JPH01175705A - Manufacture of rare earth magnet - Google Patents

Manufacture of rare earth magnet

Info

Publication number
JPH01175705A
JPH01175705A JP62336136A JP33613687A JPH01175705A JP H01175705 A JPH01175705 A JP H01175705A JP 62336136 A JP62336136 A JP 62336136A JP 33613687 A JP33613687 A JP 33613687A JP H01175705 A JPH01175705 A JP H01175705A
Authority
JP
Japan
Prior art keywords
weight
rare earth
alloy powder
alloy
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62336136A
Other languages
Japanese (ja)
Inventor
Yutaka Yoshida
裕 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP62336136A priority Critical patent/JPH01175705A/en
Publication of JPH01175705A publication Critical patent/JPH01175705A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Abstract

PURPOSE:To obtain a method for producing rare earth magnet which is superb in density, magnetic properties, and machinability in a short time by applying discharge energy to alloy powder for rare earth magnet and by performing compression molding for improved denseness. CONSTITUTION:Discharge energy is applied to alloy powder for rare earth magnet for performing compression molding for improved denseness. For example, an ingot, where an alloy consisting of Nd 33weight%, B 1.3weight%, and the remainder Fe is fused and cast, is ground by a ball mill to obtain an alloy powder whose grain diameter is approximately 3mum. The alloy powder 5a is filled into a molding cavity 5 of the device show in figure and alloy powder is orientated by applying a magnetic field of 50kOe from an electromagnetic ball piece 1. Then, upper and lower punches 3 and 4 are operated to apply a primary pressure of 10kg/m<2> to the alloy powder and arc discharge is executed between the upper and lower punches 3 and 4 while maintaining that status and by applying current between electrodes 6a and 6b. Then, after the alloy powder reaches 1100 deg.C, pressure is increased to 1tonf/cm<2> as the secondary pressure and conduction of current is stopped simultaneously for performing cooling.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は希土類磁石の製造方法に関し、更に詳しくは、
緻密で磁気特性が良好であると同時に靭性、加工性も優
れている希土類永久磁石を短時間に製造する方法に関す
る。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing rare earth magnets, and more specifically,
This invention relates to a method for quickly manufacturing rare earth permanent magnets that are dense and have good magnetic properties, as well as excellent toughness and workability.

(従来の技術) 希土類永久磁石の製造方法には、大別して次の2種類の
方法がある。第1の方法は、目的とする希土類磁石用の
原料である所定組成の合金を溶融し、インゴットにした
のちこれを粉砕し、目的粒度の合金粉末を磁場中で所定
形状に成形し、得られた成形体を例えば常圧焼結したの
ち、熱処理を施すという焼結法である。
(Prior Art) Methods for producing rare earth permanent magnets can be broadly classified into the following two types. The first method is to melt an alloy with a predetermined composition, which is the raw material for the target rare earth magnet, and grind it into an ingot.The alloy powder with the target particle size is then molded into a predetermined shape in a magnetic field. This is a sintering method in which a molded body is sintered under normal pressure and then subjected to heat treatment.

第2の方法は、急冷法と呼ばれる方法で、これは概ね次
のようにして工程が進捗する。
The second method is called a quenching method, and the process proceeds roughly as follows.

まず所定組成の合金を溶融する。得られた融液を例えば
溶湯急冷法により急冷して該合金の薄帯またはフレーク
にしたのちこれを粉砕する。ついで所定粒度の合金粉末
を冷開成形して圧粉体としたのち、この圧粉体を温間成
形して所定形状の成形体とする。更に必要に応じてはこ
の成形体に温間で塑性変形処理を施す。
First, an alloy of a predetermined composition is melted. The obtained melt is rapidly cooled, for example, by a melt quenching method to form a thin ribbon or flake of the alloy, which is then pulverized. Next, the alloy powder with a predetermined particle size is cold-opened to form a green compact, and then this green compact is warm-formed to form a compact into a predetermined shape. Furthermore, if necessary, this molded body is subjected to warm plastic deformation treatment.

前者の焼結法における焼結工程、また後者の急冷法にお
ける温開成形の工程には、いずれも、所定の金型内に希
土類磁石用の合金粉末を充填したのち加熱しながらプレ
ス成形する方法が適用されている。このときの加熱方法
としては、抵抗加熱または誘導加熱の方式が一般に採用
されている。
The sintering process in the former sintering method and the hot-opening process in the latter quenching method involve filling alloy powder for rare earth magnets into a predetermined mold and then press-forming while heating. is applied. As a heating method at this time, resistance heating or induction heating is generally adopted.

また、後者の急冷法の場合、最終的に得られる磁石を緻
密にしかつ加工性を高めるために、上記した磁性粉に所
定量の各種金属粉をバインダ成分として添加することが
提案されている(特願昭62−230855号公報参照
)。
In addition, in the case of the latter quenching method, it has been proposed to add a predetermined amount of various metal powders as a binder component to the above-mentioned magnetic powder in order to make the final magnet dense and improve workability. (See Japanese Patent Application No. 62-230855).

(発明が解決しようとする問題点) ところで、上記のような加熱方式においては、金型に合
金粉末を充填してからそれを所定温度で加熱処理するた
めに要する時間は、金型の昇温時間を含めると通常数時
間のオーダーになる。
(Problems to be Solved by the Invention) By the way, in the heating method described above, the time required to heat the alloy powder at a predetermined temperature after filling the mold is limited to the temperature rise of the mold. Including time, it usually takes several hours.

したがって、所定温度に達するまでに、合金粉末中の各
成分元素は高温下に長時間曝されることになる。
Therefore, each component element in the alloy powder will be exposed to high temperature for a long time until the predetermined temperature is reached.

その結果、希土類元素のような活性な元素はこの過程で
酸化したり、または蒸発したりしてしまい、得られた磁
石においては、高密度化が阻害されるのみならず目的の
磁石組成から逸脱するという事態が発生する。また、高
温下で長時間滞留することによって、合金の結晶粒が粗
大化して永久磁石にとって最も重要な特性である保磁力
(iHc)が低下するという不都合を招く。
As a result, active elements such as rare earth elements are oxidized or evaporated during this process, which not only impedes densification but also deviates from the desired magnet composition. A situation occurs where this occurs. Furthermore, by staying at high temperatures for a long time, the crystal grains of the alloy become coarse, resulting in a disadvantage that the coercive force (iHc), which is the most important characteristic for a permanent magnet, decreases.

とくに、後者の急冷法においては、この不都合が焼結法
に比べて発生し易い。
In particular, this problem is more likely to occur in the latter rapid cooling method than in the sintering method.

