JP4556236B2 - Rare plate for sintering rare earth magnet and method for producing rare earth magnet using the same - Google Patents
Rare plate for sintering rare earth magnet and method for producing rare earth magnet using the same Download PDFInfo
- Publication number
- JP4556236B2 JP4556236B2 JP2005083406A JP2005083406A JP4556236B2 JP 4556236 B2 JP4556236 B2 JP 4556236B2 JP 2005083406 A JP2005083406 A JP 2005083406A JP 2005083406 A JP2005083406 A JP 2005083406A JP 4556236 B2 JP4556236 B2 JP 4556236B2
- Authority
- JP
- Japan
- Prior art keywords
- rare earth
- sintering
- earth magnet
- base plate
- magnet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Furnace Charging Or Discharging (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
- Powder Metallurgy (AREA)
Description
本発明は、希土類元素を含む磁石原料粉の成形体焼結工程で用いられる希土類磁石焼結用敷板及びそれを用いた希土類磁石の製造方法に関する。 The present invention relates to a base plate for sintering a rare earth magnet used in a step of sintering a green raw material powder containing a rare earth element and a method for producing a rare earth magnet using the same.
例えばハードディスクドライブ用ボイスコイルモータや自動車駆動用モータ等の幅広い分野において、モータの小型化及び高性能化が要求されている。モータの小型化及び高性能化を図るためにはモータに組み込まれる磁石の性能向上が重要であり、近年では非常に高い磁気特性を示す例えばネオジム鉄ボロン系焼結磁石等の希土類磁石が多く使用されている。 For example, in a wide range of fields such as a hard disk drive voice coil motor and an automobile drive motor, miniaturization and high performance of the motor are required. In order to reduce the size and performance of motors, it is important to improve the performance of magnets built into motors. In recent years, rare earth magnets such as neodymium iron boron-based sintered magnets that exhibit extremely high magnetic properties are often used. Has been.
希土類磁石は、基本的には以下のように製造される。すなわち、先ず、希土類元素等を主成分とする原料合金を水素粉砕及び/又は機械的粉砕により粗粉砕した後、気流式粉砕機等により微粉砕し、原料合金微粉末を作製する。次に、原料合金微粉末を磁場中で圧縮成形し、成形体を得る。次に、この成形体を焼結炉において例えば1000℃〜1300℃で焼結処理し、例えば500℃〜900℃で時効処理することにより、希土類磁石が製造される。 The rare earth magnet is basically manufactured as follows. That is, first, a raw material alloy containing a rare earth element or the like as a main component is coarsely pulverized by hydrogen pulverization and / or mechanical pulverization, and then finely pulverized by an airflow pulverizer or the like to produce a raw material alloy fine powder. Next, the raw material alloy fine powder is compression-molded in a magnetic field to obtain a compact. Next, the compact is sintered in a sintering furnace at, for example, 1000 ° C. to 1300 ° C., and aging is performed at, for example, 500 ° C. to 900 ° C., thereby producing a rare earth magnet.
希土類磁石を量産する際には、通常、成形体を複数個並べた焼結プレートを焼結ケースに収容し、焼結炉内に焼結ケースを配置して、多数の成形体を同時に焼結処理する(例えば、特許文献1等を参照。)。成形体を載置するための敷板(焼結プレート)を構成する材料には、焼結処理時の1000℃〜1300℃程度の高温にさらされたときやハンドリング時に十分な強度を有することが要求され、例えば特許文献1の焼結プレートにはモリブデン板が使用されている。また、例えばモリブデン等の高融点金属材料から形成された台板本体にジルコニア、イットリウム、タングステン等の酸化物が溶射された台板(特許文献2参照)等が提案されている。さらに、特許文献3において、カーボン基材がY含有酸化物被膜で被覆されている耐熱性被覆部材が提案されている。
しかしながら、例えば特許文献1に記載されるようなモリブデン板に成形体を載置して焼結処理すると、焼結過程において成形体から希土類成分がしみ出すことによって、モリブデン板と焼結体との間で溶着が発生する。そして、モリブデン板から焼結体を分離する際に加える衝撃が原因で焼結体が破損し、歩留まりの低下を招くおそれもある。また、溶着した焼結体をサンドブラスト等で敷板から除去する際、敷板が変形、破損、摩耗するおそれがあり、敷板の交換費用がかさむという問題もある。
However, for example, when a compact is placed on a molybdenum plate as described in
さらに、モリブデンを主体とする敷板は、非常に重いというデメリットがある。焼結ケース内に配置される希土類磁石焼結用敷板が重いと、焼結炉内に配置可能な焼結ケース数、すなわち一度に焼結処理可能な成形体重量が減少し、生産効率の低下を招く。特許文献2では、台板本体の表面に酸化物の溶射膜を設けることで台板と焼結体との間での溶着等を改善しているが、特許文献1と同様に台板が非常に重くなるというデメリットがある。
Furthermore, the base plate mainly made of molybdenum has a demerit that it is very heavy. If the base plate for rare earth magnet sintering placed in the sintering case is heavy, the number of sintering cases that can be placed in the sintering furnace, that is, the weight of the compact that can be sintered at a time, decreases, resulting in lower production efficiency. Invite. In
そこで本発明はこのような従来の実情に鑑みて提案されたものであり、軽量、高強度であり、敷板と焼結体との間での溶着を抑制することが可能な希土類磁石焼結用敷板及びそれを用いた希土類磁石の製造方法を提供することを目的とする。 Therefore, the present invention has been proposed in view of such conventional situations, and is for light-weight, high-strength, rare-earth magnet sintering capable of suppressing welding between a floor plate and a sintered body. An object of the present invention is to provide a base plate and a method for producing a rare earth magnet using the same.
本発明者らは、前述の目的を達成するために、長期にわたり検討を重ねてきた。その結果、カーボンの一種である炭素繊維強化炭素複合材が軽量且つ高強度で、しかも焼結体との溶着が発生しにくく、希土類磁石焼結用敷板の構成材料として極めて有効であるという知見を見出し、本発明を完成させるに至った。すなわち、本発明に係る希土類磁石焼結用敷板は、希土類元素を含む磁石原料粉の成形体の焼結工程で前記成形体を載置するために用いられ、炭素繊維強化炭素複合材で構成されるとともに、前記成形体を載置する面に酸化ジルコニウム膜が形成されており、前記酸化ジルコニウム膜が、酸化ジルコニウムを溶射したものであることを特徴とする。 In order to achieve the above-mentioned object, the present inventors have made extensive studies. As a result, the knowledge that carbon fiber reinforced carbon composite material, which is a kind of carbon, is lightweight and high in strength, is less likely to be welded to a sintered body, and is extremely effective as a constituent material for a base plate for sintering rare earth magnets. The headline and the present invention have been completed. That is, the floor plates for the rare earth sintered magnet according to the present invention is used for mounting the molded body in the sintering process of the molded body of the magnet raw material powder containing a rare earth element, configure a carbon fiber-reinforced carbon composite material In addition, a zirconium oxide film is formed on the surface on which the molded body is placed, and the zirconium oxide film is obtained by spraying zirconium oxide.
