JPH01111303A - Manufacture of rare earth magnet - Google Patents

Manufacture of rare earth magnet

Info

Publication number
JPH01111303A
JPH01111303A JP62269100A JP26910087A JPH01111303A JP H01111303 A JPH01111303 A JP H01111303A JP 62269100 A JP62269100 A JP 62269100A JP 26910087 A JP26910087 A JP 26910087A JP H01111303 A JPH01111303 A JP H01111303A
Authority
JP
Japan
Prior art keywords
magnetic field
rare earth
sintered
sintering
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62269100A
Other languages
Japanese (ja)
Inventor
Manabu Osada
長田 学
Yoshitaka Ozaki
尾崎 好孝
Nobuyuki Kitagishi
信之 北岸
Satotake Ishiyama
里丘 石山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Seika Chemicals Co Ltd
Inoue Japax Research Inc
Original Assignee
Inoue Japax Research Inc
Seitetsu Kagaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Japax Research Inc, Seitetsu Kagaku Co Ltd filed Critical Inoue Japax Research Inc
Priority to JP62269100A priority Critical patent/JPH01111303A/en
Publication of JPH01111303A publication Critical patent/JPH01111303A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To industrially manufacture a sintered material integral with a metal material in which an adhering step is omitted by pressure molding crude magnetic alloy powder in a magnetic field, sintering it by discharging, and simultaneously baking to integrate the molding with a metal material, such as a yoke material or the like. CONSTITUTION:A metal material, such as a yoke material 6 or the like is charged in a die 1 formed of a cemented carbide or the like, magnetized in a magnetic field generated by a magnetic field generating coil 4 while compressing it by a hydraulic press 8 by upper and lower punches 2, 3 or only an upper punch 2 for charging a predetermined amount of magnetic powder thereon, and sintered and molded by discharging by simultaneously applying a DC current from a power supply 7. A rare earth sintered magnet sintered integrally with the material 6 is obtained by this operation. Thus, it can be utilized immediately as a component without requirement of steps of working and adhering to be industrially manufactured.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は稀土類元素を含有する永久磁石焼結体の製造方
法に関するものであり、更に詳しく述べるとR−Co系
、R−Fe−B系(ここにRは1種以上の希土類元素を
示す。)の磁石を磁場内で加圧下に焼結し、同時にこの
焼結体とヨーク材等の金属材料との一体成形物を製造す
る方法に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for producing a permanent magnet sintered body containing rare earth elements, and more specifically, it relates to a method for producing a permanent magnet sintered body containing rare earth elements, and more specifically, A method of sintering a magnet of the system (here R represents one or more rare earth elements) under pressure in a magnetic field, and at the same time producing an integral molded product of this sintered body and a metal material such as a yoke material. It is related to.

(従来の技術) (発明が解決しようとする問題点) 従来希土類磁石焼結体を製造する場合には通常下記の工
程により実施されていた。
(Prior Art) (Problems to be Solved by the Invention) Conventionally, when producing a rare earth magnet sintered body, the following steps were usually carried out.

1)原料の溶解による塊状又は粒状合金の製造この溶解
は真空中又は不活性雰囲気中での高周波溶解、アーク溶
解又は電子ビーム溶解等により行なわれる。
1) Production of bulk or granular alloys by melting raw materials This melting is carried out by high frequency melting, arc melting, electron beam melting, etc. in vacuum or an inert atmosphere.

2)合金の微粉化工程 前工程により得られた塊状又は粒状合金をボールミル、
振動ミルその他の機械的方法により粒径1〜10μ、又
は場合によっては更に超微粒状になるまで破砕される。
2) The lump or granular alloy obtained in the pre-process of pulverization of the alloy is ball milled,
It is crushed by a vibrating mill or other mechanical method until the particle size is 1 to 10 microns, or even ultrafine in some cases.