また、後者の方法においてバインダ成分が添加されてい
る場合は、上記した温間成形の過程で合金粉末とバイン
ダ成分である各種の金属粉とが反応して、結局はiHc
や残留磁束密度(Br)の著しい低下を招くことがある
In addition, if a binder component is added in the latter method, the alloy powder and various metal powders that are the binder components react with each other during the above-mentioned warm forming process, resulting in iHc.
This may lead to a significant decrease in residual magnetic flux density (Br).

本発明は上記した問題を解消し、高密度であり、磁気特
性に優れ、また加工性も向上した希土類磁石を短時間で
製造する方法の提供を目的とする。
The present invention aims to solve the above-mentioned problems and provide a method for manufacturing rare earth magnets in a short time that have high density, excellent magnetic properties, and improved workability.

(問題点を解決するための手段) 上記目的を達成するために、本発明の希土類磁石の製造
方法は、その構成を、希土類磁石用の合金粉末に放電エ
ネルギを印加しつつ圧縮成形して緻密化することを特徴
とし、また他の方法は、その構成を、希土類磁石用の合
金粉末80〜99体積%と、Pb、Zn、Bi、Sn、
Cd、In。
(Means for Solving the Problems) In order to achieve the above object, the method for manufacturing a rare earth magnet of the present invention is such that the structure is compacted by compression molding while applying discharge energy to alloy powder for rare earth magnets. Another method is characterized in that the composition is 80 to 99% by volume of alloy powder for rare earth magnets, Pb, Zn, Bi, Sn,
Cd, In.

Ga,Tlの群から選ばれる少なくとも1種の低融点金
属若しくはそれらの合金;Al、Co、Nb。
At least one low melting point metal selected from the group of Ga, Tl or an alloy thereof; Al, Co, Nb.

Ti、Cu、Cr、Mn、Zr、Vの群から選ばれる少
なくとも1種の金属;またはDytOs。
At least one metal selected from the group of Ti, Cu, Cr, Mn, Zr, and V; or DytOs.

TbzOs 、Hog’s 、Era’sの群から選ば
れる少なくとも1種の重希土類金属酸化物;のいずれか
1種のバインダ成分1〜20体積%とから成る混合粉に
、放電エネルギを印加しつつ圧縮成形して緻密化するこ
とを特徴とする。
While applying discharge energy to a mixed powder consisting of at least one heavy rare earth metal oxide selected from the group of TbzOs, Hog's, and Era's, and 1 to 20% by volume of a binder component of any one of It is characterized by compression molding and densification.

まず、本発明方法が適用される合金粉末は、希土類磁石
の原料粉となり得るものであれば何であってもよく、格
別限定されるものではない。
First, the alloy powder to which the method of the present invention is applied may be any powder that can be used as a raw material powder for rare earth magnets, and is not particularly limited.

このような合金粉末のうち、後述する組成を有するもの
は好適である。すなわち、その1つは、結晶構造がRt
Fe+ a B型(式中、Rは希土類元素である)とし
て知られるタイプのもので、例えば、次式: R(Pe
、 X) −M (式中、R,M。
Among such alloy powders, those having the compositions described below are suitable. That is, one of them is that the crystal structure is Rt
Fe+ a is of the type known as type B (wherein R is a rare earth element), for example, with the following formula: R(Pe
, X) -M (where R, M.

Xはそれぞれ、希土類元素の少なくとも1種;B。Each of X is at least one rare earth element; B.

C,Si、Pの群から選ばれる少なくとも1種の半金属
元素;Co、AI、Ga、Pb、Zn、Ti、 Zr、
 Nb、 Ni、 Cr、 Mn、 Cu、 Snの群
から選ばれる少なくともIIの金属元素を表し、かつ、
R,M、Xの組成割合は、それぞれ、20〜40重量%
、0.1〜2.0重量%、20重量%以下である)で示
される組成の合金粉末をあげることができる。
At least one metalloid element selected from the group of C, Si, P; Co, AI, Ga, Pb, Zn, Ti, Zr,
represents at least II metal element selected from the group of Nb, Ni, Cr, Mn, Cu, Sn, and
The composition ratio of R, M, and X is 20 to 40% by weight, respectively.
, 0.1 to 2.0% by weight, and 20% by weight or less).

上記合金の組成において、Rが20重量%より少ない場
合は、充分なiHcが得られず、また40重重置より多
い場合はR,Fe、、B相の存在割合が減少し、’B 
rの低下を招く。
In the above alloy composition, if R is less than 20% by weight, sufficient iHc cannot be obtained, and if it is more than 40% by weight, the proportion of R, Fe, and B phases decreases, and 'B
This results in a decrease in r.

Mが0.1 ffl量%未溝の場合はR,Fe、、B相
の生成量が減少し、キエーリ点の低いRzFe+を相が
増加して常温以上でB「が低下し、また2、0重置%を
超える場合には同様にR@ F e Ia B相が減少
しで非磁性のRFeJn相が増加してB「が低下する。
When M is 0.1 ffl amount% ungrooved, the amount of R, Fe, and B phases produced decreases, and the RzFe+ phase with a low Chieri point increases, B' decreases at room temperature or higher, and 2, When the overlapping percentage exceeds 0%, the R@Fe Ia B phase similarly decreases, the nonmagnetic RFeJn phase increases, and B'' decreases.

更にXが20重量%を超えて存在する場合は、Brの低
下のみならず、新たにiHcを阻害する相の生成を招(
ことがある。
Furthermore, if X is present in an amount exceeding 20% by weight, it not only reduces Br but also causes the formation of a new phase that inhibits iHc (
Sometimes.

とくに、RとしてNd、MとしてB、XとしてCOのよ
うな成分元素であることが好適で、そしてRは27〜3
5重量%、Mは0.5〜1.4重量%、Xが5〜15重
量%であることが好適である。
In particular, it is preferable that R be a component element such as Nd, M be B, and X be a component element such as CO, and R is 27 to 3.
5% by weight, M is preferably 0.5 to 1.4% by weight, and X is preferably 5 to 15% by weight.

他の合金としては、その結晶構造がRzCO+を型(R
は希土類元素)として知られるタイプのもので、例えば
、 次式:R−(Co、Fe、Cu、Zr、X)(式中、R
,Xはそれぞれ、希土類元素の少なくとも1種、Ti、
Hf、Nb、Nl、Bの群から選ばれる少なくとも1種
の元素を表し、かつ、R,Fe。
Other alloys whose crystal structure is RzCO+ type (R
is a type known as a rare earth element), for example, the following formula: R-(Co, Fe, Cu, Zr, X) (wherein, R
, X are at least one rare earth element, Ti,
Represents at least one element selected from the group of Hf, Nb, Nl, and B, and R, Fe.

