JPH0391205A - Anisotropic permanent magnet - Google Patents

Anisotropic permanent magnet

Info

Publication number
JPH0391205A
JPH0391205A JP1227709A JP22770989A JPH0391205A JP H0391205 A JPH0391205 A JP H0391205A JP 1227709 A JP1227709 A JP 1227709A JP 22770989 A JP22770989 A JP 22770989A JP H0391205 A JPH0391205 A JP H0391205A
Authority
JP
Japan
Prior art keywords
magnet
permanent magnet
coercive force
powder
anisotropic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1227709A
Other languages
Japanese (ja)
Inventor
Masami Wada
正美 和田
Fumitoshi Yamashita
文敏 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1227709A priority Critical patent/JPH0391205A/en
Priority to DE19904026796 priority patent/DE4026796A1/en
Publication of JPH0391205A publication Critical patent/JPH0391205A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Abstract

PURPOSE:To obtain an inexpensive Nd anisotropic permanent magnet having a high temperature characteristic by shaping an alloy of R-Fe-Co-B fundamental composition into flake powder by the melt spin method and heat-treating the powder to make an anisotropic magnet. CONSTITUTION:An alloy consisting of for example 13at.% of Nd and Pr, 17.8at.% of Co, 5.8at.% of B, and Fe is quenched and solidified by the melt spin method and shaped into flake powder and crystal grains are made by heat treatment. The flake is put into a space 3 defined by a ceramic cavity 1 and a pair of electromagnetic punches 2 and 2', a pressure is exerted on the electromagnetic punches 2 and 2' to produce a higher vacuum atmosphere, DC voltage is applied, a direct current is directly passed, and cooling is carried out to obtain a permanent magnet. The relative density of the magnet is 95% or higher, the residual magnetic flux density thereof is 9.5KG or higher, and the intrinsic coercive force thereof is 10KOe or more. The temperature coefficient of the residual magnetic flux density is -0.09%/ deg.C or lower and that of the intrinsic coercive force is -0.5%/ deg.C or lower.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は磁気的に異方性を有する永久磁石に関する。更
に詳しくは、超急冷法によって得られる希土類、鉄系薄
片を出発原料とし、高い残留磁束密度と熱安定性の双方
を備える異方性永久磁石に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to permanent magnets having magnetic anisotropy. More specifically, the present invention relates to an anisotropic permanent magnet having both high residual magnetic flux density and thermal stability, which uses rare earth and iron flakes obtained by ultra-quenching as a starting material.

従来の技術 希土類、鉄系異方性磁石は、同一組成のものが異なった
手法で得られることが公表されている。
BACKGROUND OF THE INVENTION It has been published that rare earth and iron-based anisotropic magnets having the same composition can be obtained using different techniques.

一方は、住友特殊金属にて開発されたもので特公昭61
−34242号で開示されている粉末冶金的手法である
。他方は、GMより特開昭60100402号で開示さ
れているもので、液体超急冷法を出発工程とするホット
プレスおよびダイアップセット法である。いづれの磁石
も、B Hmax30〜40 M G Oeの特性が発
現できる。
One was developed by Sumitomo Special Metals in 1986.
This is a powder metallurgy method disclosed in No. 34242. The other method is disclosed by GM in Japanese Patent Application Laid-Open No. 60100402, and is a hot press and die up setting method that uses a liquid ultra-quenching method as a starting step. Any of the magnets can exhibit characteristics of B Hmax 30 to 40 M G Oe.

これらの磁石は、従来から使用されている希土類磁石で
あるSm−Co系に比較し、その磁気特性はすぐれてお
り、さらに資源的理由からコストが安いという利点が有
るため大いに期待された。
These magnets have been highly anticipated because they have superior magnetic properties compared to Sm--Co magnets, which are rare earth magnets that have been used in the past, and have the advantage of being cheaper for resource reasons.