3)磁場内での成形工程 前工程により得られた微粉末合金を数KOe又はそれ以
上の磁場下で成形する。この成形は加圧成形のほか有機
又は無機のバインダを用いても行なうことができ、又、
その双方を複合して行なうことができる。この有機又は
無機のバインダは俊に除去されるが、このバインダを除
去することなく本工程成形品をそのまま最終製品とする
こともある。
3) Molding process in a magnetic field The fine powder alloy obtained in the pre-process is molded in a magnetic field of several KOe or more. This molding can be performed by using an organic or inorganic binder in addition to pressure molding, and
Both can be combined. Although this organic or inorganic binder is quickly removed, the molded product of this process may be used as a final product without removing the binder.

本工程により合金微粉末の磁化容易軸が磁場方向にそ揃
えられる。
This step aligns the axis of easy magnetization of the fine alloy powder in the direction of the magnetic field.

4)圧縮による高密度化工程 前工程で得られた成形品を等方水圧プレス又は準等方プ
レスで加圧圧縮して高密度化する。
4) Densification step by compression The molded product obtained in the previous step is compressed under pressure using an isotropic hydraulic press or a quasi-isotropic press to increase its density.

本工程に先立って、前工程で使用されたバインダその他
の物質は除去される。
Prior to this step, the binder and other substances used in the previous step are removed.

5)焼結及び溶体化処理工程 前工程で1qられた高密度成形体を真空中又は不活性雰
囲気中で焼結する。
5) Sintering and solution treatment step The high-density compact obtained in the previous step is sintered in a vacuum or in an inert atmosphere.

この焼結条件は例えば25wt%3m−15wt%CL
J−60wt%CoからなるSm−cu−co磁石の場
合1200 ’C,2時間である。
This sintering condition is, for example, 25wt%3m-15wt%CL
In the case of a Sm-cu-co magnet made of J-60 wt% Co, the temperature was 1200'C for 2 hours.

6)  iJl黄熱処理工程 前工程により得られた焼結体に所望の磁石特性を付与す
るため熱処理を行なう。
6) Heat treatment is performed to impart desired magnetic properties to the sintered body obtained in the pre-step of iJl yellow heat treatment step.

このようにして得られた希土類磁石焼結体は更に研磨、
切削加工等を行ない所望の形状に仕上げ、又他の金属材
料と接着しモーター等の各種の用途に使用していた。
The rare earth magnet sintered body thus obtained is further polished and
It was processed into a desired shape by cutting, etc., and then bonded to other metal materials and used for various purposes such as motors.

これら多くの工程を簡略化するため磁場内成形及び圧縮
、焼結工程を単一の磁場向加圧、放電焼結工程に置き換
える提案が既に特公昭56−27564によりなされて
いる。該発明は、上記工程中特に第三の磁場内成形工程
、第四の高密度化工程及び第五工程の一部の焼結工程に
関し、その目的とするところはこれらの諸工程を単一の
磁場向加圧放電焼結工程により置き換え、工程を簡略化
すると共に、従来工程では得られなかった高密度、高性
能の永久磁石合金を提供することにある。
In order to simplify these many steps, a proposal has already been made in Japanese Patent Publication No. 56-27564 to replace the magnetic forming, compression and sintering steps with a single magnetic field pressing and discharge sintering step. The invention particularly relates to the third magnetic field forming step, the fourth densification step, and the sintering step of a part of the fifth step among the above steps, and its purpose is to combine these steps into a single process. The purpose is to simplify the process by replacing it with a magnetic field-directed pressure discharge sintering process, and to provide a permanent magnet alloy with high density and high performance that could not be obtained with the conventional process.