Cu、Zr、Xの組成割合はそれぞれ、22〜27重量
%、10〜25重量%、2〜10重量%、0.3〜4重
量%、2重量%以下である)で示される組成の合金粉末
をあげることができる。
The composition ratio of Cu, Zr, and I can give you powder.

上記合金の組成において、Rが22重量%未満の場合は
、充分なiHcが得られず、また27重量%を超えると
、iHc、Brのいずれもが低下する。
In the above alloy composition, if R is less than 22% by weight, sufficient iHc cannot be obtained, and if it exceeds 27% by weight, both iHc and Br decrease.

peが10重量%未満の場合は、飽和磁化を大きくする
ことができずBrの低下を招き、また25重置%を超え
ると、iHcが低下するとともに減磁曲線の角形性が劣
化するという問題を避は得なくなる。Cuの量が2重量
%未満の場合は、iHcが低下し、角形性が劣化すると
いうような不都合が生じ、また10重重置より多い場合
は飽和磁化が低くなる。更にZrが0.3重量%未満の
場合は、充分なiHcが得られず、また4重量%を超え
ている場合は、iHc、Brのいずれもが低下する ゛
ので不都合である。最後に、Xが2重量%より多い場合
は、iHc、Brはいずれも低下するので不都合である
If pe is less than 10% by weight, saturation magnetization cannot be increased and Br decreases, and if it exceeds 25% by weight, iHc decreases and the squareness of the demagnetization curve deteriorates. becomes unavoidable. If the amount of Cu is less than 2% by weight, there will be problems such as a decrease in iHc and deterioration of squareness, and if the amount is more than 10 times, the saturation magnetization will be low. Furthermore, if Zr is less than 0.3% by weight, sufficient iHc cannot be obtained, and if it exceeds 4% by weight, both iHc and Br will decrease, which is disadvantageous. Finally, if X is more than 2% by weight, both iHc and Br decrease, which is disadvantageous.

とくに、RとしてはSm、XとしてはTiであることが
好適で、Rが24〜26重量%、Feが19〜22重景
%、重量が3〜6重量%、Z「が1〜3重量%、Xが0
.5〜1重量%である組成の合金は好適である。
In particular, it is preferable that R is Sm and %, X is 0
.. Alloys with compositions between 5 and 1% by weight are preferred.

これらの合金粉末は、焼結法の場合、その平均粒径が2
.5μmに整粒して用いると好適である。
In the case of the sintering method, these alloy powders have an average particle size of 2
.. It is suitable to use the particles after sizing them to 5 μm.

また、急冷法の場合は、JISZ8801で規定する篩
で80〜250メツシエに整粒することが好ましい。
Moreover, in the case of the rapid cooling method, it is preferable to size the particles to 80 to 250 mesh sizes using a sieve specified in JIS Z8801.

本発明方法においては、上記したような合金粉末に更に
後述するようなバインダを所定量配合して用いると、得
られた磁石の靭性、加工性を向上せしめることができて
有用である。
In the method of the present invention, it is useful to add a predetermined amount of a binder as described below to the alloy powder as described above, since it can improve the toughness and workability of the obtained magnet.

このようなバインダ成分としては、Pb、Zn。Such binder components include Pb and Zn.

Bi、Sn、Cd、In、Ga,Tlのような低融点金
属若しくはこれらを適宜に組合わせて調製した合金の1
種または2種以上i A I 、 Co、 N b 。
1 of low melting point metals such as Bi, Sn, Cd, In, Ga, Tl or alloys prepared by appropriately combining these
Species or species i A I , Co, N b .

Ti、Cu、Cr、Mn、Zr、VO)ような金属の1
種または2種以上;更に、DVsOs 、Tbオ0゜、
Hog’s 、Er!’sのような重希土類元素の酸化
物の1種または2種以上をあげることができる。
1 of metals such as Ti, Cu, Cr, Mn, Zr, VO)
species or two or more species; furthermore, DVsOs, TbO 0°,
Hog's, Er! One or more types of oxides of heavy rare earth elements such as 's can be mentioned.

これらのバインダ成分のうち、例えばPb、Znは得ら
れた磁石の硬度を低下せしめて切削性、研磨性等の加工
性を向上せしめるためには有効な成分であるが、しかし
一方ではiHcを低下せしめる作用を示す、また、A 
I 、  Co 、  DyzOsは磁石のiHcの低
下を抑制するためには有効であるが、しかし磁石の加工
性向上への寄与は少ない。それゆえ、バインダ成分の選
定は上記した各成分の効果を勘案して適切に行うことが
求められる。
Among these binder components, for example, Pb and Zn are effective components for reducing the hardness of the obtained magnet and improving machinability such as machinability and polishability, but on the other hand, they also reduce iHc. Also, A
I, Co, and DyzOs are effective in suppressing the decrease in iHc of the magnet, but their contribution to improving the workability of the magnet is small. Therefore, it is necessary to appropriately select the binder components in consideration of the effects of each component described above.

このバインダ成分は前述した合金粉末に配合されて、焼
結または温間成形すべき磁石用原料粉に調合される。こ
のときのバインダ成分の配合量は上記原料粉中で1〜2
0体積%を占有するような量に設定される。この配合量
が1体積%未満の場合は、配合効果が発現せず得られた
磁石の密度、加工性の向上は認められず、また逆に20
体積%を超える配合量の場合は、合金粉末との反応機会
が傾向的に増大してiHcの低下、Brの低下を招くの
で不都合である。好ましくは2〜10体積%である。な
お、これらバインダ成分はその粒度を330メツシユ以
下に整粒して用いることが好ましい。
This binder component is blended with the above-mentioned alloy powder to form raw material powder for a magnet to be sintered or warm-formed. At this time, the blending amount of the binder component is 1 to 2 in the above raw material powder.
The amount is set so that it occupies 0% by volume. If the blending amount is less than 1% by volume, the blending effect will not be exhibited and the density and workability of the obtained magnet will not improve.
If the blending amount exceeds % by volume, the chance of reaction with the alloy powder tends to increase, resulting in a decrease in iHc and Br, which is disadvantageous. Preferably it is 2 to 10% by volume. In addition, it is preferable to use these binder components after sizing the particle size to 330 mesh or less.

本発明方法は次のようにして行われる。The method of the present invention is carried out as follows.

まず、上記した組成の合金粉末または該合金粉末とバイ
ンダ成分との混合粉が原料粉として調製される。
First, an alloy powder having the composition described above or a mixed powder of the alloy powder and a binder component is prepared as a raw material powder.

ついで、この原料粉を第1図に模式図として示した成形
装置を用いて圧縮成形する。
Next, this raw material powder is compression molded using a molding apparatus schematically shown in FIG.