一般に永久磁石の温度減磁には、可逆減磁と不可逆減磁
がある。可逆減磁は、残留磁束密度の温度特性△B r
 / B rで代表され、その合金のもつキューリー温
度関連しており、従来から使用されているS m −C
o系異方性磁石では−0,04%/℃であるのに対し、
Nd系異方性は、当初Nd−FeB合金で−0,19%
/℃あり、これはフェライト磁石の値−0,18%/℃
に近い値である。
Generally, there are two types of temperature demagnetization of permanent magnets: reversible demagnetization and irreversible demagnetization. Reversible demagnetization is the temperature characteristic of residual magnetic flux density △B r
/Br, and is related to the Curie temperature of the alloy, and is conventionally used Sm-C
While it is -0.04%/℃ for o-based anisotropic magnets,
The Nd system anisotropy was initially -0.19% for the Nd-FeB alloy.
/℃, which is the value of ferrite magnet -0.18%/℃
The value is close to .

このNd−Fe−Bのキューリー温度は約3100Cで
ある。そこでキューリー温度を上昇させてこの温度特性
改善が試みられ、具体的にはFeの一部をCo置換する
ことでキューリー温度が上昇することが発見された。第
7図にCo量とキューリー温度の関係を示す。このよう
にFeの一部をCoで置換することにより可逆減磁は改
善され、100℃〜120℃の高温でも使用出来る可能
性が大きくなった。
The Curie temperature of this Nd-Fe-B is about 3100C. Therefore, attempts were made to improve the temperature characteristics by increasing the Curie temperature, and specifically, it was discovered that the Curie temperature could be increased by replacing a portion of Fe with Co. FIG. 7 shows the relationship between Co amount and Curie temperature. By substituting a part of Fe with Co in this manner, reversible demagnetization is improved and the possibility of use even at high temperatures of 100°C to 120°C is increased.

不可逆減磁では、固有保磁力の温度特性に代表され、単
にキューリー温度の改善のみ・では十分ではなく、固有
保磁力の絶対値にも寄因することから(第8図にその一
例を示す)、キューリー温度の高いもの程又、固有保磁
力の初期値の大きいもの程、固有保磁力の温度特性△H
c j / Hc jは良化する。(なお、この結果は
異方性の場合において、具体的には液体急冷法で急冷固
化させ、適切な熱処理により40nm〜400nmに結
晶粒を調整したフレーク状粉末の磁石の場合である。〉
発明が解決しようとする課題 しかし、この原料から異方性磁石を、ホットプレス法お
よびダイアップセット法で作製すると、固有保磁力は、
等方性粉末では、17KOeであったものが、10KO
eまで低下し、△Hcj/ Hc jは、−0,35〜
−0,4%/℃であったものが、−0,58%〜−0.
6%/℃と大幅に悪化する。つまり、固有保磁力自身の
低下と温度特性の低下の双方が異方性磁石で起る。従っ
て室温時ではS m −Coに比較して優位であるにも
かかわらず、100℃〜120℃といった高温での使用
では、S m −Coに比較し、優位性が保てない所か
、場合によっては逆転するといった欠点があるため、利
用分野が限定される。
Irreversible demagnetization is typified by the temperature characteristics of the intrinsic coercive force, and it is not sufficient to simply improve the Curie temperature; it also depends on the absolute value of the intrinsic coercive force (an example is shown in Figure 8). , the higher the Curie temperature and the larger the initial value of the intrinsic coercive force, the more the temperature characteristic of the intrinsic coercive force △H
c j / Hc j improves. (Note that this result applies to an anisotropic case, specifically a flake-like powder magnet that is rapidly solidified using a liquid quenching method and whose crystal grains are adjusted to 40 nm to 400 nm by appropriate heat treatment.)
Problems to be Solved by the Invention However, when an anisotropic magnet is produced from this raw material by the hot press method and die up setting method, the intrinsic coercive force is
In the case of isotropic powder, 17KOe was reduced to 10KOe.
e, and △Hcj/Hcj is -0,35~
-0.4%/℃ was -0.58% to -0.
This significantly worsens to 6%/℃. In other words, both a decrease in the intrinsic coercive force itself and a decrease in temperature characteristics occur in an anisotropic magnet. Therefore, although it is superior to S m -Co at room temperature, when used at high temperatures such as 100°C to 120°C, it may not be able to maintain its superiority compared to S m -Co. The field of application is limited because it has the disadvantage that it can sometimes be reversed.