更に該発明方法を具体的に説明すると、所望の組成を有
し適宜に粉砕された原料合金を少くとも1040e又は
それ以上の磁界内で車軸プレス、静水圧プレス又は準静
水圧プレス等により加圧圧縮成形した状態で、即ち上記
の磁場内で加圧したまま放電焼結して高密度成形体とし
、これに更に溶体化処理及び時効処理を加え所望の磁石
特性を有する永久磁石合金を得るものである。
Further, to specifically explain the method of the invention, a suitably pulverized raw material alloy having a desired composition is pressed in a magnetic field of at least 1040e or more using an axle press, a hydrostatic press, a quasi-hydrostatic press, etc. A high-density compact is formed by discharge sintering in a compression molded state, that is, while pressurized in the above magnetic field, and then subjected to solution treatment and aging treatment to obtain a permanent magnet alloy having the desired magnetic properties. It is.

該発明方法においては、上記の強fi1m内作業を効果
的に実施するため、これらのプレスのパンチの少くとも
一方を高透磁性導電材料で構成すると共に、これに励磁
コイルを捲回して置き、必要に応じてこれに通電、励磁
して強磁場を発生させるようにしたプレスを使用するも
のである。しかしながらこの方法は、磁場内成形、焼結
後更に溶体化2時効処理の工程を含んでおり、)nられ
た焼結体の後加工工程が必要となる等の、欠点を含んで
いる。従って従来方法に較べて全体として工程の大巾な
改善を期待することはむつかしい。
In the method of the invention, in order to effectively carry out the above-mentioned strong fi1m work, at least one of the punches of these presses is made of a highly magnetically permeable conductive material, and an excitation coil is wound around it. A press is used which is energized and excited to generate a strong magnetic field as necessary. However, this method includes the steps of forming in a magnetic field and further solution aging treatment after sintering, and has drawbacks such as the need for post-processing of the sintered body. Therefore, it is difficult to expect a significant improvement in the process as a whole compared to the conventional method.

よく知られているように希土類磁石焼結体は非常に脆く
欠は易く通常の機械加工が困難であり、単純な研磨、切
削だけが可能であり、実際モーター等に装着使用する場
合も、単純な形とした上、接着等により固定装着しなけ
ればならず、又この際、割れ、欠は等による欠損品の生
ずる場合も非常に多い。
As is well known, rare earth magnet sintered bodies are extremely brittle and easily chipped, making normal machining difficult.They can only be simply polished and cut, and when used in actual motors etc. In addition to having a suitable shape, they must be fixed and attached using adhesives, etc., and in this case, there are many cases where parts are missing due to cracks, chips, etc.

本発明者らは前記の状況に鑑み、放電焼債法を利用し希
土類磁石を製造する工業的方法について鋭意検討を重ね
た結果、前記改良法を利用して希土類la石製造の最終
工程にla場内加圧成形放電焼結工程を採用すればヨー
ク等の金属材料を前記焼結工程において同時に一体化焼
き付は成形することが可能となり、希土類磁石成形体の
製造が大巾に有利になることを見出し本発明に到った。
In view of the above-mentioned situation, the present inventors have conducted intensive studies on an industrial method for producing rare earth magnets using the electric discharge bond method. If the in-situ pressure molding discharge sintering process is adopted, it will be possible to integrally bake and mold the metal materials such as yokes at the same time in the sintering process, which will greatly benefit the production of rare earth magnet compacts. This discovery led to the present invention.

即ち本発明の目的は磁場的放電焼結を行ない、金属材料
と一体焼結とされた成形体を′!A造する方法を提供す
るものである。
That is, the object of the present invention is to perform magnetic discharge sintering to produce a molded body integrally sintered with a metal material! This provides a method for building A.