図において、励磁用の電磁石ポールピース1で囲繞され
たダイス2にはその中心部に所定径の透孔2aが形成さ
れている。透孔2aの下方からは下パンチ3、上方から
は上パンチ4がそれぞれ滑動自在に挿入されて両パンチ
3.4の対向部に成形キャビティ5が形成されている。
In the figure, a die 2 surrounded by an excitation electromagnetic pole piece 1 has a through hole 2a of a predetermined diameter formed in its center. A lower punch 3 and an upper punch 4 are slidably inserted from below and above the through hole 2a, respectively, and a molding cavity 5 is formed in the opposing portion of both punches 3.4.

上バンチ3、下パンチ4にはそれぞれ一対の電極6a、
6bが付設され、ここから電力を供給して成形キャビテ
ィ5内にアーク放電を形成することができるようになっ
ている。
The upper bunch 3 and the lower punch 4 each have a pair of electrodes 6a,
6b is attached, from which electric power can be supplied to form an arc discharge within the molding cavity 5.

この装置を用い、まず、成形キャビティ5の中に上記し
た原料粉5aを充填する。充填に際しては、できるだけ
粗な充填状態にすることが好ましい、ついで、電磁石ポ
ールピースlを作動して原料粉5aに磁界を印加して合
金粉末を配向せしめる。このときの磁界の大きさは原料
粉の種類等によって異なるが、通常10kOe程度であ
る。
Using this device, first, the above-described raw material powder 5a is filled into the molding cavity 5. When filling, it is preferable to make the filling state as coarse as possible. Next, the electromagnetic pole piece 1 is operated to apply a magnetic field to the raw material powder 5a to orient the alloy powder. The magnitude of the magnetic field at this time varies depending on the type of raw material powder, etc., but is usually about 10 kOe.

その後、上パンチ4と下パンチ3とを滑動せしめて、原
料粉5aを圧縮する。このときの圧はあまり高くない方
がよく通常10kg/cm”程度である。
Thereafter, the upper punch 4 and the lower punch 3 are slid to compress the raw material powder 5a. The pressure at this time should not be too high and is usually about 10 kg/cm''.

圧を高くすると、原料粉が賦形され成形キャビティ5内
のアーク放電の発生効率が落ちるからである。
This is because if the pressure is increased, the raw material powder is shaped and the efficiency of generating arc discharge within the molding cavity 5 is reduced.

この圧縮成形と同時に、電極6a、6bに通電して上パ
ンチ4.下バンチ3の間、すなわち成形キャビティ5内
の原料粉の各粒子間にアーク放電を発生させる。
At the same time as this compression molding, the electrodes 6a and 6b are energized and the upper punch 4. Arc discharge is generated between the lower bunches 3, that is, between each particle of the raw material powder in the molding cavity 5.

原料粉は、アーク放電による発熱および抵抗発熱によっ
て短時間で高温にまで昇温する。所定温度にまで昇温し
たことを確認した時点で、通電を停止すると同時に更に
上パンチ4、下パンチ3を滑動せしめて例えば1 to
nf/cm”程度に成形圧を増圧して原料粉5aを圧縮
成形したのち、全体を冷却する。かくして、原料粉5a
は緻密な形成体磁石に転形する。
The raw material powder is heated to a high temperature in a short period of time due to heat generation due to arc discharge and resistance heat generation. When it is confirmed that the temperature has risen to a predetermined temperature, the power supply is stopped and at the same time, the upper punch 4 and the lower punch 3 are further slid.
After compressing and molding the raw material powder 5a by increasing the molding pressure to about "nf/cm", the entire raw material powder 5a is cooled.
transforms into a compact magnet.

最後に、得られた成形体に適宜な熱処理を施したり、ま
たは必要に応じて塑性変形処理を施せば、求める釉上W
4磁石を得ることができる。
Finally, if the obtained molded body is subjected to appropriate heat treatment or plastic deformation treatment as necessary, the desired glaze top W
4 magnets can be obtained.

(発明の実施例) 実施例I Nd:33重量%、B:1.3重量%、残部がFeから
成る合金を溶解・鋳造したのち、得られたインゴットを
ボールミルで粉砕して平均粒径3μ−程度の合金粉末を
得た。この合金粉末を第1図に示した装置の成形キャビ
ティ5内に充填し、電磁石ポールピース1より50kO
eの磁界を印加して合金粉末を配向せしめた後、上・下
パンチ3.4を作動して合金粉末に10kg/cs+2
の1次圧力を印加し、この状態を維持しつつ電極6a、
6b間に通電(直流800Aと2kHzの高周波を重畳
)して上・下パンチ3.4間にアーク放電をとばした。
(Embodiments of the Invention) Example I After melting and casting an alloy consisting of 33% by weight Nd, 1.3% by weight B, and the balance Fe, the resulting ingot was ground in a ball mill to give an average particle size of 3 μm. - grade alloy powder was obtained. This alloy powder was filled into the molding cavity 5 of the apparatus shown in FIG.
After applying a magnetic field of e to orient the alloy powder, operate the upper and lower punches 3.4 to give the alloy powder a
While applying a primary pressure of , and maintaining this state, the electrodes 6a,
6b (DC 800 A and 2 kHz high frequency were superimposed) to eliminate arc discharge between the upper and lower punches 3.4.

通電開始後20秒で合金粉末は1100°Cに昇温した
。ついで、2次圧力として1 tonf/Cm”に増圧
し、同時に通電を停止して冷却を行った。
The temperature of the alloy powder rose to 1100°C 20 seconds after the start of current application. Then, the secondary pressure was increased to 1 tonf/Cm'', and at the same time, the supply of electricity was stopped to perform cooling.

得られた成形体を、650℃で1時間、時効処理に付し
たのち、その密度、表面硬さ(ビッカース硬さ:l1v
)、残留磁束密度、保磁力、最大エネルギ積を測定した
。その結果を第1表に示した。
The obtained molded body was subjected to aging treatment at 650°C for 1 hour, and its density and surface hardness (Vickers hardness: 1v
), residual magnetic flux density, coercive force, and maximum energy product were measured. The results are shown in Table 1.

比較例1 実施例1で用いた合金粉末を、まず、印加磁界15ko
e、圧力1 tonf/cm”の条件で磁場成形して成
形体とした。ついで、この成形体をAr雰囲気中におい
て、温度1100℃で1時間、常圧焼結に付した。得ら
れた焼結体を実施例1の場合と同じように、650°C
で1時間、時効処理に付したのち、その各特性を測定し
た。結果を第1表に示した。
Comparative Example 1 The alloy powder used in Example 1 was first subjected to an applied magnetic field of 15 ko
The molded body was molded in a magnetic field under the conditions of e and pressure of 1 tonf/cm''.Then, this molded body was subjected to pressureless sintering at a temperature of 1100°C for 1 hour in an Ar atmosphere.The obtained sintered The solids were heated at 650°C as in Example 1.
After being subjected to aging treatment for 1 hour, its various properties were measured. The results are shown in Table 1.