本発明は上記課題に鑑み、安価で温度特性の良いNd系
の異方性永久磁石を供給するものである。
In view of the above problems, the present invention provides an anisotropic Nd-based permanent magnet that is inexpensive and has good temperature characteristics.

課題を解決するための手段 上記従来の課題を解決するために本発明は、微細な結晶
構造を有するフレーク状粉末を固体化し、かつ異方化す
る工程において、結晶粒の成長を制御し、バルク化並び
に異方化における加熱手段の工夫により、温度特性の良
い異方性磁石を見い出したものである。
Means for Solving the Problems In order to solve the above-mentioned conventional problems, the present invention aims to control the growth of crystal grains in the process of solidifying flaky powder having a fine crystal structure and making it anisotropic. By devising heating means for anisotropy and anisotropy, an anisotropic magnet with good temperature characteristics was discovered.

さらに詳しくは、R−Fe−Co−Bを基本組成とする
合金を公知の手段であるメルトスピン法にて、微細な結
晶構造を有するフレーク状粉末とし、必要に応じて熱処
理を施し、結晶粒度を調整する。
More specifically, an alloy whose basic composition is R-Fe-Co-B is made into a flaky powder with a fine crystal structure by a well-known melt spin method, and heat treated as necessary to reduce the crystal grain size. adjust.

前記フレーク状粉末を成形キャビティーに納め、101
トール以上の真空中で放電を起こさせ、さらに直接通電
し、同時に一軸の圧力を付加するものである。
The flaky powder is placed in a molding cavity, and 101
This involves causing a discharge in a vacuum of more than Torr, then directly applying current, and applying uniaxial pressure at the same time.