本発明では、希土類磁石焼結用敷板の構成材料として、カーボンの一種である炭素繊維強化炭素複合材を用いる。カーボンの密度は2.3g/cm3、炭素繊維強化炭素複合材は1.5g/cm3程度であり、モリブデンの密度10.2g/cm3と比較すると極めて低密度である。このため、焼結磁石焼結用敷板をカーボンの一種である炭素繊維強化炭素複合材で構成することで、同一の構造を有するモリブデン製敷板に対して約85%程度の大幅な軽量化が実現される。 In the present invention, a carbon fiber reinforced carbon composite material, which is a kind of carbon, is used as a constituent material of the base plate for rare earth magnet sintering. The density of carbon 2.3 g / cm 3, a carbon fiber-reinforced carbon composite material is about 1.5 g / cm 3, a very low density when compared to the density 10.2 g / cm 3 molybdenum. For this reason, by constructing the sintered magnet sintering base plate with a carbon fiber reinforced carbon composite material, which is a kind of carbon, a significant weight reduction of about 85% is achieved compared to the molybdenum base plate with the same structure. Is done.
また、炭素繊維強化炭素複合材は高強度であり、耐破損性に優れた材料である。炭素繊維強化炭素複合材からなる敷板は、同一形状(厚さ)のグラファイト製敷板に比べても高強度である。グラファイト製敷板と炭素繊維強化炭素複合材製敷板とで同強度を達成しようとする場合、グラファイト製敷板は、炭素繊維強化炭素複合材製敷板に比べ約3倍の厚さを必要とする。つまり、炭素繊維強化炭素複合材を構成材料とすることにより、希土類磁石焼結用敷板として充分な強度を確保し、さらには希土類磁石焼結用敷板の薄型化も可能となる。 In addition, the carbon fiber reinforced carbon composite material is a material having high strength and excellent breakage resistance. A floorboard made of a carbon fiber reinforced carbon composite material has higher strength than a graphite floorboard having the same shape (thickness). When attempting to achieve the same strength between a graphite floorboard and a carbon fiber reinforced carbon composite floorboard, the graphite floorboard requires about three times the thickness of the carbon fiber reinforced carbon composite floorboard. That is, by using a carbon fiber reinforced carbon composite as a constituent material, sufficient strength can be secured as a base plate for sintering a rare earth magnet, and further, the base plate for sintering a rare earth magnet can be made thin.
また、炭素繊維強化炭素複合材は熱に対する耐久性も高い材料である。したがって、本発明の希土類磁石焼結用敷板は、焼結工程に繰り返し使用した場合であっても熱変形を生じにくい。 Moreover, the carbon fiber reinforced carbon composite material is a material having high durability against heat. Therefore, the base plate for sintering a rare earth magnet of the present invention hardly causes thermal deformation even when it is repeatedly used in the sintering process.
さらに、炭素繊維強化炭素複合材は、従来の焼結用敷板の構成材料であるモリブデン等に比べて焼結処理後の成形体(焼結体)との溶着が発生し難い材料である。したがって、本発明の希土類磁石焼結用敷板は、溶着による焼結体の変形やクラック等が抑制される。また、敷板と焼結体とを分離する工程に起因する焼結体の破損が抑制される。加えて、敷板に溶着した焼結体を除去する作業が不要となるため、除去作業に伴う敷板の変形、破損、摩耗等の発生がなく、敷板を何度も再利用可能であり、コスト削減の点で有効である。また、本発明の希土類磁石焼結用敷板は高い溶着防止効果を持つので、溶着防止用の敷粉を散布する必要がなくなる。 Furthermore, the carbon fiber reinforced carbon composite material is a material that is less likely to be welded to a molded body (sintered body) after the sintering process, compared to molybdenum or the like that is a constituent material of a conventional sintering base plate. Therefore, in the base plate for rare earth magnet sintering of the present invention, deformation and cracks of the sintered body due to welding are suppressed. Moreover, damage to the sintered body due to the step of separating the floor plate and the sintered body is suppressed. In addition, since there is no need to remove the sintered body welded to the floorboard, there is no deformation, breakage, wear, etc. of the floorboard accompanying the removal work, and the floorboard can be reused many times, reducing costs. This is effective. In addition, since the base plate for rare earth magnet sintering according to the present invention has a high effect of preventing welding, it is not necessary to spray a base powder for preventing welding.
一般に、グラファイトにより構成される敷板と成形体とを近接又は接触させて焼結処理を行うと、グラファイトが成形体(焼結体)を例えば炭化して表面に炭化物等を生成し、磁気特性の低下を招くことがある。敷板の構成材料を炭素繊維強化炭素複合材とした場合も、グラファイトと同様の問題が起こることが懸念されるが、表面に生成した炭化物等は、焼結工程後に研削加工を行うことにより容易に除去可能である。したがって、炭素繊維強化炭素複合材を単独で敷板を構成したことによる磁気特性への悪影響はほとんどない。すなわち、本発明の希土類磁石焼結用敷板においては、成形体載置面の被膜等は基本的には不要である。 In general, when sintering is performed by bringing a base plate composed of graphite and a molded body close to or in contact with each other, the graphite carbonizes the molded body (sintered body), for example, to generate carbides on the surface, and magnetic properties of the molded body. May cause a drop. There is a concern that the same problem as graphite may occur when the material of the base plate is a carbon fiber reinforced carbon composite material, but the carbide generated on the surface can be easily obtained by grinding after the sintering process. It can be removed. Therefore, there is almost no adverse effect on the magnetic properties due to the sole plate made of the carbon fiber reinforced carbon composite material alone. That is, in the base plate for sintering a rare earth magnet of the present invention, a coating film on the molded body mounting surface is basically unnecessary.
なお、特許文献3においては、カーボン基材をY含有酸化物で被覆した耐熱性被覆部材が開示されているが、Y含有酸化物で被覆した状態での使用を前提としており、カーボンを被膜なしで使用することを示唆する記載は全く見あたらない。また、炭素繊維強化炭素複合材を選択することも完全に想定外である。 Patent Document 3 discloses a heat-resistant coating member in which a carbon base material is coated with a Y-containing oxide. However, it is assumed that the carbon base material is coated with a Y-containing oxide, and the carbon is not coated. There is no description suggesting that it is used in. It is also completely unexpected to select a carbon fiber reinforced carbon composite.
また、本発明に係る希土類磁石の製造方法は、希土類元素を含む磁石原料粉の成形体の焼結工程を有する希土類磁石の製造方法であって、前記焼結工程において、炭素繊維強化炭素複合材で構成された希土類磁石焼結用敷板上に前記成形体を載置することを特徴とし、さらに、前記希土類磁石焼結用敷板の前記成形体を載置する面に酸化ジルコニウム膜が形成されており、前記酸化ジルコニウム膜が、酸化ジルコニウムを溶射したものであることを特徴とする。 Further, the method for producing a rare earth magnet according to the present invention is a method for producing a rare earth magnet having a sintering step of a compact of magnet raw material powder containing rare earth elements, and in the sintering step, a carbon fiber reinforced carbon composite material The molded body is placed on a base plate for sintering a rare earth magnet , and a zirconium oxide film is formed on the surface of the base plate for sintering the rare earth magnet. The zirconium oxide film is a thermal spray of zirconium oxide.