実施例2 Nd:30重量%、B:]、O重盪%、残部がFeであ
る合金に常用の溶湯急冷法(単ロール法)を適用して′
厚み数10μ懺の薄帯を得た。この薄帯を粉砕して、J
IS28801で規定する篩の80メツシエ下の合金粉
末を得た。
Example 2 A commonly used molten metal quenching method (single roll method) was applied to an alloy consisting of Nd: 30% by weight, B: ], O% by weight, and the balance being Fe.
A thin strip having a thickness of several tens of microns was obtained. Crush this ribbon and J
An alloy powder having a sieve size of 80 sieves as defined in IS28801 was obtained.

得られた合金粉末を、第1図に示した装置の成形キャビ
ティ5内に充填した。電磁石ポールピースlを作動させ
ることなく、上・下バンチ3.4を滑動せしめて1次圧
力10 kg/cm”を印加し、この状態で電極6 a
、6bに通電し上・下パンチ3゜4間にアーク放電をと
ばした。
The obtained alloy powder was filled into the molding cavity 5 of the apparatus shown in FIG. Without operating the electromagnetic pole piece l, slide the upper and lower bunches 3.4 to apply a primary pressure of 10 kg/cm, and in this state, the electrode 6 a
, 6b was energized to blow an arc discharge between the upper and lower punches 3° and 4°.

通電開始後約15秒で700℃にまで昇温した。The temperature was raised to 700° C. about 15 seconds after the start of electricity supply.

この時点で2次圧力1 tonf八禦1へ印加し、通電
を停止し、冷却を行った。磁気的に等方性の成形体が得
られた。この各特性を測定しその結果を第1表に示した
At this point, a secondary pressure of 1 tonf was applied to Hashira 1, electricity supply was stopped, and cooling was performed. A magnetically isotropic molded body was obtained. Each of these characteristics was measured and the results are shown in Table 1.

ついでこの等方性成形体に、その高さが1/4になるま
で、700°Cにおいて常用のグイアップセット加工を
施した。アップセット加圧方向に磁化容易軸を有する異
方性磁石が得られた。その特性を第1表に示した。
This isotropic molded body was then subjected to a conventional gouy upsetting process at 700°C until its height was reduced to 1/4. An anisotropic magnet having an axis of easy magnetization in the upset pressure direction was obtained. Its properties are shown in Table 1.

比較例2 実施例2で用いた合金粉末を、内径10麟−の金型内に
充填し、lXl0−’Torrの真空下において、圧1
.5 tonf/cs+”、温度700℃、時間2分の
条件でホットプレスした。磁気等方性の磁石が得られた
。この特性を測定し結果を第1表に示した。
Comparative Example 2 The alloy powder used in Example 2 was filled into a mold with an inner diameter of 10 mm, and under a vacuum of 1X10-' Torr, a pressure of 1
.. 5 tonf/cs+", a temperature of 700° C., and a time of 2 minutes. A magnetically isotropic magnet was obtained. The characteristics were measured and the results are shown in Table 1.

ついで、この等方性磁石に対し実施例2の場合と同様の
条件でグイアンプセット加工を施して磁気異方性の磁石
を製造した。その特性を第1表に示した。
Next, this isotropic magnet was subjected to a guiamp set process under the same conditions as in Example 2 to produce a magnetically anisotropic magnet. Its properties are shown in Table 1.

(以下余白) 表示の結果から明らかなように、従来の方法で製造した
磁石の場合は、ダイアップセット加工を行って異方性磁
石にすると、そのiHcが著しく低下する。これに反し
、本発明方法で製造した磁石の場合はそのような問題は
起こらず、磁気特性の高度な安定性が認められる。
(The following is a blank space) As is clear from the results shown, when a magnet manufactured by the conventional method is subjected to die-up setting processing to become an anisotropic magnet, its iHc decreases significantly. On the contrary, in the case of the magnet manufactured by the method of the present invention, such a problem does not occur, and a high degree of stability of magnetic properties is recognized.

実施例3 実施例2で用いた合金粉末に、第2表に示したバインダ
成分をそれぞれ表示の割合(体積%)となるように配合
し、V型混合器で4時間混合した。
Example 3 The binder components shown in Table 2 were added to the alloy powder used in Example 2 at the indicated ratios (volume %), and mixed for 4 hours using a V-type mixer.

得られた混合粉末を実施例2の場合と同様に処理して等
方性磁石、異方性磁石を製造した。これらの特性を第2
表に示した。
The obtained mixed powder was treated in the same manner as in Example 2 to produce an isotropic magnet and an anisotropic magnet. These characteristics are the second
Shown in the table.

比較例3 実施例2で用いた合金粉末に第2表に示したバインダ成
分を表示の割合(体積%)となるように配合し、■型混
合器で4時間混合した。
Comparative Example 3 The binder components shown in Table 2 were added to the alloy powder used in Example 2 at the indicated ratios (volume %), and mixed for 4 hours using a ■-type mixer.

得られた混合粉末を比較例2の場合と同様に処理して等
方性磁石、異方性磁石を製造した。こらの特性を第2表
に示した。
The obtained mixed powder was treated in the same manner as in Comparative Example 2 to produce an isotropic magnet and an anisotropic magnet. Their properties are shown in Table 2.

表示の結果から明らかなように、実施例、比較例のいず
れの場合においてもPb、Znが配合されると得られた
磁石の硬度は低下する。このことは、切削性、研磨性等
の加工性の向上を意味する。
As is clear from the results shown, in both Examples and Comparative Examples, when Pb and Zn are added, the hardness of the obtained magnet decreases. This means improved workability such as machinability and polishability.

しかしながら比較例の場合は、iHcも著しく低水準と
なってしまい磁石としての価値が減するが、他方、実施
例の場合はiHcの低下も少なく磁石としての有用性は
維持されている。これは、実施例が本発明方法で製造さ
れているため、Pb、Znと合金粉末との反応が生起せ
ず、また結晶粒の粗大化も起こっていないことを立証す
るものである。
However, in the case of the comparative example, the iHc is also at a significantly low level, reducing its value as a magnet, whereas in the case of the example, the decrease in iHc is small and the usefulness as a magnet is maintained. This proves that since the examples were manufactured by the method of the present invention, no reaction between Pb, Zn and the alloy powder occurred, and no coarsening of crystal grains occurred.