作用 フレーク状粉末は、放電および直接通電により、ジュー
ル熱で発熱し、所定の温度まで昇温すると同時に軟化し
、付加された一軸の圧力により、フル密度に圧縮される
と同時に塑性変形が起こり、磁気的に異方化される。R
−Fe−Co−Bを基本組成とする合金は、塑性変形に
よって結晶が配向し、磁気異方性を有し、その異方化方
向は、塑性変形方向、具体的には、圧縮方向に並行に異
方化する。本発明の磁石では、フル密度にするための加
熱圧縮行為により塑性変形し、それが理由で異方化する
が、加熱手段が直接通電法であるため、短時間で所定の
温度に到達できるので、結晶粒の成長が抑制されるため
、磁化においてピン止め現象が起こり、いわゆるピニン
グ型の保磁力メカニズムとなる。磁石の相対密度が95
%以下の場合、加熱圧縮行為により、塑性変形が起こり
にくくなるため、異方化しない場合がある。又、基本組
成は、室温時の磁気特性を決定すると同時に、特にCo
は、合金のキューリー温度を上昇させ、残留磁束密度の
温度特性を改善すると同時に保磁力の温度特性も改善す
るので重要な合金成分であり、本発明主眼が温度特性の
良い磁石を提供するものであるから、C○添加は本発明
の重要構成因子である。さらに、本発明の特徴である結
晶粒の制御による微細結晶構造を有する磁石である故、
その保磁力構成はピニング型に限定され、かつ、短時間
で処理できる加熱法を採用しているので、出発原料が、
特開昭60−100402号や「工業材料として開花す
るレアアース」日経ニューマテリアル1987年8月2
4日号63項に記載されているごとく急冷固化し、一部
非晶質を含む微細な結晶構造を有するフレーク状粉末が
出発原料である必要はなく、すでに樹脂ボンド磁石用と
して米IIGM社より販売されているMQP−C,MQ
PDに代表される結晶化したフレーク状粉末でも可能で
ある。しかし、本発明の主旨である安価な磁石の提供か
らみて非晶質を含むフレーク状粉末の使用は、磁石の製
造工程で、結晶化のための時間が必要となり、短時間で
加工出来ないため、製造コストの上昇を招くので、結晶
化したフレークに限定すべきものである。
The flaky powder generates Joule heat through electrical discharge and direct energization, softens as it heats up to a predetermined temperature, and is compressed to full density due to the applied uniaxial pressure, causing plastic deformation at the same time. Magnetically anisotropic. R
An alloy with a basic composition of -Fe-Co-B has crystals oriented by plastic deformation and has magnetic anisotropy, and the direction of the anisotropy is parallel to the direction of plastic deformation, specifically, the direction of compression. anisotropic. The magnet of the present invention undergoes plastic deformation due to heating and compression to achieve full density, which causes it to become anisotropic, but since the heating means is a direct energization method, it can reach a predetermined temperature in a short time. Since the growth of crystal grains is suppressed, a pinning phenomenon occurs in magnetization, resulting in a so-called pinning coercive force mechanism. The relative density of the magnet is 95
% or less, anisotropy may not occur because plastic deformation is less likely to occur due to heating and compression. In addition, the basic composition determines the magnetic properties at room temperature, and at the same time, especially Co
is an important alloy component because it increases the Curie temperature of the alloy, improves the temperature characteristics of residual magnetic flux density, and at the same time improves the temperature characteristics of coercive force, and the main focus of the present invention is to provide a magnet with good temperature characteristics. Therefore, C○ addition is an important component of the present invention. Furthermore, since the magnet has a fine crystal structure due to the control of crystal grains, which is a feature of the present invention,
Its coercive force structure is limited to the pinning type, and it uses a heating method that can be processed in a short time, so the starting material
JP-A No. 60-100402 and “Rare earths blooming as industrial materials” Nikkei New Materials August 2, 1987
As described in item 63 of the 4th issue, it is not necessary that the starting material be a flaky powder that is rapidly solidified and has a fine crystalline structure including some amorphous, and has already been used by IIGM in the US for resin bonded magnets. MQP-C, MQ on sale
It is also possible to use a crystallized flake-like powder such as PD. However, in view of the purpose of the present invention, which is to provide an inexpensive magnet, the use of flake powder containing amorphous requires time for crystallization in the magnet manufacturing process, and processing cannot be done in a short time. However, it should be limited to crystallized flakes because it increases manufacturing costs.

また、Nd−F e−Co−B系磁石でその密度が10
0%の場合の残留磁束密度は、最大8400Gである。
In addition, Nd-Fe-Co-B magnets have a density of 10
The residual magnetic flux density at 0% is a maximum of 8400G.

等方性と異方性の境界がどこにあるのかに関する明確な
る定義は無いが、特開昭56111203号に示されて
いる例を使用すると、10%程は同等とみるとの解釈が
できる。この点に立つならば、8.4KGx1.1=9
.24KGまでは、たとえ異方化が一部に起こって特性
が向上したとしても等方性とし取扱うべきものと考えら
れる。従って、本発明の異方性磁石の残留磁束密度を9
.5KG以上に限定した。
Although there is no clear definition as to where the boundary between isotropy and anisotropy lies, using the example shown in JP-A No. 5,611,203, it can be interpreted that they are about 10% equivalent. If you stand on this point, 8.4KG x 1.1 = 9
.. It is considered that up to 24KG, it should be treated as isotropic even if some anisotropy occurs and the properties are improved. Therefore, the residual magnetic flux density of the anisotropic magnet of the present invention is 9
.. Limited to 5KG or more.