希土類焼結磁石の量産における焼結工程に際しては、希土類磁石焼結用敷板を敷いた焼結ケースを焼結炉内に複数配置する場合が多いため、炭素繊維強化炭素複合材で構成された軽量な希土類磁石焼結用敷板を用いることにより、例えばモリブデン製敷板を用いた場合に比べて、焼結炉内に配置可能な成形体重量を増加できる。したがって、生産効率の向上が図られる。さらに、用いる希土類磁石焼結用敷板は高強度であるため、使用中の破損が抑制され、敷板に要するメンテナンス費用を削減できる。 In the sintering process in mass production of rare earth sintered magnets, there are many cases where a plurality of sintering cases with a rare earth magnet sintering base plate are placed in a sintering furnace. By using a rare earth magnet sintering base plate, it is possible to increase the weight of a molded body that can be placed in a sintering furnace as compared with, for example, a molybdenum base plate. Therefore, the production efficiency can be improved. Furthermore, since the base plate for rare earth magnet sintering used has high strength, breakage during use is suppressed, and maintenance costs required for the base plate can be reduced.
また、焼結工程において、炭素繊維強化炭素複合材を構成材料とする希土類磁石焼結用敷板を用いることにより、例えばモリブデン敷板を用いる場合に比べて敷板への焼結体の溶着が抑制され、焼結体の変形、クラックの発生や、焼結体を分離する工程に起因する焼結体の破損が抑制される。また、敷板に溶着した焼結体を除去する作業が不要なため、除去作業に伴う敷板の変形、破損、摩耗等の発生がなく、敷板を何度も再利用可能であり、コスト削減の点で有効である。また、本発明の希土類磁石焼結用敷板を用いることで、焼結工程毎に敷板上に溶着防止用の敷粉を散布する必要がなくなる。 Further, in the sintering process, by using a base plate for sintering a rare earth magnet having a carbon fiber reinforced carbon composite material as a constituent material, for example, welding of the sintered body to the base plate is suppressed compared to the case of using a molybdenum base plate, Deformation of the sintered body, generation of cracks, and breakage of the sintered body due to the process of separating the sintered body are suppressed. In addition, since there is no need to remove the sintered body welded to the floor plate, there is no deformation, breakage, wear, etc. of the floor plate due to the removal operation, and the floor plate can be reused many times. It is effective in. In addition, by using the base plate for rare earth magnet sintering of the present invention, it is not necessary to spray a base powder for preventing welding on the base plate for each sintering process.
さらに、焼結工程において炭素繊維強化炭素複合材を構成材料とする希土類磁石焼結用敷板を用いると、成形体表面への悪影響による磁気特性低下が懸念されるが、成形体表面に生成した炭化物等は容易に除去可能である。したがって、特性低下のほとんど無い希土類磁石が得られる。 Furthermore, when using a base plate for sintering a rare earth magnet comprising a carbon fiber reinforced carbon composite material as a constituent material in the sintering process, there is a concern that the magnetic properties may be deteriorated due to an adverse effect on the surface of the molded body. Etc. can be easily removed. Therefore, a rare earth magnet with almost no deterioration in characteristics can be obtained.
ここで、本発明における焼結工程とは、希土類元素を含む磁石原料粉の成形体を焼結処理する工程と、焼結工程後の成形体(焼結体)を時効処理する工程との両方を含む概念である。 Here, the sintering step in the present invention is both a step of sintering a compact of magnet raw material powder containing rare earth elements and a step of aging the compact after sintering (sintered compact). It is a concept that includes
本発明によれば、大幅な軽量化を実現し、強度に優れ、希土類磁石の焼結工程で用いることにより希土類磁石(焼結体)の溶着を抑制することが可能な希土類磁石焼結用敷板を提供することができる。また、本発明の希土類磁石の製造方法によれば、軽量、高強度、且つ希土類磁石(焼結体)の溶着が抑制された希土類磁石焼結用敷板を用いることにより、生産効率の飛躍的な向上や、敷板に要する製造コストの削減が可能となるとともに、希土類磁石を高い歩留まりにて製造することができる。 According to the present invention, a base plate for sintering a rare earth magnet that realizes a significant reduction in weight, has excellent strength, and can suppress welding of a rare earth magnet (sintered body) when used in a rare earth magnet sintering process. Can be provided. In addition, according to the method for manufacturing a rare earth magnet of the present invention, the use of a base plate for sintering a rare earth magnet that is lightweight, has high strength, and suppresses welding of the rare earth magnet (sintered body) can dramatically increase production efficiency. It is possible to improve and reduce the manufacturing cost required for the floorboard, and to manufacture rare earth magnets with a high yield.
以下、本発明を適用した希土類磁石焼結用敷板及びそれを用いた希土類磁石の製造方法について、図面を参照しながら詳細に説明する。 Hereinafter, a base plate for sintering a rare earth magnet to which the present invention is applied and a method for producing a rare earth magnet using the same will be described in detail with reference to the drawings.
例えば図1に示すように、希土類磁石焼結用敷板1は、焼結工程において希土類元素を含む磁石原料粉の成形体2を焼結処理する際、成形体2に接触して成形体2を載置するために用いられる板状の焼結用治具であり、炭素繊維強化炭素複合材を主な構成材料とする。
For example, as shown in FIG. 1, the
ここで、炭素繊維強化炭素複合材とは、出発材料として炭素繊維不織布を用いて製造されるものであり、炭素繊維強化炭素複合材から構成される敷板は、例えば、炭素繊維不織布に樹脂を含浸させてプリプレグとした後、プリプレグを所定の形状に成形して成形体を得、次に成形体を炭素化及び黒鉛化して得られるものである。強度および熱伝導率の点から、炭素繊維強化炭素複合材の密度は、1.2〜1.8g/cm3が好ましい。 Here, the carbon fiber reinforced carbon composite material is manufactured using a carbon fiber non-woven fabric as a starting material, and the base plate composed of the carbon fiber reinforced carbon composite material, for example, impregnates the carbon fiber non-woven fabric with a resin. The prepreg is molded into a predetermined shape to obtain a molded body, and then the molded body is obtained by carbonization and graphitization. From the viewpoint of strength and thermal conductivity, the density of the carbon fiber reinforced carbon composite is preferably 1.2 to 1.8 g / cm 3 .
炭素繊維強化炭素複合材は、モリブデン等の金属材料に比べて軽量であり、希土類磁石焼結用敷板1の軽量化の面で極めて有利である。
The carbon fiber reinforced carbon composite material is lighter than a metal material such as molybdenum, and is extremely advantageous in terms of reducing the weight of the
また、炭素繊維強化炭素複合材は高強度であるため、この炭素繊維強化炭素複合材を構成材料とすることで、希土類磁石焼結用敷板1の耐破損性を高め、また、希土類磁石焼結用敷板1の薄型化を図ることができる。軽量な材質としてはグラファイトもあるが、炭素繊維強化炭素複合材はグラファイトに比べて高強度な点で、敷板の材質として非常に有利である。なお、グラファイトは原料としてカーボンを用いたものであり、グラファイトからなる敷板は、例えば、粉砕工程、混捏工程、成形工程、炭素化工程、緻密化工程(必要に応じて炭素化工程、緻密化工程を繰り返す。)及び黒鉛化工程を行うことにより製造される。
In addition, since the carbon fiber reinforced carbon composite material has high strength, the use of the carbon fiber reinforced carbon composite material as a constituent material increases the breakage resistance of the
さらに、炭素繊維強化炭素複合材は、モリブデンに比べ焼結過程において焼結体との溶着が抑制されている点で優れた材料である。本発明の希土類磁石焼結用敷板1を用いて焼結処理を行うことで、焼結体との間での溶着を抑制でき、希土類磁石を歩留まり良く製造できる。また、敷板に溶着した焼結体を除去する作業が不要なため、敷板を繰り返し利用でき、コスト削減を図る点で有効である。また、敷板上に溶着防止用の敷粉を散布する必要がなくなる。
Further, the carbon fiber reinforced carbon composite is an excellent material in that the welding with the sintered body is suppressed in the sintering process as compared with molybdenum. By performing the sintering process using the
炭素繊維強化炭素複合材は、モリブデンに比べ安価であり、1000℃〜1300℃程度の高温で焼結処理を行った場合であっても変形量が小さいという利点もある。したがって、炭素繊維強化炭素複合材を敷板に使用することで、敷板変形による焼結体変形が抑制できる。特に薄型形状に対しては有効である。 The carbon fiber reinforced carbon composite material is less expensive than molybdenum and has an advantage that the amount of deformation is small even when the sintering treatment is performed at a high temperature of about 1000 ° C. to 1300 ° C. Therefore, by using the carbon fiber reinforced carbon composite material for the floor plate, the sintered body deformation due to the floor plate deformation can be suppressed. This is particularly effective for thin shapes.