ちなみに、実施例2、比較例2の各等方性磁石の破断面
を走査1iiBで観察したところ、実施例2の結晶粒の
大きさは平均0.1μ−程度と微細であったが、他方、
比較例2のそれは平均0.4μ−程度の粗大粒であった
Incidentally, when the fracture surfaces of each of the isotropic magnets of Example 2 and Comparative Example 2 were observed using Scan 1iiB, the crystal grain size of Example 2 was as fine as about 0.1μ on average; ,
The particles of Comparative Example 2 were coarse grains with an average size of about 0.4μ.

実施例4 Sm:25重量%、Fe : 20重量%、Cu:4重
量%、Zr:2重量%、残部がGoから成る合金を溶解
・鋳造し、得られたインゴットを粉砕して、平均粒径3
μ■の合金粉末を得た。
Example 4 An alloy consisting of Sm: 25% by weight, Fe: 20% by weight, Cu: 4% by weight, Zr: 2% by weight, and the remainder Go was melted and cast, and the obtained ingot was crushed to obtain an average grain size. Diameter 3
An alloy powder of μ■ was obtained.

この合金粉末を実施例1と同様の条件で成形した。得ら
れた成形体を真空下において温度1170℃で2時間の
溶体化処理、更に800℃で5時間の時効処理を施して
磁石とした。このときの冷却速度は、400℃までは0
.5℃/winに制御した。得られた磁石の特性を第3
表に示した。
This alloy powder was molded under the same conditions as in Example 1. The obtained compact was subjected to solution treatment under vacuum at a temperature of 1170°C for 2 hours, and further subjected to aging treatment at 800°C for 5 hours to obtain a magnet. The cooling rate at this time is 0 up to 400℃.
.. The temperature was controlled at 5°C/win. The characteristics of the obtained magnet are
Shown in the table.

比較例4 実施例4で用いた合金粉末を金型に充填し、印加磁界1
5kOe、圧1 tonf/cm”の条件で成形体とし
た。ついでこの成形体に実施例1と同様な焼結・容体化
処理、時効処理を順次施して磁石とした。その特性を第
3表に示した。
Comparative Example 4 A mold was filled with the alloy powder used in Example 4, and an applied magnetic field of 1
A molded body was formed under the conditions of 5 kOe and a pressure of 1 tonf/cm''.Then, this molded body was sequentially subjected to the same sintering/containing treatment and aging treatment as in Example 1 to form a magnet.The properties are shown in Table 3. It was shown to.

(以下余白) (発明の効果) 以上の説明で明らかなように、本発明方法は、その構成
を、希±![磁石用の合金粉末に放電エネルギを印加し
つつ圧縮成形して緻密化することを特徴とし、更に、希
土類磁石用の合金粉末80〜99体積%と、Pb、Zn
、Bi、Sn、Cd。
(The following is a blank space) (Effects of the invention) As is clear from the above explanation, the method of the present invention has a unique configuration. [Characterized by compression molding and densification while applying electric discharge energy to alloy powder for magnet, and further contains 80 to 99 volume % of alloy powder for rare earth magnet, Pb, Zn
, Bi, Sn, Cd.

In、Ga,Tlの群から選ばれる少なくとも1種の低
融点金属若しくはそれらの合金HAI、Co。
At least one low melting point metal selected from the group of In, Ga, Tl or an alloy thereof HAI, Co.

Ga、Nb、Ti、Cu、Cr、Mn、Zr、Vの群か
ら選ばれる金属;またはD V ! Os + T b
 t O3。
A metal selected from the group of Ga, Nb, Ti, Cu, Cr, Mn, Zr, V; or D V ! Os + Tb
tO3.

Ho1Oz 、 Era’sの群から選ばれる少なくと
も1種の重希土類金属酸化物のいずれか1種のバインダ
成分1〜20体積%とから成る混合粉に、放電エネルギ
を印加しつつ圧縮成形して緻密化することを特徴とした
ので、数秒から10数分という従来に比べれば極めて短
い時間で緻密な希±!!磁石を製造することができる。
A mixed powder consisting of a binder component of 1 to 20% by volume of at least one heavy rare earth metal oxide selected from the group of Ho1Oz and Era's is compacted by compression molding while applying electrical discharge energy. Because it is characterized by the ability to create precise images in an extremely short period of time, from a few seconds to over 10 minutes, compared to conventional methods! ! Magnets can be manufactured.

また、加熱時間が短縮されるので、成分の酸化・莫発、
更には結晶粒の粗大化という不都合な事態の発生を抑制
することができ、その結果、優れた磁気特性の磁石を製
造することができる。
In addition, heating time is shortened, preventing oxidation and explosion of ingredients.
Furthermore, the occurrence of an inconvenient situation such as coarsening of crystal grains can be suppressed, and as a result, a magnet with excellent magnetic properties can be manufactured.

更に、第2表の結果からも明らかなように、従来の方法
では、磁石の硬度とともに磁気特性(特にiHc )を
著しく低下せしめるPb、Znがバインダ成分であって
も、本発明方法によれば、Pb。
Furthermore, as is clear from the results in Table 2, in the conventional method, even though the binder components are Pb and Zn, which significantly reduce the hardness and magnetic properties (especially iHc) of the magnet, according to the method of the present invention, , Pb.

Znのこの悪影響を抑制することができ、その結果、P
b、Zn配合の積極的な効果である硬度低下すなわち加
工性の向上を可能にすることができる。
This negative effect of Zn can be suppressed, and as a result, P
b. It is possible to reduce hardness, which is a positive effect of Zn blending, or to improve workability.

なお、本発明方法においては、合金粉末に放電エネルギ
が供給されるときに粉末の粒子表面を清浄にする作用効
果があり、しかも短時間に加熱されることから、粉末粒
子の酸化等も従来の場合に比べて少なく、そのため圧縮
成形を大気中で行うことができるので設備等の点ですこ
ぶる有用である。
In addition, in the method of the present invention, when discharge energy is supplied to the alloy powder, it has the effect of cleaning the particle surface of the powder, and since it is heated in a short time, the oxidation of the powder particles is less than the conventional method. This is advantageous in terms of equipment, etc., since compression molding can be carried out in the atmosphere.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を行うに際して用いる装置の模式図
である。 1・・・電磁石ポールピース、2・・・ダイス、2a・
・・透孔、3・・・下パンチ、4・・・上パンチ、5・
・・成形キャビティ、5a・・・原料粉、6a、6b・
・・電極。
FIG. 1 is a schematic diagram of an apparatus used in carrying out the method of the present invention. 1... Electromagnetic pole piece, 2... Dice, 2a.
...Through hole, 3...Lower punch, 4...Upper punch, 5.
... Molding cavity, 5a... Raw material powder, 6a, 6b.
··electrode.