実施例 実施例1 以下に本発明の実施例について図面を参照しながら説明
する。
Examples Example 1 Examples of the present invention will be described below with reference to the drawings.

NdおよびPrが13原子%Co17.8原子%B5.
8原子%残Feなる合金を常法によって急冷固化させフ
レーク状粉末とし、熱処理により、結晶粒40〜400
nmとなるよう調製した。このフレークを第2図に示す
ごとく、内径20 mmのセラミック製キャビティー(
1)と一対の電極ポンチ(2,2’)で構成された空間
(3)に投入し、一対の電磁ポンチ(2,2’)に50
 kg f / c!の圧力を加えさらに10−’〜1
O−2Torrの真空雰囲気とし、パルス幅40m5e
cで20Vの直流電圧を60sec印加し、しかる後、
1.5KAの直流を直接40〜60sec通電し、同時
に一対の電磁ポンチ(2,21の圧力を300kg f
 / cn?まで上昇させた。最終的にキャビティー内
粉末の温度は、700〜750℃に到達した。
Nd and Pr are 13 at% Co17.8 at% B5.
An alloy with 8 atomic % residual Fe is rapidly solidified by a conventional method to form a flake powder, and by heat treatment, crystal grains of 40 to 400
nm. The flakes were placed in a ceramic cavity (with an inner diameter of 20 mm) as shown in Figure 2.
1) into a space (3) consisting of a pair of electrode punches (2, 2'), and a pair of electromagnetic punches (2, 2').
kgf/c! Apply a pressure of 10-' to 1
A vacuum atmosphere of O-2 Torr and a pulse width of 40 m5e
Apply a DC voltage of 20V for 60 seconds at c, and then
Direct current of 1.5 KA is applied for 40 to 60 seconds, and at the same time a pair of electromagnetic punches (2, 21 pressure is applied to 300 kg f
/cn? raised to. Finally, the temperature of the powder inside the cavity reached 700-750°C.

これを冷却することにより、外径20mm 、パーミア
ンス係数的1なる永久磁石を得た。この磁石の密度は、
7.70g/c−であった。図1にこの磁石の室温にお
ける減磁特性を示す。曲線10は、この磁石の圧縮方向
に並行な方向曲線12は、直角方向に測定した値、さら
に曲線14は、同一組成の出発原料を、それぞれ、VS
Mにて、Pctl、50K Oeで着磁した後測定した
。さらにこの磁石の熱減磁特性△B r / B rお
よび△Hcj/ Hc jをVSMにて測定した所△B
 r / B r −〇、07%/℃、△Hej/He
j −−0,48%/℃であった。又、この磁石の室温
における最大エネルギー積は25.2MGOeであった
。この磁石の初磁化曲線を求めた所、図3の結果を得た
By cooling this, a permanent magnet with an outer diameter of 20 mm and a permeance coefficient of 1 was obtained. The density of this magnet is
It was 7.70g/c-. Figure 1 shows the demagnetization characteristics of this magnet at room temperature. Curve 10 is parallel to the compression direction of this magnet. Curve 12 is the value measured perpendicularly, and curve 14 is the value measured in the VS direction for starting materials of the same composition.
Measurements were taken after magnetizing with Pctl and 50K Oe. Furthermore, when the thermal demagnetization characteristics △B r / Br and △Hcj / Hc j of this magnet were measured using a VSM, △B
r / B r -〇, 07%/℃, △Hej/He
j −−0.48%/°C. Further, the maximum energy product of this magnet at room temperature was 25.2 MGOe. When the initial magnetization curve of this magnet was determined, the results shown in FIG. 3 were obtained.

この曲線は比較例1に示された磁石の結果、図5と比較
して明らかに保磁力機構が異なり、この実施例出発原料
の初磁化曲線と類似しており、ピニング型であることを
確認された。
This curve is a result of the magnet shown in Comparative Example 1, and the coercive force mechanism is clearly different from that in Figure 5, and it is similar to the initial magnetization curve of the starting material of this example, confirming that it is a pinning type. It was done.

