる磁石およびその製造方法を提供する
ものであり、その結果従来方法以上の磁気特性が有効に
得られるものであり、その工業的価値は極めて大きい。
As described above, the present invention provides a magnet in which a ferromagnetic surface can be easily obtained by a specific molding method, and a method for manufacturing the same, and as a result, magnetic properties superior to conventional methods can be effectively obtained. , its industrial value is extremely large.

    1    1

【図面の簡単な説明】[Brief explanation of the drawing]

第1図と第2図は本発明によるプレス方法を示す模式図
、第6図は本発明により作られた磁石の斜視図(Mは異
方性方向を示す)、第4図は本発明により得られた磁石
41と継鉄21から成る磁気回路の模式図、第5図は右
側面の断面図、第6図は従来のプレス方法を示す模式図
である。 1・・・ダイス        2・上バンチ3・・・
下バンチ       4・・・磁性粉末5・・・コイ
ル        6・・磁界(磁束の流れ) 21・・継鉄 51・・・下パンチ非磁性部
1 and 2 are schematic diagrams showing the pressing method according to the present invention, FIG. 6 is a perspective view of a magnet made according to the present invention (M indicates the anisotropic direction), and FIG. 4 is a schematic diagram showing the pressing method according to the present invention. A schematic diagram of a magnetic circuit consisting of the obtained magnet 41 and yoke 21, FIG. 5 is a sectional view of the right side, and FIG. 6 is a schematic diagram showing a conventional pressing method. 1...Dice 2.Upper bunch 3...
Lower bunch 4... Magnetic powder 5... Coil 6... Magnetic field (flow of magnetic flux) 21... Yoke 51... Lower punch non-magnetic part

Claims (1)

【特許請求の範囲】 1、非磁性体もしくは透磁率の小さい材料でなるダイス
および少くとも一部分以上は強磁性体から成る上下パン
チで形成される成形空間に磁性粉末を充てんし、成形す
るにあたり、一方のパンチ面の磁束密度が他方のパンチ
面に比較し大なるように成形空間に磁界を圧縮方向に印
加しプレス成形することを特徴とする異方性磁石の製造
方法。 2、前記磁性粉末へバインダーを添加して成ることを特
徴とする特許請求の範囲第1項記載の異方性磁石の製造
方法。 3、前記プレス成形後焼結されて成ることを特徴とする
特許請求の範囲第1項または第2項記載の異方性磁石の
製造方法。 4、前記成形空間内に非磁性体もしくは透磁率の小さい
材料でなるコアピンを設けることを特徴とする特許請求
の範囲第1項記載の異方性磁石の製造方法。 5、磁性粉末としてR_1Co_5系合金粉、R_2C
o_1_7系合金粉およびRBFe系合金粉(但し、R
は希土類元素)の少くとも1種を用いることを特徴とす
る特許請求の範囲第1項ないし第4項から選ばれる1つ
の項に記載の異方性磁石の製造方法。 6、特許請求の範囲第1項記載の製造方法から成る異方
性磁石。
[Claims] 1. In filling a molding space formed by a die made of a non-magnetic material or a material with low magnetic permeability and an upper and lower punch made of a ferromagnetic material at least in part, and molding the powder, 1. A method for producing an anisotropic magnet, comprising press-molding by applying a magnetic field in a compression direction to a molding space so that the magnetic flux density on one punch surface is larger than that on the other punch surface. 2. The method for producing an anisotropic magnet according to claim 1, which comprises adding a binder to the magnetic powder. 3. The method for manufacturing an anisotropic magnet according to claim 1 or 2, wherein the anisotropic magnet is sintered after the press forming. 4. The method for manufacturing an anisotropic magnet according to claim 1, characterized in that a core pin made of a non-magnetic material or a material with low magnetic permeability is provided in the molding space. 5. R_1Co_5 alloy powder, R_2C as magnetic powder
o_1_7 alloy powder and RBFe alloy powder (however, R
A method for manufacturing an anisotropic magnet according to one of claims 1 to 4, characterized in that at least one of the following is used: 6. An anisotropic magnet produced by the manufacturing method according to claim 1.
JP8064485A 1985-04-16 1985-04-16 Anisotropic magnet and manufacture thereof Pending JPS61239608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8064485A JPS61239608A (en) 1985-04-16 1985-04-16 Anisotropic magnet and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8064485A JPS61239608A (en) 1985-04-16 1985-04-16 Anisotropic magnet and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS61239608A true JPS61239608A (en) 1986-10-24

Family

ID=13724072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8064485A Pending JPS61239608A (en) 1985-04-16 1985-04-16 Anisotropic magnet and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS61239608A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6379939A (en) * 1986-09-24 1988-04-09 Seiko Instr & Electronics Ltd Rare earth-type composite magnet material
JP2014150254A (en) * 2013-01-30 2014-08-21 Arnold Magnetic Technologies Ag Contoured field magnet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6379939A (en) * 1986-09-24 1988-04-09 Seiko Instr & Electronics Ltd Rare earth-type composite magnet material
JP2014150254A (en) * 2013-01-30 2014-08-21 Arnold Magnetic Technologies Ag Contoured field magnet
US10600539B2 (en) 2013-01-30 2020-03-24 Magnetic Technologies AG Contoured-field magnets

Similar Documents

Publication Publication Date Title
JP2003142310A (en) Dust core having high electrical resistance and manufacturing method therefor
JPS6325904A (en) Permanent magnet and manufacture of the same and compound for manufacture of the permanent magnet
JPH1070023A (en) Permanent magnet and manufacture thereof
JP3303044B2 (en) Permanent magnet and its manufacturing method
JPS6136047B2 (en)
JPH01175705A (en) Manufacture of rare earth magnet
JPS61239608A (en) Anisotropic magnet and manufacture thereof
JPH1092617A (en) Permanent magnet and its manufacture
JPS61136656A (en) Production of sintered material for permanent magnet
KR100204344B1 (en) Rare-earth-element-fe-co-b permanent magnet powder excellent in magnetic anisotropy and corrosion resistivity and bonded magnet therefrom
JPH1197229A (en) Dust core and method for manufacturing it
JPS61287115A (en) Manufacture of anisotropic magnet
JPH07263267A (en) Manufacture of anisotropic magnet
JPS60211032A (en) Sm2co17 alloy suitable for use as permanent magnet
JPS6077961A (en) Permanent magnet material and its manufacture
JPH06283356A (en) Anisotropic dust core and its manufacturing method
JPH0645832B2 (en) Rare earth magnet manufacturing method
JPH0935978A (en) Manufacture of anisotropic sintered permanent magnet
JP2573865B2 (en) Manufacturing method of permanent magnet
JPS6053107B2 (en) Rare earth magnet manufacturing method
JPH04134806A (en) Manufacture of permanent magnet
JPH0418707A (en) Manufacture of permanent magnet
JP2005197594A (en) Method of manufacturing soft magnetic material, soft magnetic member, and cylindrical iron core
JPS61113736A (en) Manufacture of sintered magnet of rare earth-transition metal compound
JPH06224018A (en) Manufacture of r-fe-b-based sintered magnet