さらにまた、炭素繊維強化炭素複合材を構成材料とする希土類磁石焼結用敷板1は、成形体2と接触させて焼結処理した場合であっても、成形体(焼結体)2へ与える悪影響が小さいという利点を持つ。
Further, the rare earth magnet
炭素繊維強化炭素複合材は、図1に示すように希土類磁石焼結用敷板1の構成材料として単独で使用し得るが、例えば図2に示すように、希土類磁石焼結用敷板1は、炭素繊維強化炭素複合材から構成される敷板本体3の成形体2を載置する面に酸化ジルコニウム膜4が形成されたものであってもよい。希土類磁石焼結用敷板1の成形体2の載置面に酸化ジルコニウム膜4を形成することにより、炭素繊維強化炭素複合材の炭素成分と成形体2との接触が防止され、成形体(焼結体)2の炭化等、成形体(焼結体)2への悪影響が確実に抑制される。また、炭素繊維強化炭素複合材等の表面に酸化物膜が形成されている場合、繰り返しの焼結処理によって酸化物膜の剥離が懸念されるが、酸化ジルコニウムの炭素繊維強化炭素複合材に対する密着強度は高いので、酸化ジルコニウム膜4の剥離は比較的発生しにくい。
The carbon fiber reinforced carbon composite material can be used alone as a constituent material of the
ここで、酸化ジルコニウム膜4は、例えば溶射により形成される。酸化ジルコニウム膜4は、基本的には酸化ジルコニウムからなるものであるが、不可避不純物が含まれていてもよい。 Here, the zirconium oxide film 4 is formed by thermal spraying, for example. The zirconium oxide film 4 is basically made of zirconium oxide, but may contain inevitable impurities.
酸化ジルコニウム膜4の膜厚は、炭素繊維強化炭素複合材と成形体2との接触を確実に防止する観点から、例えば5μm〜30μmであることが好ましく、10μm〜20μmであることがより好ましい。
The film thickness of the zirconium oxide film 4 is preferably, for example, 5 μm to 30 μm, and more preferably 10 μm to 20 μm, from the viewpoint of reliably preventing contact between the carbon fiber reinforced carbon composite and the molded
次に、製造対象となる希土類磁石について説明する。希土類磁石は、希土類元素を主成分とする希土類焼結磁石であり、ネオジム鉄ボロン系磁石やサマリウムコバルト系磁石等である。ネオジム鉄ボロン系磁石は、例えばR−T−B(Rは希土類元素の1種又は2種以上、ただし希土類元素はYを含む概念である。TはFe又はFe及びCoを必須とする遷移金属元素の1種又は2種以上である。Bはホウ素である。)で表され、希土類元素Rが20質量%〜40質量%、ホウ素Bが0.5質量%〜4.5質量%、残部が遷移金属元素Tとなるような組成を有する。ここで、Rは、希土類元素、すなわちY、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Yb、及びLuから選ばれる1種又は2種以上である。中でも、Ndは、資源的に豊富で比較的安価であることから、主成分をNdとすることが好ましい。また、Dyの含有は、異方性磁界を増加させるため、保磁力Hcjを向上させる上で有効である。 Next, the rare earth magnet to be manufactured will be described. The rare earth magnet is a rare earth sintered magnet mainly composed of a rare earth element, such as a neodymium iron boron magnet or a samarium cobalt magnet. The neodymium iron boron-based magnet is, for example, R-T-B (where R is one or more of rare earth elements, where the rare earth element includes Y. T is a transition metal in which Fe or Fe and Co are essential. 1 or 2 or more elements. B is boron.), Rare earth element R is 20% by mass to 40% by mass, boron B is 0.5% by mass to 4.5% by mass, and the balance Has a composition that becomes a transition metal element T. Here, R is one or more selected from rare earth elements, that is, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, and Lu. Especially, since Nd is abundant in resources and relatively inexpensive, the main component is preferably Nd. Further, the inclusion of Dy is effective in improving the coercive force Hcj because it increases the anisotropic magnetic field.
あるいは、添加元素Mを加えてR−T−B−M系希土類焼結磁石とすることも可能である。この場合、添加元素Mとしては、Al、Cr、Mn、Mg、Si、Cu、C、Nb、Sn、W、V、Zr、Ti、Mo、Bi、Ga等を挙げることができ、これらから1種又は2種以上を選択して用いることができる。これら添加元素Mの添加量は、残留磁束密度等の磁気特性を考慮して、3質量%以下とすることが好ましい。添加元素Mの添加量が多すぎると、磁気特性が劣化するおそれがある。 Alternatively, the additive element M can be added to form an R-T-B-M rare earth sintered magnet. In this case, examples of the additive element M include Al, Cr, Mn, Mg, Si, Cu, C, Nb, Sn, W, V, Zr, Ti, Mo, Bi, and Ga. A seed | species or 2 or more types can be selected and used. The addition amount of these additive elements M is preferably 3% by mass or less in consideration of magnetic characteristics such as residual magnetic flux density. If the amount of additive element M added is too large, the magnetic properties may be deteriorated.
また、本発明は、ネオジム鉄ボロン系磁石ばかりでなく、前記サマリウムコバルト系磁石(SmCo系希土類焼結磁石)等にも適用することができ、これらに限らず公知の希土類磁石全般に適用可能であることは言うまでもない。 The present invention can be applied not only to neodymium iron boron-based magnets but also to the samarium-cobalt-based magnets (SmCo-based rare earth sintered magnets), and is not limited to these, and can be applied to all known rare earth magnets. Needless to say.
前述の希土類磁石の製造には、例えば粉末冶金法が採用される。以下、希土類磁石、例えばネオジム鉄ボロン系磁石の粉末冶金法による製造方法について説明する。 For the production of the rare earth magnet, for example, powder metallurgy is employed. Hereinafter, a method for producing a rare earth magnet, for example, a neodymium iron boron-based magnet by a powder metallurgy method will be described.