実施例2 実施例1と同二合金を同様に急冷固化させフレーク状粉
末を得た。この粉末をXrayで結晶化度合を調査した
所、その一部に非晶質を含んでいることが確認された。
Example 2 The same two alloys as in Example 1 were rapidly solidified in the same manner as in Example 1 to obtain flaky powder. When the degree of crystallinity of this powder was examined using X-ray, it was confirmed that a portion of the powder contained amorphous matter.

この粉末で実施例1と同様に外径20mm、Pctlの
磁石を得た。この磁石 0 の密度は7 、69 g / c!室温における磁気特
性はBr10.3KG、Hcj 14.7KOe、Hc
B8.85KOe、BHmax23.6MGOe、温度
特性は、△Br/Br=−0.07%/℃、△Hcj/
Hcj−−0,47%/℃であった。
Using this powder, a magnet with an outer diameter of 20 mm and Pctl was obtained in the same manner as in Example 1. The density of this magnet 0 is 7,69 g/c! Magnetic properties at room temperature are Br10.3KG, Hcj 14.7KOe, Hc
B8.85KOe, BHmax23.6MGOe, temperature characteristics are △Br/Br=-0.07%/℃, △Hcj/
Hcj--0.47%/°C.

比較例1 実施例1と同一組成の合金で、実施例と同様の非晶質を
一部含むフレーク状粉末を得た。この粉末を、特開昭6
C)−100402号公報に開示されている手法に従っ
て外径20mmPcξ1の磁石を得た。この磁石の室温
における減磁特性をFig4に示す。図中、曲線16は
異方化方向、曲線18は直角方向、曲線20は出発原料
の測定結果である。さらに、この磁石の温度特性を測定
したところ△Br/Br−−0.08−0電08線は図
5に示すようにニュークリエーション型を示した。
Comparative Example 1 Using an alloy having the same composition as in Example 1, flake-like powder partially containing amorphous material as in Example was obtained. This powder was
A magnet with an outer diameter of 20 mmPcξ1 was obtained according to the method disclosed in Japanese Patent No. C)-100402. Figure 4 shows the demagnetization characteristics of this magnet at room temperature. In the figure, curve 16 is the anisotropic direction, curve 18 is the perpendicular direction, and curve 20 is the measurement result of the starting material. Furthermore, when the temperature characteristics of this magnet were measured, the ΔBr/Br--0.08-0 wire 08 showed a nucleation type as shown in FIG.

比較例2 実施例1と同−組成合金で、完全に結晶化させたフレー
ク状粉末を準備し、比較例1と同一条件にて同様の磁石
を得た。その密度は7.65g/cm?で、室温におけ
る磁気特性を図6に示す。図4に比較して明らかにHc
jが低下している。これは磁石加工工程であるホットプ
レス、′及びダイアップセット工程で結晶粒が粗大化し
たためと考えられる。
Comparative Example 2 Completely crystallized flake powder was prepared using the same alloy composition as in Example 1, and a similar magnet was obtained under the same conditions as in Comparative Example 1. Its density is 7.65g/cm? The magnetic properties at room temperature are shown in FIG. Compared to Figure 4, it is clear that Hc
j is decreasing. This is thought to be because the crystal grains became coarse during the magnet processing steps of hot pressing and die up setting.