Claims (6)

【特許請求の範囲】[Claims] (1)希土類磁石用の合金粉末に放電エネルギを印加し
つつ圧縮成形して緻密化することを特徴とする希土類磁
石の製造方法。
(1) A method for manufacturing rare earth magnets, which comprises compressing and compacting alloy powder for rare earth magnets while applying discharge energy.
(2)前記合金粉末が、次式:R−(Fe,X)−M(
式中、R,M,Xはそれぞれ、希土類元素の少なくとも
1種;B,C,Si,Pの群から選ばれる少なくとも1
種の半金属元素;Co,Al,Ga,Pb,Zn,Ti
,Zr,Nb,Ni,Cr,Mn,Cu,Snの群から
選ばれる少なくとも1種の金属元素を表し、かつ、R,
M,Xの組成割合は、それぞれ、20〜40重量%、0
.1〜2.0重量%、20重量%以下である)で示され
る合金の粉末である特許請求の範囲第1項記載の希土類
磁石の製造方法。
(2) The alloy powder has the following formula: R-(Fe,X)-M(
In the formula, R, M, and X are each at least one rare earth element; at least one selected from the group of B, C, Si, and P.
Seed metalloid elements; Co, Al, Ga, Pb, Zn, Ti
, Zr, Nb, Ni, Cr, Mn, Cu, and Sn, and R,
The composition ratios of M and X are 20 to 40% by weight and 0% by weight, respectively.
.. 1 to 2.0% by weight and 20% by weight or less).
(3)前記合金粉末が、次式:R−(Co,Fe,Cu
,Zr,X)(式中、R,Xはそれぞれ、希土類元素の
少なくとも1種、Ti,Hf,Nb,Ni,Bの群から
選ばれる少なくとも1種の元素を表し、かつ、R,Fe
,Cu,Zr,Xの組成割合はそれぞれ、22〜27重
量%、10〜25重量%、2〜10重量%,0.3〜4
重量%、2重量%以下である)で示される合金の粉末で
ある特許請求の範囲第1項記載の希土類磁石の製造方法
(3) The alloy powder has the following formula: R-(Co, Fe, Cu
, Zr,
, Cu, Zr, and X are 22 to 27% by weight, 10 to 25% by weight, 2 to 10% by weight, and 0.3 to 4% by weight, respectively.
2. The method for producing a rare earth magnet according to claim 1, wherein the rare earth magnet is powder of an alloy represented by 2% by weight or less.
(4)希土類磁石用の合金粉末80〜99体積%と、P
b,Zn,Bi,Sn,Cd,In,Ga,Tlの群か
ら選ばれる少なくとも1種の低融点金属若しくはそれら
の合金;Al,Co,Nb,Ti,Cu,Cr,Mn,
Zr,Vの群から選ばれる少なくとも1種の金属;又は
Dy_2O_3,Tb_2O_3,Ho_2O_3,E
r_2O_3の群から選ばれる少なくとも1種の重希土
類金属酸化物;のいずれか1種のバインダ成分1〜20
体積%とから成る混合粉に、放電エネルギを印加しつつ
圧縮成形して緻密化することを特徴とする希土類磁石の
製造方法。
(4) 80-99% by volume of alloy powder for rare earth magnets and P
b, at least one low melting point metal or alloy thereof selected from the group of Zn, Bi, Sn, Cd, In, Ga, Tl; Al, Co, Nb, Ti, Cu, Cr, Mn,
At least one metal selected from the group of Zr, V; or Dy_2O_3, Tb_2O_3, Ho_2O_3, E
Any one binder component 1 to 20 of at least one heavy rare earth metal oxide selected from the group r_2O_3;
1. A method for producing a rare earth magnet, which comprises compressing and densifying a mixed powder consisting of % by volume while applying electric discharge energy.
(5)前記合金粉末が、次式:R−(Fe,X)−M(
式中、R,M,Xはそれぞれ、希土類元素の少なくとも
1種;B,C,Si,Pの群から選ばれる少なくとも1
種の半金属元素;Co,Al,Ga,Pb,Zn,Ti
,Zr,Nb,Ni,Cr,Mn,Cu,Snの群から
選ばれる少なくとも1種の金属元素を表し、かつ、R,
M,Xの組成割合は、それぞれ、20〜40重量%、0
.1〜2.0重量%、20重量%以下である)で示され
る合金の粉末である特許請求の範囲第1項記載の希土類
磁石の製造方法。
(5) The alloy powder has the following formula: R-(Fe,X)-M(
In the formula, R, M, and X are each at least one rare earth element; at least one selected from the group of B, C, Si, and P.
Seed metalloid elements; Co, Al, Ga, Pb, Zn, Ti
, Zr, Nb, Ni, Cr, Mn, Cu, and Sn, and R,
The composition ratios of M and X are 20 to 40% by weight and 0% by weight, respectively.
.. 1 to 2.0% by weight and 20% by weight or less).
(6)前記合金粉末が、次式:R−(Co,Fe,Cu
,Zr,X)(式中、R,Xはそれぞれ、希土類元素の
少なくとも1種、Ti,Hf,Nb,Ni,Bの群から
選ばれる少なくとも1種の元素を表し、かつ、R,Fe
,Cu,Zr,Xの組成割合はそれぞれ、22〜27重
量%、10〜25重量%、2〜10重量%、0.3〜4
重量%、2重量%以下である)で示される合金の粉末で
ある特許請求の範囲第1項記載の希土類磁石の製造方法
(6) The alloy powder has the following formula: R-(Co, Fe, Cu
, Zr,
, Cu, Zr, and X are 22 to 27% by weight, 10 to 25% by weight, 2 to 10% by weight, and 0.3 to 4% by weight, respectively.
2. The method for producing a rare earth magnet according to claim 1, wherein the rare earth magnet is powder of an alloy represented by 2% by weight or less.
JP62336136A 1987-12-29 1987-12-29 Manufacture of rare earth magnet Pending JPH01175705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62336136A JPH01175705A (en) 1987-12-29 1987-12-29 Manufacture of rare earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62336136A JPH01175705A (en) 1987-12-29 1987-12-29 Manufacture of rare earth magnet

Publications (1)

Publication Number Publication Date
JPH01175705A true JPH01175705A (en) 1989-07-12

Family

ID=18296065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62336136A Pending JPH01175705A (en) 1987-12-29 1987-12-29 Manufacture of rare earth magnet

Country Status (1)

Country Link
JP (1) JPH01175705A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01319909A (en) * 1988-06-21 1989-12-26 Matsushita Electric Ind Co Ltd Manufacture of fe-b-r based permanent magnet
JPH0286103A (en) * 1988-09-22 1990-03-27 Matsushita Electric Ind Co Ltd Manufacture of fe-b-r permanent magnet
EP0378698A1 (en) * 1988-06-21 1990-07-25 Matsushita Electric Industrial Co., Ltd. Method of producing permanent magnet
JPH02309607A (en) * 1989-05-24 1990-12-25 Seiko Electronic Components Ltd Manufacture of rare earth magnet
DE4026796A1 (en) * 1989-09-01 1991-03-14 Matsushita Electric Ind Co Ltd Anisotropic permanent magnet with good temp. resistant properties - made of alloy of iron-cobalt-boron- rare earth
JPH0366105A (en) * 1989-08-04 1991-03-20 Nippon Steel Corp Rare earth anisotropic powder and magnet, and manufacture thereof
EP0449665A1 (en) * 1990-03-30 1991-10-02 Matsushita Electric Industrial Co., Ltd. A process for producing a rare earth-iron-boron magnet
JPH03267346A (en) * 1989-12-19 1991-11-28 General Motors Corp <Gm> Alloying of low level additive to heat treated nd-fe-b magnet
JP2005183781A (en) * 2003-12-22 2005-07-07 Nissan Motor Co Ltd Rare earth magnet and its manufacturing method
WO2012008623A1 (en) * 2010-07-16 2012-01-19 トヨタ自動車株式会社 Process for producing rare-earth magnet, and rare-earth magnet

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50133115A (en) * 1974-04-10 1975-10-22
JPS59222564A (en) * 1983-05-31 1984-12-14 Sumitomo Special Metals Co Ltd Rare earth-ferrous magnetic material and permanent magnet
JPS61263201A (en) * 1985-05-17 1986-11-21 Hitachi Metals Ltd Manufacture of generator
JPS61289605A (en) * 1985-06-14 1986-12-19 ユニオン・オイル・コンパニ−・オブ・カリフオルニア Manufacture of rare earth-boron permanent magnet
JPS62136551A (en) * 1985-12-10 1987-06-19 Daido Steel Co Ltd Permanent magnet material
JPS6351606A (en) * 1986-08-21 1988-03-04 Seiko Epson Corp Manufacture of rear earth permanent magnet
JPH01111303A (en) * 1987-10-24 1989-04-28 Seitetsu Kagaku Co Ltd Manufacture of rare earth magnet

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50133115A (en) * 1974-04-10 1975-10-22
JPS59222564A (en) * 1983-05-31 1984-12-14 Sumitomo Special Metals Co Ltd Rare earth-ferrous magnetic material and permanent magnet
JPS61263201A (en) * 1985-05-17 1986-11-21 Hitachi Metals Ltd Manufacture of generator
JPS61289605A (en) * 1985-06-14 1986-12-19 ユニオン・オイル・コンパニ−・オブ・カリフオルニア Manufacture of rare earth-boron permanent magnet
JPS62136551A (en) * 1985-12-10 1987-06-19 Daido Steel Co Ltd Permanent magnet material
JPS6351606A (en) * 1986-08-21 1988-03-04 Seiko Epson Corp Manufacture of rear earth permanent magnet
JPH01111303A (en) * 1987-10-24 1989-04-28 Seitetsu Kagaku Co Ltd Manufacture of rare earth magnet

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5100485A (en) * 1988-06-21 1992-03-31 Matsushita Electric Industrial Co., Ltd. Method for manufacturing permanent magnets
EP0378698A1 (en) * 1988-06-21 1990-07-25 Matsushita Electric Industrial Co., Ltd. Method of producing permanent magnet
JPH01319909A (en) * 1988-06-21 1989-12-26 Matsushita Electric Ind Co Ltd Manufacture of fe-b-r based permanent magnet
JPH0286103A (en) * 1988-09-22 1990-03-27 Matsushita Electric Ind Co Ltd Manufacture of fe-b-r permanent magnet
JPH02309607A (en) * 1989-05-24 1990-12-25 Seiko Electronic Components Ltd Manufacture of rare earth magnet
JPH0366105A (en) * 1989-08-04 1991-03-20 Nippon Steel Corp Rare earth anisotropic powder and magnet, and manufacture thereof
JPH0391205A (en) * 1989-09-01 1991-04-16 Matsushita Electric Ind Co Ltd Anisotropic permanent magnet
DE4026796A1 (en) * 1989-09-01 1991-03-14 Matsushita Electric Ind Co Ltd Anisotropic permanent magnet with good temp. resistant properties - made of alloy of iron-cobalt-boron- rare earth
JPH03267346A (en) * 1989-12-19 1991-11-28 General Motors Corp <Gm> Alloying of low level additive to heat treated nd-fe-b magnet
EP0449665A1 (en) * 1990-03-30 1991-10-02 Matsushita Electric Industrial Co., Ltd. A process for producing a rare earth-iron-boron magnet
US5167915A (en) * 1990-03-30 1992-12-01 Matsushita Electric Industrial Co. Ltd. Process for producing a rare earth-iron-boron magnet
JP2005183781A (en) * 2003-12-22 2005-07-07 Nissan Motor Co Ltd Rare earth magnet and its manufacturing method
US7608153B2 (en) 2003-12-22 2009-10-27 Nissan Motor Co., Ltd. Rare earth magnet and method therefor
WO2012008623A1 (en) * 2010-07-16 2012-01-19 トヨタ自動車株式会社 Process for producing rare-earth magnet, and rare-earth magnet

Similar Documents

Publication Publication Date Title
JPH06340902A (en) Production of sintered rare earth base permanent magnet
JP3092672B2 (en) Rare earth-Fe-Co-B anisotropic magnet
JPH01175705A (en) Manufacture of rare earth magnet
JPH01219143A (en) Sintered permanent magnet material and its production
JP2009010305A (en) Method for manufacturing rare-earth magnet
JPS6181606A (en) Preparation of rare earth magnet
JPH10106875A (en) Manufacturing method of rare-earth magnet
JP2017073544A (en) Method for manufacturing rare earth magnet
JPS6151901A (en) Manufacture of permanent magnet
JP3196224B2 (en) Rare earth-Fe-Co-B anisotropic magnet
JPS62173704A (en) Manufacture of permanent magnet
JP3178848B2 (en) Manufacturing method of permanent magnet
JPS61264133A (en) Permanent magnet alloy and its manufacture
JP2745042B2 (en) Rare earth-iron-boron alloy thin plate, alloy powder and method for producing permanent magnet
JPH0660367B2 (en) Method of manufacturing permanent magnet material
JPH0146574B2 (en)
JP3092673B2 (en) Rare earth-Fe-B based anisotropic magnet
JPS61136656A (en) Production of sintered material for permanent magnet
JPS6181604A (en) Preparation of rare earth magnet
JPS61208807A (en) Permanent magnet
JPH0568841B2 (en)
JPH0475303B2 (en)
JPS6077961A (en) Permanent magnet material and its manufacture
JP5235264B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP2773444B2 (en) Rare earth-Fe-B based anisotropic magnet