(問題点を解決するための手段) 本発明は希土類磁石焼結の難点とされていた■ 製造工
程の大巾簡易化 ■ 後加工工程の省略 ■ 他の金属材料との一体成形 の三つの大ぎな問題を一挙に解決する手段を提供するこ
とができる。即ち本発明により接着工程を省略して金属
材料との一体化焼結体を工業的に製造することができる
工 即ち本発明の要旨は希土類元素を含有する永久磁石焼結
体を製造するに際し、所望の調整された原料磁性合金粉
を磁場内で加圧成形すると共に該圧力下で、放電焼結す
ると同時に成形体をヨーク材等の金属材料に焼き付は一
体化する方法である。
(Means for Solving the Problems) The present invention solves the three major problems that were considered to be difficult points in sintering rare earth magnets: ■ Significant simplification of the manufacturing process ■ Elimination of post-processing steps ■ Integral molding with other metal materials It can provide a means to solve many major problems all at once. That is, according to the present invention, it is possible to industrially produce an integrated sintered body with a metal material by omitting the bonding process.That is, the gist of the present invention is to provide a method for manufacturing a permanent magnet sintered body containing rare earth elements. This is a method in which a desired adjusted raw material magnetic alloy powder is press-molded in a magnetic field, discharge-sintered under the pressure, and at the same time, the compact is integrated with a metal material such as a yoke material.

本発明の実施にあたって適用できる希土類磁石の種類と
しては、希土類元素を含有するすべての磁石が可能であ
り、1−5系及び2−17系のR−Co系希土類磁石(
RCo5.R2C01□)及びR−Fe−B系希土類磁
石が有利に製造できる。
The types of rare earth magnets that can be applied to the implementation of the present invention include all magnets containing rare earth elements, including 1-5 series and 2-17 series R-Co rare earth magnets (
RCo5. R2C01□) and R-Fe-B rare earth magnets can be advantageously produced.

又、数トン−数十トン/crAの加圧下で成形するので
寸法精度の良い製品が得られ従って後加工ならびに接着
工程が不要となり一挙にヨークとの一体成形品が得られ
る。
Further, since the molding is performed under pressure of several tons to several tens of tons/crA, a product with good dimensional accuracy can be obtained, and post-processing and bonding steps are not required, and an integrally molded product with the yoke can be obtained in one step.

その性能は希土類磁石の種類、焼結条件にもよるが、最
大エネルギー積10MGOe以上、通常15MGOe以
上の高性能の焼結磁石が得られる。
Although its performance depends on the type of rare earth magnet and sintering conditions, a high-performance sintered magnet with a maximum energy product of 10 MGOe or more, usually 15 MGOe or more can be obtained.

以下本発明の実施態様の一例について第1図ならびに第
2図により説明する。
An example of an embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

先ず所要の原おlを第1図■の溶解工程で溶解し、■の
インゴットとする。通常溶解には高周波加熱を用い真空
中あるいはアルゴン等の不活性ガス雰囲気中で実施する
。■のインゴットはそのままあるいは簡単な粗砕を行な
い■の溶体化工程へ送る。
First, the required raw material is melted in the melting process shown in Figure 1 (■) to form an ingot (■). Melting is usually carried out using high-frequency heating in a vacuum or in an inert gas atmosphere such as argon. The ingot (①) is sent as it is or after being simply crushed and sent to the solution treatment step (②).

不活性ガス雰囲気中で1200 ’C前後数時間程度で
処理後、必要に応じインゴット組成に応じた時効処理操
作を実施する。
After treatment at around 1200'C for several hours in an inert gas atmosphere, an aging treatment operation depending on the ingot composition is performed as necessary.

これらの操作は■と同様真空中あるいは不活性ガス中で
電気加熱の焼結炉を用いて実施する。得られた熱処理済
みのインゴットはついで不活性カス雰囲気中でスタンプ
ミル等を用いて粗砕し、ついでボールミル、振動ミル等
を用いて微粉砕する。
These operations are carried out in vacuum or in an inert gas using an electrically heated sintering furnace as in (2). The obtained heat-treated ingot is then coarsely crushed using a stamp mill or the like in an inert scum atmosphere, and then finely crushed using a ball mill, vibration mill, or the like.