発明の効果 本発明の磁石は、従来から使用されているSmCo系異
方性磁石に対し、資源的に有利なNdおよび/またはP
rとFeを主成分とし、かつ、従来のNd系異方性磁石
では温度特性が劣っていて使用不可能であった高温使用
が可能となり、又、その製造方法においても短時間で処
理が出来、又、出発原料も既に樹脂ボンド磁石用として
安価に市場に供給されているものを利用できるもので、
安価に供給できるメリットがある。
Effects of the Invention The magnet of the present invention uses Nd and/or P, which are advantageous in terms of resources, compared to conventionally used SmCo-based anisotropic magnets.
The main components are r and Fe, and it can be used at high temperatures, which was impossible with conventional Nd-based anisotropic magnets due to poor temperature characteristics, and the manufacturing method also allows processing in a short time. In addition, starting materials can be those that are already available on the market at low cost for use in resin bonded magnets.
It has the advantage of being able to be supplied at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明磁石の実施例1の減磁特性を示す図、第
2図は本発明磁石の製造方法を示す図、第3図は本発明
磁石の実施例1の初磁化特性を示す図、第4図は比較例
1の磁石の減磁特性を示す図、第5図は比較例1の初磁
化特性を示す図、第6図は比較例2の減磁特性を示す図
、第7図はC。 量と合金キューリー温度の関係を示す図、第8図はキュ
ーリー温度と保有保磁力温度特性△Hcj/ H c 
jの関係を示す図である。
FIG. 1 is a diagram showing the demagnetization characteristics of Example 1 of the magnet of the present invention, FIG. 2 is a diagram showing the manufacturing method of the magnet of the present invention, and FIG. 3 is a diagram showing the initial magnetization characteristics of Example 1 of the magnet of the present invention. 4 is a diagram showing the demagnetization characteristics of the magnet of Comparative Example 1, FIG. 5 is a diagram showing the initial magnetization characteristics of Comparative Example 1, and FIG. 6 is a diagram showing the demagnetization characteristics of Comparative Example 2. Figure 7 is C. Figure 8 shows the relationship between the amount and the alloy Curie temperature.
It is a figure showing the relationship of j.

Claims (4)

【特許請求の範囲】[Claims] (1)R−Fe−Co−Bを基本組成とし、(R:Nd
を含む一種又は二種以上の希土類)一部改質のための新
たなる成分を含んだ合金をメルトスピニング法で急冷固
化させた薄片状又は粉末を出発原料とし、相対密度が9
5%以上であり、残留磁束密度が少なくとも9.5KG
以上、固有保磁力が少なくとも10KOe以上で、残留
磁束密度の温度係数が−0.09%/℃以下、固有保磁
力の温度係数が−0.5%/℃以下であることを特徴と
する異方性永久磁石。
(1) The basic composition is R-Fe-Co-B, (R:Nd
The starting material is flakes or powder made by rapidly solidifying an alloy containing a new component for partial modification using a melt spinning method, and the relative density is 9.
5% or more, and the residual magnetic flux density is at least 9.5KG
As mentioned above, the unique coercive force is at least 10 KOe or more, the temperature coefficient of residual magnetic flux density is -0.09%/℃ or less, and the temperature coefficient of intrinsic coercive force is -0.5%/℃ or less. Directional permanent magnet.
(2)保磁力の機構がピニング型であることを特徴とす
る請求項1記載の異方性永久磁石。
(2) The anisotropic permanent magnet according to claim 1, wherein the coercive force mechanism is of a pinning type.
(3)メルトスピン法で作製された薄片又は粉末を放電
および又は直接通電法で加熱し、同時に一軸の圧力によ
り固体化したことを特徴とする請求項1記載の異方性永
久磁石。
(3) The anisotropic permanent magnet according to claim 1, characterized in that a flake or powder produced by a melt spin method is heated by a discharge and/or direct energization method and simultaneously solidified by uniaxial pressure.
(4)メルトスピニング法で作製された薄片又は粉末が
、放電又は、および直接通電で加熱される以前に完全に
結晶化していることを特徴とする請求項3記載の異方性
永久磁石。
(4) The anisotropic permanent magnet according to claim 3, wherein the flakes or powder produced by the melt spinning method are completely crystallized before being heated by electric discharge or direct energization.
JP1227709A 1989-09-01 1989-09-01 Anisotropic permanent magnet Pending JPH0391205A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1227709A JPH0391205A (en) 1989-09-01 1989-09-01 Anisotropic permanent magnet
DE19904026796 DE4026796A1 (en) 1989-09-01 1990-08-24 Anisotropic permanent magnet with good temp. resistant properties - made of alloy of iron-cobalt-boron- rare earth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1227709A JPH0391205A (en) 1989-09-01 1989-09-01 Anisotropic permanent magnet