粉末冶金法による希土類磁石の製造プロセスは、基本的には、合金化工程、粗粉砕工程、微粉砕工程、磁場中成形工程、時効工程を含む焼結工程、機械加工工程、被膜形成工程等により構成される。本発明では、前述の炭素繊維強化炭素複合材を構成材料とする希土類磁石焼結用敷板を、焼結工程において用いる。なお、酸化防止のために、焼結工程後までの各工程は、ほとんどの工程を真空中又は不活性ガス雰囲気中(窒素雰囲気中やアルゴン雰囲気中等)で行う。 The manufacturing process of rare earth magnets by powder metallurgy is basically based on alloying process, coarse pulverization process, fine pulverization process, magnetic field forming process, sintering process including aging process, machining process, film forming process, etc. Composed. In the present invention, a base plate for sintering a rare earth magnet using the above-described carbon fiber reinforced carbon composite as a constituent material is used in the sintering step. In order to prevent oxidation, most of the steps up to after the sintering step are performed in a vacuum or in an inert gas atmosphere (such as in a nitrogen atmosphere or an argon atmosphere).
合金化工程では、原料となる金属又は合金を磁石組成に応じて配合し、真空又は不活性ガス、例えばアルゴン雰囲気中で溶解し、鋳造することにより合金化する。鋳造法としては、溶融した高温の液体金属を回転ロール上に供給し、合金薄板を連続的に鋳造するストリップキャスト法(連続鋳造法)が、生産効率等の観点から好適であるが、これらに限られるものではない。原料金属(合金)としては、純希土類元素、希土類合金、純鉄、フェロボロン、さらにはこれらの合金等を使用することができる。 In the alloying process, a metal or alloy as a raw material is blended in accordance with the magnet composition, melted in a vacuum or an inert gas, for example, an argon atmosphere, and alloyed by casting. As a casting method, a strip casting method (continuous casting method) in which molten high-temperature liquid metal is supplied onto a rotating roll and an alloy thin plate is continuously cast is preferable from the viewpoint of production efficiency and the like. It is not limited. As the raw material metal (alloy), pure rare earth elements, rare earth alloys, pure iron, ferroboron, and alloys thereof can be used.
合金は、ほぼ最終磁石組成である単一の合金を用いても、最終磁石組成となるように、組成の異なる複数種類の合金を混合してもよい。混合は、合金化工程、粗粉砕工程、微粉砕工程のどの工程で行ってもよいが、混合性を考慮すると粉砕工程前での混合が好ましい。 As the alloy, a single alloy having an almost final magnet composition may be used, or a plurality of types of alloys having different compositions may be mixed so as to obtain the final magnet composition. The mixing may be performed in any of the alloying process, the coarse pulverization process, and the fine pulverization process, but in consideration of the mixing property, the mixing before the pulverization process is preferable.
粗粉砕工程では、先に鋳造した原料合金の薄板又はインゴット等を、粒径数十μm程度になるまで粉砕する。粉砕手段としては、スタンプミル、ジョークラッシャー、ブラウンミル等を用いることができる。粗粉砕性を向上させるために、水素吸蔵させた後、又は水素吸蔵および水素放出させた後、粗粉砕を行うことが効果的である。 In the coarse pulverization step, the previously cast thin plate or ingot of the raw material alloy is pulverized until the particle size becomes about several tens of μm. As the pulverizing means, a stamp mill, a jaw crusher, a brown mill, or the like can be used. In order to improve the coarse pulverization property, it is effective to perform coarse pulverization after hydrogen storage or after hydrogen storage and hydrogen release.
前記粗粉砕工程は、複数の粉砕手段を組み合わせた複数工程により構成することも可能である。例えば水素粉砕工程と、機械的粗粉砕工程との2工程とすることができる。水素粉砕工程は、鋳造した原料合金に水素を吸蔵させ、相によって水素吸蔵量が異なることを利用して、自己崩壊的に粉砕する工程である。これにより、粒径数mm程度の大きさに粉砕することができる。機械的粗粉砕工程は、先にも述べたようなブラウンミル等の機械的手法を利用して粉砕する工程であり、前記水素粉砕工程により数mm程度の大きさに粉砕された原料合金粉を、粒径数十μm程度になるまで粉砕する。水素粉砕工程を行う場合、機械的粗粉砕工程は省略することも可能である。 The coarse pulverization step can be constituted by a plurality of steps in which a plurality of pulverization means are combined. For example, two steps of a hydrogen pulverization step and a mechanical coarse pulverization step can be performed. The hydrogen pulverization step is a step in which hydrogen is occluded in the cast raw material alloy and pulverized in a self-destructive manner utilizing the fact that the hydrogen occlusion amount varies depending on the phase. Thereby, it can grind | pulverize to the magnitude | size about particle size several mm. The mechanical coarse pulverization step is a step of pulverizing using a mechanical method such as a brown mill as described above. The raw alloy powder pulverized to a size of about several millimeters by the hydrogen pulverization step is used. Then, pulverize until the particle size is about several tens of μm. When performing the hydrogen pulverization step, the mechanical coarse pulverization step may be omitted.
粗粉砕工程の後、微粉砕工程を行うが、この微粉砕工程は、例えばジェットミル等を使用して行われる。微粉砕の条件は、用いる気流式粉砕機に応じて適宜設定すればよく、原料合金粉を平均粒径が1〜10μm程度、例えば3〜6μmとなるまで微粉砕する。ジェットミルは、高圧の不活性ガス(例えば窒素ガス)を狭いノズルより解放して高速のガス流を発生させ、この高速のガス流により粉体の粒子を加速し、粉体の粒子同士の衝突や、ターゲット又は容器壁との衝突を発生させて粉砕する方法である。ジェットミルは、一般的に、流動層を利用するジェットミル、渦流を利用するジェットミル、衝突板を用いるジェットミル等に分類される。この微粉砕工程では、粉砕助剤や離型剤として、例えば脂肪酸系化合物等を微粉砕前又は後、あるいは前後に0.01質量%〜0.5質量%程度添加してもよい。 After the coarse pulverization step, a fine pulverization step is performed. This fine pulverization step is performed using, for example, a jet mill. The fine pulverization conditions may be set as appropriate according to the airflow type pulverizer to be used, and the raw material alloy powder is finely pulverized until the average particle size becomes about 1 to 10 μm, for example, 3 to 6 μm. A jet mill releases a high-pressure inert gas (for example, nitrogen gas) from a narrow nozzle to generate a high-speed gas flow. The high-speed gas flow accelerates powder particles, and the powder particles collide with each other. Or it is a method of generating a collision with a target or a container wall and crushing. Jet mills are generally classified into jet mills that use fluidized beds, jet mills that use vortex flow, jet mills that use impingement plates, and the like. In this pulverization step, for example, a fatty acid compound or the like may be added as a pulverization aid or a release agent before, after, or before and after pulverization, or about 0.01% by mass to 0.5% by mass.
微粉砕工程の後、磁場中成形工程において、磁石原料粉を磁場中にて成形する。具体的には、微粉砕工程で得られた磁石原料粉を電磁石を配置した金型内に充填し、磁場印加によって結晶軸を配向させた状態で磁場中成形する。磁場中成形は、縦磁場成形、横磁場成形のいずれであってもよい。磁場中成形は、例えば800kA/m〜1500kA/m程度の磁場中で、50MPa〜160MPa程度の圧力で行えばよい。 After the pulverization step, the magnet raw material powder is formed in the magnetic field in the magnetic field forming step. Specifically, the magnet raw material powder obtained in the fine pulverization step is filled in a mold in which an electromagnet is arranged, and is molded in a magnetic field in a state where crystal axes are oriented by applying a magnetic field. Forming in the magnetic field may be either longitudinal magnetic field shaping or transverse magnetic field shaping. The molding in the magnetic field may be performed at a pressure of about 50 MPa to 160 MPa in a magnetic field of about 800 kA / m to 1500 kA / m, for example.