2/17  R−Co系希土類磁石を製造する場合、合
金成分組成により、例えばSm−Co−Cu−F、−M
 n系、3m−Co−Cu−Fe−T i系等の場合に
は■の溶解工程の操作条件、冷却条件をコントロールす
ることにより■の焼結炉での溶体化工程を省略すること
もできる。■で適切な粒度。
2/17 When manufacturing R-Co rare earth magnets, depending on the alloy component composition, for example, Sm-Co-Cu-F, -M
In the case of n-based, 3m-Co-Cu-Fe-Ti, etc., the solution treatment step in the sintering furnace can be omitted by controlling the operating conditions and cooling conditions of the melting step. . ■Appropriate particle size.

粒形に調節された磁性粉は最終の本発明の特徴工程たる
■の磁場的放電焼結工程へ送る。■の装置概要を第2図
に示す。
The magnetic powder whose particle shape has been adjusted is sent to the final magnetic discharge sintering step (2), which is the characteristic step of the present invention. Figure 2 shows an outline of the equipment in (2).

第2図において超硬合金等で作られたダイ1中にヨーク
材等の金属材料を装入し、その上に所要量の磁性粉を装
入する上下パンチ2.3又は上パンチのみで油圧プレス
8により加圧圧縮しながら、磁場発生用コイル4により
発生した磁場内で着磁し、同時に電源7により直流電流
を加えて放電焼結成形を実施する。この操作によりヨー
ク材と一体焼結した希土類磁石焼結体が得られる。この
とき加える圧力としては、1トン/ ctir以上が必
要で通常5トン以上を用いる。通電する電流聞は電流密
度として数アンペア/crA  以上数千アンペア/−
程度が用いられる。本発明を実施する場合電流を加える
方法等については種々の方法が可能であり一般金属の放
電焼結方法が適用可能である。
In Fig. 2, a metal material such as a yoke material is charged into a die 1 made of cemented carbide, etc., and a required amount of magnetic powder is charged onto the die 1 using upper and lower punches 2.3 or only the upper punch. While being pressurized and compressed by the press 8, it is magnetized in the magnetic field generated by the magnetic field generating coil 4, and at the same time, a direct current is applied by the power source 7 to carry out discharge sintering. Through this operation, a rare earth magnet sintered body integrally sintered with the yoke material is obtained. The pressure applied at this time needs to be 1 ton/ctir or more, and usually 5 tons or more is used. The current density ranges from several amperes/crA to several thousand amperes/-
degree is used. When carrying out the present invention, various methods such as applying electric current are possible, and a discharge sintering method for general metals is applicable.

例えば直流、交流や又高周波成分を重畳させる方法等が
適用できる。
For example, a method of superimposing direct current, alternating current, or high frequency components can be applied.

本発明による放電焼結操作では、従来の高温での焼結操
作と異なり焼結中に粒子の配向度が進むということがな
いので、加える磁場の強さとしては強いほど粒子の配向
性が増し、得られる成形体の磁気性能も向上するので、
強い磁場を加えることが望ましい。本発明では通常パル
ス磁場を使用し、20KOe以上が望まれる。又通常の
焼結磁石を作る場合の磁場内成形に用いる低い静磁場を
、あらかじめ放電操作前に加えておき、本発明の工程を
実施してもよい。又この際適当な振動を加えて、原料磁
性粉の配向性を高めることもできる。
In the discharge sintering operation according to the present invention, unlike conventional sintering operations at high temperatures, the degree of orientation of the particles does not progress during sintering, so the stronger the applied magnetic field, the more the orientation of the particles increases. , the magnetic performance of the obtained compact is also improved.
It is desirable to apply a strong magnetic field. In the present invention, a pulsed magnetic field is normally used, and a magnetic field of 20 KOe or more is desired. Furthermore, the process of the present invention may be carried out by applying a low static magnetic field used for forming in a magnetic field when making a normal sintered magnet before the discharge operation. Further, at this time, the orientation of the raw material magnetic powder can be improved by applying appropriate vibrations.

加える圧力としては勿論高い方が高密度の焼結体になる
ので磁気性能の高いものが得られる。
Of course, the higher the pressure applied, the higher the density of the sintered body, and therefore the higher the magnetic performance.