Publications (1)

Publication Number Publication Date
JPH0391205A true JPH0391205A (en) 1991-04-16

Family

ID=16865125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1227709A Pending JPH0391205A (en) 1989-09-01 1989-09-01 Anisotropic permanent magnet

Country Status (2)

Country Link
JP (1) JPH0391205A (en)
DE (1) DE4026796A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS64703A (en) * 1986-04-15 1989-01-05 Tdk Corp Permanent magnet and manufacture thereof
JPH01175705A (en) * 1987-12-29 1989-07-12 Daido Steel Co Ltd Manufacture of rare earth magnet

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1315571C (en) * 1982-08-21 1993-04-06 Masato Sagawa Magnetic materials and permanent magnets
JP2948223B2 (en) * 1987-03-31 1999-09-13 住友特殊金属 株式会社 High performance permanent magnet with excellent corrosion resistance and method of manufacturing the same
JPH01111303A (en) * 1987-10-24 1989-04-28 Seitetsu Kagaku Co Ltd Manufacture of rare earth magnet
JPH01205502A (en) * 1988-02-12 1989-08-17 Seiko Epson Corp Rare earth and iron-based resin-bonded magnet
JPH01261803A (en) * 1988-04-12 1989-10-18 Matsushita Electric Ind Co Ltd Manufacture of rare-earth permanent magnet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS64703A (en) * 1986-04-15 1989-01-05 Tdk Corp Permanent magnet and manufacture thereof
JPH01175705A (en) * 1987-12-29 1989-07-12 Daido Steel Co Ltd Manufacture of rare earth magnet

Also Published As

Publication number Publication date
DE4026796A1 (en) 1991-03-14

Similar Documents

Publication Publication Date Title
US4836868A (en) Permanent magnet and method of producing same
EP3291249B1 (en) Manganese bismuth-based sintered magnet having improved thermal stability and preparation method therefor
JP2727506B2 (en) Permanent magnet and manufacturing method thereof
US4834812A (en) Method for producing polymer-bonded magnets from rare earth-iron-boron compositions
JPS63313807A (en) Of highly efficient permanent magnet with high-anticorrosivity, and manufacture thereof
JPH0391205A (en) Anisotropic permanent magnet
Gong et al. Temperature feature of NdDyFeB magnets with ultrahigh coercivity
JP3641021B2 (en) High coercive force iron-based permanent magnet and bonded magnet
JPH01171209A (en) Manufacture of permanent magnet
US5004499A (en) Rare earth-iron-boron compositions for polymer-bonded magnets
JP2002057014A (en) Anisotropic magnet, its manufacturing method, and motor using the same
JPS6329908A (en) Manufacture of r-fe-b rare earth magnet
JPH02125402A (en) Magnetic powder and manufacture thereof
JP3427765B2 (en) Rare earth-Fe-Co-B based magnet powder, method for producing the same, and bonded magnet using the powder
JPH04143221A (en) Production of permanent magnet
JPH10189320A (en) Anisotropic magnet alloy powder, and its manufacture
JP2746111B2 (en) Alloy for permanent magnet
JP3164810B2 (en) Manufacturing method of anisotropic permanent magnet
JPH02198104A (en) Manufacture of rare earth-iron permanent magnet
JPS63114106A (en) Permanent magnet and manufacture thereof
JPS63211705A (en) Anisotropic permanent magnet and manufacture thereof
JPH01290205A (en) Manufacture of high-polymer composite type rare-earth magnet
JPH07161513A (en) Iron based bond magnet and its production
JPH0422104A (en) Method of manufacturing permanent magnet
JPH02118054A (en) Permanent magnet material