成形体の密度は、例えば3.9g/cm3〜4.6g/cm3とすることが好ましい。成形体密度が前記範囲未満であると保形性が低下するため、後述するように成形体を複数段重ねるとともに成形体間に敷粉を介在させて焼結処理する際、敷粉の効果が十分に発揮されないおそれがある。また、成形体密度が前記範囲を上回ると、成形体の配向度が低下し、焼結処理後の磁石の残留磁束密度Brの低下を招くおそれがある。 Density of the molded body is preferably, for example, 3.9g / cm 3 ~4.6g / cm 3 . When the density of the molded body is less than the above range, the shape retention property is lowered. Therefore, when the sintering process is performed by interposing a plurality of molded bodies and interposing the powder between the molded bodies as described later, the effect of the bed powder is obtained. There is a risk that it will not be fully utilized. On the other hand, if the density of the green body exceeds the above range, the degree of orientation of the green body may be reduced, and the residual magnetic flux density Br of the magnet after the sintering process may be reduced.
成形体は、次に焼結工程において焼結処理し、希土類磁石(ネオジム鉄ボロン系磁石)とする。本発明では成形体2が直接接触する敷板として、炭素繊維強化炭素複合材を構成材料とする希土類磁石焼結用敷板1を用いる。希土類磁石焼結用敷板1は、載置面上に成形体2を載置するとともに、Fe、Ni、Mo、Ta、W等やその合金材料から構成される焼結ケースの例えば底面に敷かれる等、焼結ケース内に収容された状態で焼結炉内に配置されてもよい。
Next, the compact is sintered in a sintering step to form a rare earth magnet (neodymium iron boron magnet). In the present invention, the
また、効率的な焼結処理を行うために、成形体2を重ね合わせた状態で焼結処理を行うことがある。例えば図3に示すように、成形体2を複数段、例えば4段に重ねて焼結処理を行うことがある。この場合は、成形体2同士が溶着することを防止する目的で、成形体2の上に敷粉5を散布した後さらに成形体2を重ねることにより、各成形体2の間に敷粉5が介在した状態とすることが好ましい。敷粉5としては、例えば鉄粉や金属酸化物粉等を用いることができる。
Moreover, in order to perform an efficient sintering process, a sintering process may be performed in the state which the molded
また、前記敷粉5の代わりに炭素繊維強化炭素複合材で構成される板材を介して成形体2を重ね、焼結処理を行ってもよい。炭素繊維強化炭素複合材は非常に軽量な材料であるため、これを用いることで、成形体2に掛ける重量負荷を最小限に抑えることができる。
Moreover, the molded
焼結工程においては、例えば図1〜図3の状態とした成形体2を焼結炉内に配置し、成形体の焼結処理を行うこととする。焼結温度は、組成、粉砕方法、粒度と粒度分布の違い等、諸条件に応じて調整する必要があるが、例えば1000℃〜1300℃で1〜10時間程度焼結処理する。焼結処理時の雰囲気は真空又は不活性ガス雰囲気(アルゴンガス雰囲気等)とする。
In the sintering step, for example, the molded
前記焼結処理後には、得られた焼結体に時効処理を施すことが好ましい。この時効処理は、得られる希土類磁石の保磁力Hcjを制御する上で重要な工程であり、例えば真空中又は不活性ガス雰囲気中で行う。時効処理としては、2段時効処理が好ましい。2段時効処理は、1段目の時効処理工程においては800℃前後の温度で1時間〜3時間保持し、2段目の時効処理工程においては600℃前後の温度で1時間〜3時間保持して行えばよい。600℃近傍の熱処理で保磁力Hcjが大きく増加するため、時効処理を1段で行う場合には、600℃近傍で時効処理を施すとよい。 After the sintering treatment, the obtained sintered body is preferably subjected to an aging treatment. This aging treatment is an important step in controlling the coercive force Hcj of the obtained rare earth magnet, and is performed, for example, in a vacuum or in an inert gas atmosphere. As the aging treatment, a two-stage aging treatment is preferable. The second stage aging treatment is held at a temperature of about 800 ° C. for 1 hour to 3 hours in the first stage aging treatment process, and is kept at a temperature of about 600 ° C. for 1 hour to 3 hours in the second stage aging treatment process. You can do it. Since the coercive force Hcj is greatly increased by heat treatment at around 600 ° C., when the aging treatment is performed in one stage, it is preferable to perform the aging treatment at around 600 ° C.
前記焼結工程の後、機械加工工程や被膜形成工程を行い、製品を完成する。機械加工工程は、所望の形状に機械的に加工する工程である。被膜形成工程は、得られた希土類磁石の酸化を抑えること等を目的に行う工程であり、例えばめっき被膜や樹脂被膜を希土類磁石の表面に形成する工程である。 After the sintering process, a machining process and a film forming process are performed to complete a product. The machining process is a process of mechanically processing into a desired shape. The film forming step is a step performed for the purpose of suppressing oxidation of the obtained rare earth magnet, and is a step of forming, for example, a plating film or a resin film on the surface of the rare earth magnet.
以上のように、本発明によれば、希土類磁石焼結用敷板1の構成材料として炭素繊維強化炭素複合材を用いるため、例えばグラファイト等の他のカーボンを構成材料とする敷板を単独で用いた場合に比べ、焼結工程における成形体(焼結体)2の敷板への溶着が抑制され、希土類磁石の歩留まりを高めることができる。また、焼結処理時の成形体(焼結体)2の磁気特性の低下は小さいものであり、高い磁気特性を示す希土類磁石を製造することができる。なお、希土類磁石焼結用敷板1との反応によって焼結体(成形体)2表面に形成される炭化物等は、焼結処理後の例えば機械加工工程で容易に除去でき、磁気特性への影響はほとんどない。
As described above, according to the present invention, since the carbon fiber reinforced carbon composite material is used as the constituent material of the rare earth magnet
また、炭素繊維強化炭素複合材を用いた希土類磁石焼結用敷板1は高強度であるため、使用中の破損が防止され、希土類磁石の製造コスト削減を実現できる。また、高強度を維持しつつ薄型化可能であるため、例えば薄型化した希土類磁石焼結用敷板1上に成形体2を載置するとともに、希土類磁石焼結用敷板1及び成形体2を焼結ケース内に収容した状態で焼結処理する場合、従来の厚みのある敷板を用いる場合に比べ焼結ケースの実質的な容積が相対的に増加する。したがって、焼結ケース内の成形体収容量を大幅に増加させられるため、希土類磁石の生産効率の向上を図ることができる。
Moreover, since the
さらに、希土類磁石を量産するときの焼結工程においては、例えば生産効率を高めるために焼結炉内に希土類磁石焼結用敷板1を敷いた焼結ケースを複数個配置して同時に焼結処理することがあるが、希土類磁石焼結用敷板1を軽量化することで、焼結炉内に配置可能な成形体2重量を相対的に増加させられるため、生産効率の向上を図ることができる。
Furthermore, in the sintering process when mass-producing rare earth magnets, for example, in order to increase production efficiency, a plurality of sintering cases each having a rare earth magnet
さらにまた、希土類磁石焼結用敷板1の成形体載置面に例えば溶射による酸化ジルコニウム膜4を形成することにより、成形体(焼結体)2の炭化等の悪影響を確実に抑え、希土類磁石の磁気特性の低下をより抑制することができる。成形体載置面に溶射による酸化ジルコニウム膜4を形成することにより、成形体(焼結体)2の溶着防止効果を高めることも可能である。
Furthermore, by forming the zirconium oxide film 4 by, for example, thermal spraying on the molded body mounting surface of the
なお、本実施形態においては、焼結工程において成形体を焼結処理する際に本発明の希土類磁石焼結用敷板を用いる場合を例に挙げて説明したが、焼結工程において焼結処理後の成形体(焼結体)を時効処理する際に本発明の希土類磁石焼結用敷板を用いてもよい。 In the present embodiment, the case where the base plate for rare earth magnet sintering of the present invention is used when the molded body is sintered in the sintering process has been described as an example. The base plate for rare earth magnet sintering of the present invention may be used when aging the green body (sintered body).