このようにして得られた焼結体■は精度もよく通常15
μ以下であり、後加工は全く不要である。
The sintered body ■ obtained in this way has good precision and is usually 15
μ or less, and no post-processing is required.

これは接着操作なしにそのままコンポーネント■とする
ことができ従来法に比べはるかに有利となる。
This method can be used as a component without any adhesive operation, which is much more advantageous than conventional methods.

本発明の実施にあたりキューリー点の低いR−Fe−B
系の希土類磁石を製造する場合、R−Co系に較べてや
や低い温度条件で放電焼結操作を行なう必要があるがR
−Co系と同様に性能の高い焼結体を得ることができる
In carrying out the present invention, R-Fe-B with a low Curie point
When producing R-Co type rare earth magnets, it is necessary to perform a discharge sintering operation at a slightly lower temperature than that of R-Co type magnets.
It is possible to obtain a sintered body with high performance similar to the -Co type.

(実施例) 以下実施例により本発明を更に詳細に説明するが本発明
はこれに限定されるものではない。
(Example) The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited thereto.

実施例1 Sm  26.5  重量%、Fe6.7重量%、 C
L112.0  重量%、Mn1.5重量%、残部CO
からなる合金を真空溶解で得た。この合金をArガス雰
囲気中1200℃ 1時間溶体化処理を行なった後、公
知の粉砕法で微粉化し、下パンチ上に径20m、厚ざ1
#の鉄板を装入した金型内に充填し、30KOeの磁場
中10トン/crAの圧力をかけながら100OA/c
iの直流電流を5分間流し、鉄板上に径20#、厚ざ0
.5#の焼結体が焼き付いた一体成形品を得た。
Example 1 Sm 26.5% by weight, Fe6.7% by weight, C
L112.0% by weight, Mn1.5% by weight, balance CO
An alloy consisting of was obtained by vacuum melting. This alloy was solution-treated at 1200°C for 1 hour in an Ar gas atmosphere, then pulverized by a known pulverization method, and placed on a lower punch with a diameter of 20 m and a thickness of 1.
A # iron plate was charged into a mold, and 100OA/c was applied while applying a pressure of 10 tons/crA in a magnetic field of 30KOe.
A DC current of i was applied for 5 minutes, and a diameter of 20# and a thickness of 0 was
.. An integrally molded product with a 5# sintered body was obtained.

一体成形品の寸法精度は径方向±5μ、厚さ方向±15
μで鉄板と焼結体の焼き付き面の耐トルクは12Kg・
cm以上であった。又得られた焼結体の最大エネルギー
積は15MGOeであった。
The dimensional accuracy of the integrally molded product is ±5μ in the radial direction and ±15μ in the thickness direction.
The torque resistance of the seizing surface of the iron plate and sintered body is 12Kg・
It was more than cm. The maximum energy product of the obtained sintered body was 15 MGOe.

実施例2 実施例1と同様にして得られた合金粉末を下パンチの上
に径50m、厚さ1Mの鉄板を配した金型内に充填し、
60KOeの磁場中15トン/ crAの圧力をかけな
がら、1000A/CIiの直流電流を5分間流し、鉄
板上に径50m、厚さ1#11の焼結体が焼き付いた一
体成形品を得た。寸法精度は径方向±3μ、厚さ方向±
10μであり、鉄板と焼結体の焼き付き面の耐トルクは
12Kg・cm以上であった。又その最大エネルギー積
は18MGOeであった。
Example 2 The alloy powder obtained in the same manner as in Example 1 was filled into a mold with an iron plate with a diameter of 50 m and a thickness of 1 M arranged on the lower punch,
A direct current of 1000 A/CIi was passed for 5 minutes while applying a pressure of 15 tons/crA in a magnetic field of 60 KOe to obtain an integral molded product with a diameter of 50 m and a thickness of 1#11 sintered body baked onto an iron plate. Dimensional accuracy is ±3μ in the radial direction and ±3μ in the thickness direction.
10μ, and the torque resistance of the seizing surfaces of the iron plate and the sintered body was 12 kg·cm or more. Moreover, its maximum energy product was 18 MGOe.

実施例3 Nd33重位%、 81.3重量%、残部はFeからな
る組成の合金を真空溶解で得た。これを実施例1と同様
に処理し得られた合金微粉末を金型内に径30#211
.厚さ11M1の鉄板を配した上に充填し60KOeの
磁場中15トン/dの圧力をかIプながら1000A/
7の直流電流を2分間流し、鉄板上に径30m、厚さ1
mの焼結体が焼き付いた一体成形品を得た。寸法精度は
径方向±5μ、厚さ方向±15μであり、鉄板と焼結体
の焼き付き面の耐トルクは15Kg・m以上であった。
Example 3 An alloy having a composition of 33% by weight of Nd, 81.3% by weight, and the balance of Fe was obtained by vacuum melting. This was treated in the same manner as in Example 1, and the resulting alloy fine powder was placed in a mold with a diameter of 30#211.
.. It was packed on an iron plate with a thickness of 11M1 and heated at 1000 A/d while applying a pressure of 15 tons/d in a magnetic field of 60 KOe.
A DC current of 7 was passed for 2 minutes, and a diameter of 30 m and a thickness of 1 was applied to the iron plate.
An integrally molded product in which a sintered body of m was baked was obtained. The dimensional accuracy was ±5μ in the radial direction and ±15μ in the thickness direction, and the torque resistance of the seizing surfaces of the iron plate and the sintered body was 15Kg·m or more.

又得られた焼結体の最大エネルギー積は25MGOeで
あった。
The maximum energy product of the obtained sintered body was 25 MGOe.

(発明の効果) 本発明によれば磁場向加圧成形放電焼結工程によりヨー
ク材と焼き付は一体化された焼結体を一挙に製造するこ
とができ後加工、接着等の工程を要せず、これを直ちに
コンポーネントとして利用することができるので、その
工業的価値は甚だ大ぎい。
(Effects of the Invention) According to the present invention, a sintered body in which the yoke material and the sintering are integrated can be manufactured all at once by the magnetic field-directed pressure molding discharge sintering process, and post-processing, adhesion, etc. processes are not required. Since it can be used immediately as a component without having to do so, its industrial value is enormous.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の製造工程を示すフローシート。 第2図は放電焼結工程に用いる装置の概念図である。 出願人 製鉄化学工業株式会社(ほか1名)代表者増田
裕治 第 1 図
FIG. 1 is a flow sheet showing the manufacturing process of the present invention. FIG. 2 is a conceptual diagram of an apparatus used in the discharge sintering process. Applicant: Steel Chemical Industry Co., Ltd. (and 1 other person) Representative: Yuji Masuda Figure 1

Claims (1)

【特許請求の範囲】[Claims]  希土類元素を含有する永久磁石焼結体を製造するに際
し、原料磁性合金粉を磁場内で加圧成形すると共に該圧
力下で放電焼結を行ない同時に成形体をヨーク材等の金
属材料に焼き付け一体とすることを特徴とする希土類磁
石の製造方法。
When producing a permanent magnet sintered body containing rare earth elements, raw magnetic alloy powder is pressure-formed in a magnetic field and discharge sintered under the pressure, and at the same time the molded body is baked and integrated with a metal material such as a yoke material. A method for manufacturing a rare earth magnet, characterized by:
JP62269100A 1987-10-24 1987-10-24 Manufacture of rare earth magnet Pending JPH01111303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62269100A JPH01111303A (en) 1987-10-24 1987-10-24 Manufacture of rare earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62269100A JPH01111303A (en) 1987-10-24 1987-10-24 Manufacture of rare earth magnet

Publications (1)

Publication Number Publication Date
JPH01111303A true JPH01111303A (en) 1989-04-28

Family

ID=17467671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62269100A Pending JPH01111303A (en) 1987-10-24 1987-10-24 Manufacture of rare earth magnet

Country Status (1)

Country Link
JP (1) JPH01111303A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01175705A (en) * 1987-12-29 1989-07-12 Daido Steel Co Ltd Manufacture of rare earth magnet
JPH02309607A (en) * 1989-05-24 1990-12-25 Seiko Electronic Components Ltd Manufacture of rare earth magnet
JPH0344904A (en) * 1989-07-12 1991-02-26 Matsushita Electric Ind Co Ltd Manufacture of rare earth element-iron permanent magnet
DE4026796A1 (en) * 1989-09-01 1991-03-14 Matsushita Electric Ind Co Ltd Anisotropic permanent magnet with good temp. resistant properties - made of alloy of iron-cobalt-boron- rare earth
JP2002540595A (en) * 1999-03-19 2002-11-26 バクームシュメルツェ ゲゼルシャフト ミット ベシュレンクテル ハフツング Composite part and method of manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01175705A (en) * 1987-12-29 1989-07-12 Daido Steel Co Ltd Manufacture of rare earth magnet
JPH02309607A (en) * 1989-05-24 1990-12-25 Seiko Electronic Components Ltd Manufacture of rare earth magnet
JPH0344904A (en) * 1989-07-12 1991-02-26 Matsushita Electric Ind Co Ltd Manufacture of rare earth element-iron permanent magnet
DE4026796A1 (en) * 1989-09-01 1991-03-14 Matsushita Electric Ind Co Ltd Anisotropic permanent magnet with good temp. resistant properties - made of alloy of iron-cobalt-boron- rare earth
JP2002540595A (en) * 1999-03-19 2002-11-26 バクームシュメルツェ ゲゼルシャフト ミット ベシュレンクテル ハフツング Composite part and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP5815655B2 (en) R-T-B-M-C sintered magnet manufacturing method and manufacturing apparatus thereof
JP4618553B2 (en) Method for producing RTB-based sintered magnet
KR102322977B1 (en) Magnetic core and method for manufacturing same
JP2780429B2 (en) Rare earth-iron magnet manufacturing method
CN103875047A (en) Rare earth permanent magnet and method for producing rare earth permanent magnet
JPH01111303A (en) Manufacture of rare earth magnet
JP6691666B2 (en) Method for manufacturing RTB magnet
KR101804313B1 (en) Method Of rare earth sintered magnet
US20190006098A1 (en) Near net shape manufacturing of magnets
JP4556236B2 (en) Rare plate for sintering rare earth magnet and method for producing rare earth magnet using the same
JPWO2018056390A1 (en) Method for producing sintered body for forming sintered magnet and method for producing permanent magnet using sintered body for forming sintered magnet
CN110706911A (en) Magnet manufacturing by additive manufacturing using slurry
JP6691667B2 (en) Method for manufacturing RTB magnet
JPWO2016035670A1 (en) Radial anisotropic sintered ring magnet and manufacturing method thereof
WO1996030144A1 (en) Soft magnetic anisotropic composite materials
JP2007123467A (en) Method for manufacturing anisotropic magnet
JPS6181607A (en) Preparation of rare earth magnet
JP2007254813A (en) Method for producing rare earth sintered magnet and die for molding used therefor
JP2002367846A (en) Method for manufacturing radial or polar anisotropic sintered magnet
JP2000012359A (en) Magnet and its manufacture
JPH0645167A (en) Manufacture of isotropic bond magnet
JPH0628215B2 (en) Manufacturing method of radial oriented magnet
JPH07211566A (en) Manufacture of anisotropic magnet
JPH01155603A (en) Manufacture of oxidation-resistant rare-earth permanent magnet
KR20180119755A (en) Manufacturing method of rare earth sintered magnet