以下、本発明を適用した具体的な実施例について、実験結果に基づいて説明する。なお、本発明は以下の実施例の記載に限定されるものではない。 Hereinafter, specific examples to which the present invention is applied will be described based on experimental results. In addition, this invention is not limited to description of a following example.
<サンプル1>
300mm×200mm×1mmの炭素繊維強化炭素複合材からなる板を、モリブデン製の焼結用ケースの内側に敷板として装入した。この炭素繊維強化炭素複合材からなる敷板上に、敷粉を散布することなく、成形体(50mm×30mm×15mm)を50mm×30mmの面が敷板と接するように直接載置した。成形体は25個載置した。この焼結用ケースを焼結炉に入れ、1100℃、2時間の焼結処理を行い、引き続き600℃、1時間の時効処理を行った。焼結処理後に焼結体を取り出したところ、焼結体と敷板との溶着は発生しておらず、良好な焼結体を得ることができた。
<
A plate made of a carbon fiber reinforced carbon composite material of 300 mm × 200 mm × 1 mm was placed inside the molybdenum sintering case as a floor plate. The formed body (50 mm × 30 mm × 15 mm) was directly placed on the floor plate made of the carbon fiber reinforced carbon composite material so that the surface of 50 mm × 30 mm was in contact with the floor plate without spraying the floor powder. Twenty-five compacts were placed. This case for sintering was placed in a sintering furnace, subjected to sintering treatment at 1100 ° C. for 2 hours, and subsequently subjected to aging treatment at 600 ° C. for 1 hour. When the sintered body was taken out after the sintering treatment, welding between the sintered body and the floor plate did not occur, and a good sintered body could be obtained.
<サンプル2>
300mm×200mm×1mmの炭素繊維強化炭素複合材からなる板に、平均膜厚が15μmとなるようにZrO2(酸化ジルコニウム)を溶射し、これを敷板としたこと以外は実施例1と同様に焼結処理を行った。焼結処理後に焼結体を取り出したところ、焼結体と敷板との溶着は発生しておらず、良好な焼結体を得ることができた。また、この敷板を用いて繰り返し焼結処理を20回行ったが、敷板に変形や損傷(溶射した酸化ジルコニウムの剥がれ等)は認められなかった。
<
Except that a 300 mm × 200 mm × 1 mm carbon fiber reinforced carbon composite material was sprayed with ZrO 2 (zirconium oxide) so as to have an average film thickness of 15 μm, and this was used as a floor plate, the same as in Example 1. Sintering was performed. When the sintered body was taken out after the sintering treatment, welding between the sintered body and the floor plate did not occur, and a good sintered body could be obtained. Further, the sintering process was repeated 20 times using this flooring plate, but no deformation or damage (peeling of sprayed zirconium oxide, etc.) was found on the flooring plate.
<サンプル3>
300mm×200mm×1mmの炭素繊維強化炭素複合材からなる板に、平均膜厚が15μmとなるようにY2O3(酸化イットリウム)を溶射し、これを敷板としたこと以外は実施例1と同様に焼結処理を行った。焼結後に焼結体を取り出したところ、焼結体と敷板との溶着は発生しておらず、良好な焼結体を得ることができた。しかし、この敷板を用いて繰り返し焼結を20回行ったところ、酸化イットリウム膜が一部剥がれて炭素繊維強化炭素複合材が露出した箇所が観察された。
<Sample 3>
Example 2 except that Y 2 O 3 (yttrium oxide) was sprayed on a plate made of a carbon fiber reinforced carbon composite of 300 mm × 200 mm × 1 mm so that the average film thickness was 15 μm, and this was used as a floor plate. Sintering was performed in the same manner. When the sintered body was taken out after sintering, welding between the sintered body and the base plate did not occur, and a good sintered body could be obtained. However, when repeated sintering was performed 20 times using this flooring, a portion where the yttrium oxide film was partially peeled and the carbon fiber reinforced carbon composite material was exposed was observed.
<サンプル4>
300mm×200mm×1mmのモリブデンからなる板に、平均膜厚が15μmとなるようにZrO2(酸化ジルコニウム)を溶射し、これを敷板としたこと以外は実施例1と同様に焼結処理を行った。焼結後に焼結体を取り出したところ、焼結体と敷板との溶着は発生していなかったが、溶射被膜とモリブデンの熱膨張係数が異なるため、1回目の焼結処理後の敷板に最大で1.5mmの反りが発生した。
<Sample 4>
A sintering process was performed in the same manner as in Example 1 except that ZrO 2 (zirconium oxide) was sprayed on a 300 mm × 200 mm × 1 mm molybdenum plate so that the average film thickness was 15 μm, and this was used as a floor plate. It was. When the sintered body was taken out after sintering, no welding occurred between the sintered body and the bottom plate, but because the thermal expansion coefficient of the thermal spray coating and molybdenum differed, Warpage of 1.5 mm occurred.
<サンプル5>
300mm×200mm×1mmのモリブデンからなる板(溶射は行っていない)を敷板としたこと以外は実施例1と同様に焼結処理を行った。焼結処理後に焼結体と敷板とが溶着していたため、これらを分離する工程(衝撃によるコア剥離工程)が必要となった。また、その分離工程で加えた衝撃により、焼結体に欠けが発生し、歩留まりの低下を招いた。
<Sample 5>
Sintering was performed in the same manner as in Example 1 except that a 300 mm × 200 mm × 1 mm molybdenum plate (no thermal spraying) was used as a floor plate. Since the sintered body and the base plate were welded after the sintering treatment, a step of separating them (core peeling step by impact) was required. In addition, the sintered body was chipped by the impact applied in the separation step, resulting in a decrease in yield.
<サンプル6>
300mm×200mm×1mmのモリブデンからなる板(溶射は行っていない)を敷板とし、溶着防止用の敷粉として80μm〜200μmの粒度分布を持つZrO2粒子(平均粒径120μm)を150個/cm2となるようにこの敷板上に散布したこと以外は実施例1と同様に焼結処理を行った。焼結処理後に焼結体を取り出したところ、焼結体と敷板との溶着は発生していなかったが、敷粉として散布したZrO2が焼結体表面に付着しており、それを取り除くためにショットブラスト処理が必要となった。
<Sample 6>
A plate made of 300 mm × 200 mm × 1 mm molybdenum (not sprayed) is used as a floor plate, and 150 particles / cm of ZrO 2 particles (average particle size 120 μm) having a particle size distribution of 80 μm to 200 μm as a floor powder for preventing welding. A sintering process was performed in the same manner as in Example 1 except that the powder was spread on the floor plate so as to be 2 . When the sintered body was taken out after the sintering treatment, welding between the sintered body and the floor plate did not occur, but ZrO 2 sprayed as the bed powder adhered to the surface of the sintered body to remove it. Shot blasting is required.
なお、サンプル1とサンプル6とについて、焼結体表面の炭素量をそれぞれ調べたところ、下記表1に示す結果が得られた。サンプル1において焼結体の表面層を研削することで、炭素繊維強化炭素複合材を使用しない場合と同等の炭素含有量が実現され、磁気特性の低下は認められなかった。
When
1 希土類磁石焼結用敷板、2 成形体、3 敷板本体、4 酸化ジルコニウム膜、5 敷粉 1 Rare earth magnet sintering base plate, 2 molded body, 3 base plate body, 4 zirconium oxide film, 5 base powder
Claims (5)
前記酸化ジルコニウム膜が、酸化ジルコニウムを溶射したものであることを特徴とする希土類磁石焼結用敷板。 Used for mounting the molded body in the sintering process of the molded body of the magnet raw material powder containing a rare earth element, oxide together made up of carbon fiber reinforced carbon composite material, the surface for placing the green body Zirconium film is formed,
A base plate for sintering a rare earth magnet , wherein the zirconium oxide film is obtained by spraying zirconium oxide .
さらに、前記希土類磁石焼結用敷板の前記成形体を載置する面に酸化ジルコニウム膜が形成されており、
前記酸化ジルコニウム膜が、酸化ジルコニウムを溶射したものであることを特徴とする希土類磁石の製造方法。 A method for producing a rare earth magnet having a sintering step of a compact of magnet raw material powder containing rare earth elements, wherein, in the sintering step, the rare earth magnet sintering base plate made of a carbon fiber reinforced carbon composite material is used. It is characterized by placing a molded body ,
Furthermore, a zirconium oxide film is formed on the surface on which the molded body of the base plate for sintering the rare earth magnet is placed,
A method for producing a rare earth magnet, wherein the zirconium oxide film is obtained by spraying zirconium oxide .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005083406A JP4556236B2 (en) | 2005-03-23 | 2005-03-23 | Rare plate for sintering rare earth magnet and method for producing rare earth magnet using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005083406A JP4556236B2 (en) | 2005-03-23 | 2005-03-23 | Rare plate for sintering rare earth magnet and method for producing rare earth magnet using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006265600A JP2006265600A (en) | 2006-10-05 |
JP4556236B2 true JP4556236B2 (en) | 2010-10-06 |
Family
ID=37201871
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005083406A Expired - Fee Related JP4556236B2 (en) | 2005-03-23 | 2005-03-23 | Rare plate for sintering rare earth magnet and method for producing rare earth magnet using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4556236B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008106299A (en) * | 2006-10-24 | 2008-05-08 | Mitsubishi Materials Corp | Floor plate for use in sintering of porous body and method for manufacturing porous sintered body |
JP5114921B2 (en) * | 2006-10-31 | 2013-01-09 | 日立金属株式会社 | Sintering jig for rare earth magnet, method for producing sintering jig for rare earth magnet, and method for producing rare earth magnet |
JP4840225B2 (en) * | 2007-03-29 | 2011-12-21 | Tdk株式会社 | Magnet manufacturing method and molded body |
JP6848464B2 (en) * | 2017-01-19 | 2021-03-24 | 大同特殊鋼株式会社 | Mold for manufacturing sintered magnets and method for manufacturing sintered magnets using the mold |
DE112020001199T5 (en) * | 2019-03-13 | 2021-11-25 | Tdk Corporation | R-T-B based permanent magnet and method of making the same |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60141103U (en) * | 1984-02-28 | 1985-09-18 | 住友特殊金属株式会社 | Rare earth magnet heat treatment base plate |
JPH0590298U (en) * | 1992-05-15 | 1993-12-10 | 株式会社アクロス | Box made of carbon fiber carbon composite material |
-
2005
- 2005-03-23 JP JP2005083406A patent/JP4556236B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60141103U (en) * | 1984-02-28 | 1985-09-18 | 住友特殊金属株式会社 | Rare earth magnet heat treatment base plate |
JPH0590298U (en) * | 1992-05-15 | 1993-12-10 | 株式会社アクロス | Box made of carbon fiber carbon composite material |
Also Published As
Publication number | Publication date |
---|---|
JP2006265600A (en) | 2006-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101521068B (en) | Rare earth permanent magnet and method of manufacturing the same | |
EP2388350B1 (en) | Method for producing r-t-b sintered magnet | |
JP5477282B2 (en) | R-T-B system sintered magnet and manufacturing method thereof | |
JP5304907B2 (en) | R-Fe-B fine crystal high density magnet | |
JP5815655B2 (en) | R-T-B-M-C sintered magnet manufacturing method and manufacturing apparatus thereof | |
JP5273039B2 (en) | R-T-B system sintered magnet and manufacturing method thereof | |
JP6536816B2 (en) | RTB based sintered magnet and motor | |
JP2013225533A (en) | Method of manufacturing r-t-b-based sintered magnet | |
JP2006265601A (en) | Vessel for sintering rare earth magnet and method for producing rare earth magnet using the same | |
CN105448444B (en) | A kind of method and rare earth permanent-magnetic material of the rare earth permanent-magnetic material that processability improves | |
JP2006228937A (en) | Manufacturing method of rare earth sintered magnet and device for molding in magnetic field | |
JP4556236B2 (en) | Rare plate for sintering rare earth magnet and method for producing rare earth magnet using the same | |
JP2013207134A (en) | Bulk rh diffusion source | |
JP6691666B2 (en) | Method for manufacturing RTB magnet | |
JP2007258377A (en) | Method of manufacturing rare earth sintered magnet | |
WO2012029527A1 (en) | Alloy material for r-t-b-based rare earth permanent magnet, production method for r-t-b-based rare earth permanent magnet, and motor | |
JP4509044B2 (en) | Sintering jig for rare earth permanent magnet and method for producing rare earth permanent magnet | |
JP4033884B2 (en) | Manufacturing method of rare earth sintered magnet | |
JP6691667B2 (en) | Method for manufacturing RTB magnet | |
JP4798357B2 (en) | Manufacturing method of rare earth sintered magnet | |
JP2006156425A (en) | Method of manufacturing rare earth sintered magnet, intra-magnetic field molding apparatus, and metal die | |
JP2005197299A (en) | Rare earth sintered magnet and manufacturing method thereof | |
JP4076080B2 (en) | Rare earth permanent magnet manufacturing method | |
JP2005183810A (en) | Method for manufacturing rare earth sintered magnet | |
JP2005268668A (en) | Manufacturing method and apparatus of rare earth sintered magnet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080118 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091215 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091217 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100128 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100628 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100711 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4556236 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130730 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |