JPH0645167A - Manufacture of isotropic bond magnet - Google Patents

Manufacture of isotropic bond magnet

Info

Publication number
JPH0645167A
JPH0645167A JP4195365A JP19536592A JPH0645167A JP H0645167 A JPH0645167 A JP H0645167A JP 4195365 A JP4195365 A JP 4195365A JP 19536592 A JP19536592 A JP 19536592A JP H0645167 A JPH0645167 A JP H0645167A
Authority
JP
Japan
Prior art keywords
molding
pressure
resin
magnetic powder
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4195365A
Other languages
Japanese (ja)
Inventor
Katsuhiko Ueda
勝彦 上田
Naotatsu Asahi
直達 朝日
Kazuo Asaka
一夫 浅香
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP4195365A priority Critical patent/JPH0645167A/en
Publication of JPH0645167A publication Critical patent/JPH0645167A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together

Abstract

PURPOSE:To provide a method of manufacturing an isotropic bond magnet of rare earth metal, iron, cobalt, and boron high in strength and excellent in magnetic properties. CONSTITUTION:Resin binder is added to magnetic powder composed of rare earth metal, iron, cobalt, and boron and formed through a quench solidifying method, resin binder-loaded magnetic powder is compression-molded by a pressure of over 120kgf/mm<2>, a molding die is released from a clamping force once and clamped again by a clamping pressure over a molding pressure, a molded magnet is released from the molding die and heated to harden resin. At this point, 1 to 3% by weight of resin binder is added to magnetic powder 30 to 155mum in average grain diameter.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は組成が希土類金属・鉄・
コバルト・ボロンよりなるRTB系磁性粉末を樹脂で結
合した等方性ボンド磁石の製造方法に関するもので、モ
ータのステータやロータ等に利用できる。
FIELD OF THE INVENTION The present invention has a composition of rare earth metal / iron /
The present invention relates to a method for producing an isotropic bonded magnet in which RTB magnetic powder made of cobalt / boron is bonded with a resin, and can be used for a stator or a rotor of a motor.

【0002】[0002]

【従来の技術】RTB系の等方性ボンド磁石は、従来の
ハードフェライト、アルニコ磁石に比べ、優れた磁気特
性を持っており、また、異方性のSm−Co系ボンド磁
石に比べると磁気特性では若干劣るものの、高価なSm
を用いないことや磁気的異方性を付与しないため、製造
工程も簡単になり、コスト面で有利である特徴を持って
いる。用途としては、電動工具やハードディスク等のモ
ータ用のステータ等に適用されている。
2. Description of the Related Art RTB-based isotropic bonded magnets have superior magnetic properties to conventional hard ferrite and alnico magnets, and are more magnetic than anisotropic Sm-Co based bonded magnets. Although slightly inferior in characteristics, expensive Sm
Since it is not used and no magnetic anisotropy is given, the manufacturing process is simplified and it is advantageous in terms of cost. It is used as a stator for motors such as electric tools and hard disks.

【0003】等方性ボンド磁石の製造方法は、例えば、
特開昭59−211549号公報に開示されているよう
に、急冷凝固法と破砕法でRTB系の磁性粉末を製作
し、その磁性粉末に結合剤である有機質材、無機質材、
あるいははんだのような低融点金属を混合し、この混合
粉を約110kgf/mm2 程度の圧力で圧縮成形す
る。得られる密度は約6.0g/cm3 程度(密度比8
0%程度)である。
A method for producing an isotropic bonded magnet is, for example, as follows.
As disclosed in Japanese Patent Laid-Open No. 59-2111549, RTB-based magnetic powder is manufactured by a rapid solidification method and a crushing method, and an organic material, an inorganic material, which is a binder, is added to the magnetic powder.
Alternatively, a low melting point metal such as solder is mixed, and this mixed powder is compression-molded at a pressure of about 110 kgf / mm 2 . The obtained density is about 6.0 g / cm 3 (density ratio 8
0%).

【0004】また、特開平1−281707号公報記載
のように、磁性粉末表面にある種の樹脂をコーティング
し、成形時にこの粉末粒子を滑り易く流動性のよい粉末
にすることにより、成形体を高密度化して磁気特性を向
上させるという提案がある。ところで、等方性ボンド磁
石の磁気特性は現状品質でも使用可能であるが、モータ
の出力向上及び消費電力削減のためには、一層の特性向
上が望まれる。そのためには、磁気特性は成形体の密度
に依存しているから、成形体に占める磁性粉末の占積率
を高めることが必要となる。
Further, as described in JP-A-1-281707, a magnetic powder surface is coated with a certain resin, and during molding, the powder particles are made slippery and have good flowability to form a molded article. There is a proposal to increase the density and improve the magnetic characteristics. By the way, although the magnetic characteristics of the isotropic bonded magnet can be used in the current quality, further improvement of the characteristics is desired in order to improve the output of the motor and reduce the power consumption. For that purpose, since the magnetic properties depend on the density of the compact, it is necessary to increase the space factor of the magnetic powder in the compact.

【0005】また一方、モータ用ロータのように運動す
る部材の用途では、より高い機械強度が要求される。し
かしながら、RTB系の磁性粉末は、急冷凝固装置を用
い作製したリボン状素材をスタンプミル等で破砕したも
のであり、粉末形状は偏平状をしていて、硬さがHV7
00〜1000もあり、通常の粉末冶金用粉末のHV1
00〜250に比べて非常に硬い。また、この磁性粉末
は活性なNdを含んでいるため、小さな粒径の粉末は大
気中で酸化反応を生じ易く、粉末の劣化を招くだけでな
く、発火の恐れもあるから、市販の粉末の平均粒径は1
55μm程度と粗いものになっている。そのため、成形
性が著しく悪い粉末であり、高密度化及び強度の向上を
困難なものにしていた。
On the other hand, higher mechanical strength is required in applications of moving members such as motor rotors. However, the RTB-based magnetic powder is obtained by crushing a ribbon-shaped material produced by using a rapid solidification apparatus with a stamp mill or the like, and the powder has a flat shape and a hardness of HV7.
HV1 of powder for ordinary powder metallurgy
Very hard compared to 00-250. Further, since this magnetic powder contains active Nd, a powder having a small particle size is likely to cause an oxidation reaction in the atmosphere, which not only causes deterioration of the powder but also may cause ignition. Average particle size is 1
It is as rough as about 55 μm. Therefore, the powder has remarkably poor moldability, which makes it difficult to increase the density and improve the strength.

【0006】[0006]

【発明が解決しようとする課題】本発明は、優れた機械
的性質と磁気特性とを有する等方性ボンド磁石の製造方
法、特に同じ製品密度でも機械的強度を改善し得る成形
法を提供しようとするものである。
DISCLOSURE OF THE INVENTION The present invention provides a method for producing an isotropic bonded magnet having excellent mechanical properties and magnetic properties, and particularly a molding method capable of improving mechanical strength even with the same product density. It is what

【0007】[0007]

【課題を解決するための手段】本発明は上記課題を解決
するために、急冷凝固法で作られた組成が希土類金属・
鉄・コバルト・ボロン系の磁性粉末を樹脂結合剤を用い
て圧縮成形する方法において、磁性粉末に樹脂結合剤を
付着させた粉末を、押型内に充填して圧力120kgf
/mm2 以上で圧縮成形して一旦圧力を解放し、再度前
記成形圧力と同等以上の圧力で圧縮して離型したのち、
加熱して樹脂を硬化することを特徴とする等方性ボンド
磁石の製造方法を提供するものである。
In order to solve the above-mentioned problems, the present invention has a composition prepared by a rapid solidification method containing rare earth metal
In a method of compression-molding magnetic powder of iron / cobalt / boron based using a resin binder, the powder in which the resin binder is attached to the magnetic powder is filled in a die and the pressure is 120 kgf.
/ Mm 2 or more, compression-molding is performed to release the pressure once, and then the mold is compressed again at a pressure equal to or higher than the molding pressure and released.
The present invention provides a method for producing an isotropic bonded magnet, which is characterized by heating and curing a resin.

【0008】また、前記の製造方法において、平均粒子
径が30〜155μmの磁性粉末に樹脂結合剤1〜3重
量%をコーティングした粉末を用いることを特徴とする
ものである。結合剤である樹脂は、エポキシ樹脂が好適
である。樹脂は溶剤と共に磁性粉末と混練した後、乾燥
してケーキ状とし、それを破砕して成形用の粉末に調製
する。
In the above manufacturing method, a magnetic powder having an average particle diameter of 30 to 155 μm coated with 1 to 3% by weight of a resin binder is used. Epoxy resin is suitable as the binder resin. The resin is kneaded with a magnetic powder together with a solvent and then dried to form a cake, which is crushed to prepare a powder for molding.

【0009】また、磁性粉末の平均粒子径を小さくする
には、市販の磁性粉末と所定量の樹脂結合剤及び溶剤を
粉砕メディアと共に振動ミルのベッセルに入れ、ベッセ
ル内を不活性ガスガス雰囲気に置換した状態で所定時間
振動して磁性粉末を粉砕した後、得られる磁性粉末の懸
濁液中に含まれる溶剤を不活性ガス雰囲気中で揮発除去
して磁性粉末と樹脂からなるケーキ状とし、そのケーキ
を不活性ガス雰囲気中で破砕して樹脂がコーティングさ
れた磁性粉末とする。
In order to reduce the average particle size of the magnetic powder, commercially available magnetic powder, a predetermined amount of resin binder and solvent are put into a vessel of a vibration mill together with grinding media, and the vessel is replaced with an inert gas atmosphere. After crushing the magnetic powder by vibrating for a predetermined time in a state of, the solvent contained in the suspension of the obtained magnetic powder is volatilized and removed in an inert gas atmosphere to form a cake consisting of the magnetic powder and the resin. The cake is crushed in an inert gas atmosphere to obtain a resin-coated magnetic powder.

【0010】成形方法としては、ダイスとパンチによる
通常の金型装置を用いて、所定の圧力で最初の成形及び
2段目の成形をする方法、ゴム等の弾性体で作られた型
の中に粉末を充填し、CIPにより初段整形して圧力を
除いた後、2段目の加圧をして離型する方法、または、
テーパ付きの内孔をもつダイスに粉末を充填し、パンチ
で圧縮した後、この予備成形体をダイスの内孔寸法の大
きい側へパンチで移動して初段成形体にかかる圧力を解
除した後、2段目の加圧をしてダイスの内孔寸法の大き
い側から離型する方法がある。
As a molding method, a normal molding apparatus using a die and a punch is used to perform the first molding and the second molding at a predetermined pressure, and a mold made of an elastic material such as rubber. Powder is filled in, the first stage is shaped by CIP to remove the pressure, and then the second stage is pressed to release the mold, or
After filling powder in a die with a tapered inner hole and compressing with a punch, after moving this preform to the side with a larger inner hole size of the die with a punch to release the pressure applied to the first stage formed body, There is a method of releasing the die from the side having a larger inner hole size by applying the second pressure.

【0011】成形体の樹脂硬化処理は、温度が約160
〜180℃で樹脂が硬化する時間保持して行われる。な
お、粉末の調整、圧縮成形及び加熱処理は、磁性粉末の
酸化をできるだけ防止するために、アルゴンガス等の不
活性ガス雰囲気中で行うことが好ましい。
In the resin hardening treatment of the molded body, the temperature is about 160.
It is carried out at a temperature of up to 180 ° C. for a period of time during which the resin is cured. The powder adjustment, compression molding, and heat treatment are preferably performed in an inert gas atmosphere such as argon gas in order to prevent the magnetic powder from being oxidized as much as possible.

【0012】[0012]

【作用】まず、結合剤である樹脂は、その付着方法及び
付着量により製品の強度に影響を及ぼす。付着方法とし
ては、粉末混合法と混練によるコーティング法が挙げら
れるが、コーティング法の方が強度が高く、磁性粉末の
表面を覆って酸化防止するので優れている。
First, the resin as the binder affects the strength of the product depending on the adhesion method and the adhesion amount. Examples of the adhesion method include a powder mixing method and a coating method by kneading. The coating method is superior because it has higher strength and covers the surface of the magnetic powder to prevent oxidation.

【0013】樹脂の付着量は、成形密度と成形体の強度
に影響を及ぼす。成形体の強度は、樹脂量が2.0重量
%までは付着量にはほぼ比例して上昇しするが、2.5
重量%より多く付着しても上昇しない。一方、樹脂量が
1%未満では成形体にひび割れを生じる。また、成形密
度は樹脂量1.5〜2重量%で最大値を示し、2重量%
を越えると低下傾向となり、3重量%を越えると急激に
低下する。よって、樹脂量は1〜3重量%、望ましくは
1.5〜2.5重量%である。
The amount of resin adhered affects the molding density and the strength of the molded body. The strength of the molded product rises almost in proportion to the adhesion amount up to 2.0% by weight of the resin.
It does not rise even if it adheres in excess of weight%. On the other hand, if the amount of resin is less than 1%, the molded product will crack. Further, the molding density shows the maximum value when the amount of resin is 1.5 to 2% by weight, and it is 2% by weight.
If it exceeds 3% by weight, it tends to decrease, and if it exceeds 3% by weight, it decreases sharply. Therefore, the amount of resin is 1 to 3% by weight, preferably 1.5 to 2.5% by weight.

【0014】次に、磁性粉末の粒度は製品の強度及び磁
性特性に影響を及ぼす。製品の強度は、市販されている
平均粒子径155μmの場合より細かくなるに伴い徐々
に高くなって40μmで最大となり、30μmと155
μmのときの強度がほぼ同じ値を示し、30μmより細
かいと急激に強度が低下する。磁性特性は、平均粒子径
155〜40μmの間は同等であり、30μm未満で悪
化する。よって、磁性粉末の粒子径は、30〜155μ
m、望ましくは40〜100μmである。
Secondly, the particle size of the magnetic powder affects the strength and magnetic properties of the product. The strength of the product gradually increases as it becomes finer than the average particle size of 155 μm on the market, and reaches the maximum at 40 μm.
The strength at μm shows almost the same value, and if it is smaller than 30 μm, the strength sharply decreases. The magnetic properties are equivalent when the average particle size is 155 to 40 μm, and deteriorates when the average particle size is less than 30 μm. Therefore, the particle size of the magnetic powder is 30 to 155 μ.
m, preferably 40 to 100 μm.

【0015】次に、成形方法であるが、通常の1回の成
形の場合、成形圧力の増加と共に製品の密度が上昇し、
それに伴って強度と磁気特性が改善される。しかし、成
形圧力250kgf/mm2 以上にしても密度は上昇し
ない。一方、2段成形法であるが、加圧力の増加によっ
て密度が上昇し、それに伴って強度及び磁気特性が改善
されるのは前者と同様である。しかし、製品の強度は通
常の1回成形では得られない高い特性が得られる。ここ
で重要なことは、成形圧力がある加圧力以上でないと2
段成形の効果は全く認められないことである。すなわ
ち、初段の成形圧力が110kgf/mm2 以下では1
回成形の場合と何ら変わらない。初段の成形圧力120
kgf/mm2 以上で、2段目の成形圧力も初段と同等
あるいはそれ以上になって、強度向上の効果が現れる。
例えば、通常の1回成形で圧力250kgf/mm2
得られる密度が6.35g/cm3で強度が1830k
gf/cm2 であるのに比べ、初段と2段目をそれぞれ
200kgf/mm2 で成形すると密度が6.35g/
cm3 で強度が2130kgf/cm2 、初段と2段目
をそれぞれ250kg/mm2 で成形すると6.40g
/mm3 で強度が3000kgf/cm2 となる。
Next, regarding the molding method, in the case of ordinary one-time molding, the density of the product increases with the increase of the molding pressure,
Along with that, strength and magnetic properties are improved. However, even if the molding pressure is 250 kgf / mm 2 or more, the density does not increase. On the other hand, although it is a two-step molding method, the density is increased by the increase of the pressing force, and the strength and the magnetic characteristics are improved accordingly, as in the former case. However, the strength of the product has high characteristics that cannot be obtained by ordinary single molding. What is important here is that the molding pressure must be above a certain pressure
The effect of step forming is not recognized at all. That is, when the molding pressure in the first stage is 110 kgf / mm 2 or less, 1
There is no difference from the case of single molding. First stage molding pressure 120
At kgf / mm 2 or higher, the molding pressure in the second step becomes equal to or higher than that in the first step, and the effect of improving strength appears.
For example, a density of 6.35 g / cm 3 and a strength of 1830 k obtained at a pressure of 250 kgf / mm 2 in a usual single molding.
Compared with gf / cm 2 , when the first stage and the second stage were each molded at 200 kgf / mm 2 , the density was 6.35 g /
The strength is 2130 kgf / cm 2 at cm 3 , and 6.40 g when the first stage and the second stage are respectively molded at 250 kg / mm 2.
/ Mm 3 gives a strength of 3000 kgf / cm 2 .

【0016】このことは、樹脂が被覆された偏平状の磁
性粉末を加圧成形する過程から考察すると、加圧力の増
加につれ、まず粉末間の空間が次第に減少し密度が上昇
する。さらに加圧力を上昇すると、一部の粒子が破砕さ
れながら更に密度が上昇するが、偏平粒子がランダムに
配列したブリッジ状態になっており、加圧力を増大して
もそれ以上は密度が上昇しなくなる。その後、圧力を解
放すると、成形体はスプリングバックして粒子間に僅か
の隙間を生じる。次いで2段目の加圧をすると、偏平粒
子の多くは、加圧方向に対し直角な向に配列されて密度
が上昇し、粒子間の接触面積が増加することにより強度
が高くなるものと推察される。
Considering this from the process of pressure-molding the flat magnetic powder coated with resin, the space between the powders gradually decreases and the density increases as the pressing force increases. When the pressure is further increased, the density is further increased while some particles are crushed, but the particles are in a bridge state in which the flat particles are randomly arranged, and even if the pressure is increased, the density is further increased. Disappear. Then, when the pressure is released, the molded body springs back to form a slight gap between the particles. It is speculated that when the second step of pressing is performed, most of the flat particles are arranged in a direction perpendicular to the pressing direction, the density increases, and the contact area between particles increases, resulting in higher strength. To be done.

【0017】[0017]

【実施例】〔実施例1〕用いた磁性粉末は、鉄を67.
0重量%、コバルトを5.2重量%、ネオジウムを2
4.6重量%、及びボロンを1.7重量%含有する急冷
凝固法で作られたもので、平均粒子径は155μmであ
る。
[Example 1] The magnetic powder used was iron 67.
0 wt%, Cobalt 5.2 wt%, Neodymium 2
It was produced by a rapid solidification method containing 4.6% by weight and 1.7% by weight of boron, and has an average particle diameter of 155 μm.

【0018】樹脂コーティングは、溶剤にエポキシ樹脂
を溶かし、この溶液と磁性粉末をニーダーで混練した。
その後、アルゴンガスで置換した恒温槽を用い溶剤を乾
燥させ、磁性粉末表面をエポキシ樹脂でコーティングし
た。樹脂の量は2.0重量%である。この粉末を用い、
初段の圧力を100〜300kgf/mm2 で成形した
試料を作製した。
For resin coating, an epoxy resin was dissolved in a solvent, and this solution and magnetic powder were kneaded with a kneader.
Then, the solvent was dried using a thermostatic bath replaced with argon gas, and the magnetic powder surface was coated with an epoxy resin. The amount of resin is 2.0% by weight. With this powder,
A sample molded at a first stage pressure of 100 to 300 kgf / mm 2 was prepared.

【0019】次に、初段で使用した金型より内孔が少し
大きい金型を用い、初段の圧力を100〜250kgf
/mm2 で成形した試験片を圧力100〜250kgf
/mm2 で2段目の成形を行った。その後、1回成形し
た試料(比較例)と2段成形した試料のそれぞれをアル
ゴンガスで置換した恒温槽で温度160℃で1時間、更
に温度180℃で1時間加熱して樹脂硬化を施した。試
料寸法は直径11.3mm、高さ10mmである。
Next, a mold having a slightly larger inner hole than the mold used in the first stage is used, and the pressure in the first stage is 100 to 250 kgf.
/ Mm 2 pressure molded test piece 100~250kgf
The second stage molding was performed at / mm 2 . After that, each of the sample molded once (comparative example) and the sample molded in two stages was heated at a temperature of 160 ° C. for 1 hour and further at a temperature of 180 ° C. for 1 hour in a thermostatic chamber in which argon gas was replaced to cure the resin. . The sample size is 11.3 mm in diameter and 10 mm in height.

【0020】次に、各試料について密度、磁気特性とし
て残留磁束密度と最大エネルギー積、及び試料軸方向の
圧縮強度を測定した。圧縮強度は、圧縮試験機を用い、
圧縮速度0.5mm/分で試験片を圧縮したときの応力
−歪み曲線図における最大値である。まず、比較例の1
回成形の試料の特性について、図4に成形圧力と密度の
関係、図5に密度と圧縮強度の関係、図6に密度と最大
エネルギー積の関係、図7に密度と残留磁束密度の関係
を示す。
Next, the density, the residual magnetic flux density and the maximum energy product as the magnetic characteristics, and the compressive strength in the axial direction of the sample were measured for each sample. Compressive strength, using a compression tester,
It is the maximum value in the stress-strain curve diagram when the test piece is compressed at a compression rate of 0.5 mm / min. First, comparative example 1
Regarding the characteristics of the sample of the re-molding, FIG. 4 shows the relationship between molding pressure and density, FIG. 5 shows the relationship between density and compressive strength, FIG. 6 shows the relationship between density and maximum energy product, and FIG. 7 shows the relationship between density and residual magnetic flux density. Show.

【0021】図4から、成形圧力250kgf/mm2
で密度が最大値6.35g/cm3となり、それ以上圧
力を加えても密度が上昇しないことが判る。図5から、
密度と圧縮強度は相関関係にあり、圧縮強度の最大値は
1830kgf/cm2 である。図6及び図7から、磁
性特性は密度が高い程よい性質を示すことが判る。
From FIG. 4, a molding pressure of 250 kgf / mm 2
The maximum value was 6.35 g / cm 3 , and it was found that the density did not increase even if pressure was applied further. From FIG.
There is a correlation between the density and the compressive strength, and the maximum value of the compressive strength is 1830 kgf / cm 2 . It can be seen from FIGS. 6 and 7 that the higher the density, the better the magnetic properties.

【0022】次に、図1は、2段成形法により作製した
試験片の強度について本発明の効果を示したものであ
る。なお、比較のため図5に示した通常の1回成形の結
果も併記した。白丸は通常の1回成形による値を示し、
黒丸は2段成形法の値である。2段成形法の成形圧力
は、矢印の左側に初段の圧力、矢印の右側に2段目の圧
力を示している。
Next, FIG. 1 shows the effect of the present invention on the strength of a test piece manufactured by the two-step molding method. For comparison, the results of the normal single molding shown in FIG. 5 are also shown. White circles show the values obtained by normal single molding,
Black circles are values for the two-step molding method. Regarding the molding pressure of the two-stage molding method, the pressure of the first stage is shown on the left side of the arrow, and the pressure of the second stage is shown on the right side of the arrow.

【0023】初段の圧力が100kgf/mm2 の試験
片は、2段目の圧力が150kgf/mm2 でも通常の
成形方法で達成できる強度であり、本発明の効果がな
い。しかし、初段の圧力が120kgf/mm2 以上に
なると強度は飛躍的に向上する。ここで特記すべきは、
初段の成形圧力150kgf/mm2 、2段目の圧力1
50kgf/mm2 の試験片は、通常の成形方法で圧力
200kgf/mm2 で作製した試験片と密度は同じで
あるにもかかわらず強度は高い値を示しており、さら
に、通常の成形方法の250kgf/mm2 よりも高い
値である。
The test piece having a pressure of 100 kgf / mm 2 in the first stage has strength that can be achieved by a normal molding method even when the pressure of the second stage is 150 kgf / mm 2 , and the effect of the present invention is not obtained. However, when the pressure in the first stage is 120 kgf / mm 2 or more, the strength is dramatically improved. What should be noted here is
Molding pressure of the first stage 150kgf / mm 2 , pressure of the second stage 1
50 kgf / mm 2 of the specimen, the test piece and the density despite the intensity is the same prepared in a pressure 200 kgf / mm 2 in the usual molding method is a high value, further, the conventional molding method It is a value higher than 250 kgf / mm 2 .

【0024】また、初段と2段目ともに250kgf/
mm2 で成形したものは、従来法で得られる圧縮強度の
最大値の1.6倍である3000kgf/cm2 が得ら
れる。 〔実施例2〕実施例1で用いた平均粒子径155μmの
磁性粉末と、溶剤に溶かしたエポキシ樹脂及び粉砕用の
ボールを遊星ボールミルに入れ、ミル内をアルゴンガス
で置換して密封した状態で所定時間運転した後、アルゴ
ンガスで置換した恒温槽内に取り出して溶剤を乾燥さ
せ、ケーキ状の粉末をアルゴンガス中で破砕してエポキ
シ樹脂でコーティングされた平均粒子径の異なる磁性粉
末を作製した。樹脂の量は2.0重量%である。
Further, both the first stage and the second stage are 250 kgf /
The molded product having a size of mm 2 can obtain 3000 kgf / cm 2, which is 1.6 times the maximum value of the compressive strength obtained by the conventional method. Example 2 The magnetic powder used in Example 1 having an average particle diameter of 155 μm, the epoxy resin dissolved in a solvent and the balls for grinding were put in a planetary ball mill, and the inside of the mill was replaced with argon gas and sealed. After operating for a predetermined time, it was taken out in a thermostatic chamber replaced with argon gas, the solvent was dried, and the cake-like powder was crushed in argon gas to prepare magnetic powders having different average particle diameters coated with epoxy resin. . The amount of resin is 2.0% by weight.

【0025】次に、可変雰囲気成形プレスを用い、金型
をアルゴンガス雰囲気中に入れて各粉末を2段成形法で
圧縮成形した後、実施例1と同様に樹脂硬化処理をし
た。成形圧力は初段、2段目共に250kgf/mm2
である。得られた試料について圧縮強度、残留磁束密度
及び最大エネルギー積を測定した。
Next, using a variable atmosphere molding press, the mold was placed in an argon gas atmosphere, each powder was compression-molded by a two-stage molding method, and then a resin hardening treatment was carried out in the same manner as in Example 1. The molding pressure is 250 kgf / mm 2 for both the first and second stages.
Is. The compressive strength, residual magnetic flux density and maximum energy product of the obtained sample were measured.

【0026】図2に平均粒子径と各測定結果の関係を示
す。圧縮強度は、粒径が小さくなるのに伴い次第に高く
なり、平均粒子径が40μmのとき最大値を示す。40
μmより粒径が小さくなると強度が低下して平均粒子径
が30μmと155μmはほぼ同じ値を示している。磁
性特性は、平均粒子径が155〜40μmの間は同等な
値を示し、40μmより小さくなると悪化する傾向を示
している。
FIG. 2 shows the relationship between the average particle size and each measurement result. The compressive strength gradually increases as the particle size decreases, and shows the maximum value when the average particle size is 40 μm. 40
When the particle size is smaller than μm, the strength is decreased and the average particle sizes of 30 μm and 155 μm show almost the same value. The magnetic properties show equivalent values when the average particle size is 155 to 40 μm, and tend to deteriorate when the average particle size is smaller than 40 μm.

【0027】このことから、磁性粉末の平均粒子径は、
市販のままの155μmでも良好な特性が得られるが、
より高い強度を得るには、平均粒子径50μm前後が良
好であることが判る。 〔実施例3〕平均粒子径155μmの磁性粉末を用い、
エポキシ樹脂のコーティング量が異なる粉末を実施例1
と同様な方法で作製した。
From this fact, the average particle diameter of the magnetic powder is
Good characteristics can be obtained even at 155 μm as it is on the market,
It can be seen that an average particle size of about 50 μm is preferable for obtaining higher strength. Example 3 Using magnetic powder having an average particle size of 155 μm,
Example 1 powders having different coating amounts of epoxy resin
It was manufactured by the same method as.

【0028】次に、樹脂量が異なる各粉末を初段及び2
段目共に150kgf/mm2 の圧力で成形した後、実
施例1と同様に樹脂硬化処理して試料とし、密度と圧縮
強度を測定した。図3に樹脂量と密度及び圧縮強度の関
係を示す。樹脂量が1重量%より少ないと成形体にひび
割れを生じてしまう。
Next, each powder having a different resin amount was added to the first stage and 2
After molding both stages at a pressure of 150 kgf / mm 2 , the resin was cured in the same manner as in Example 1 to obtain a sample, and the density and compressive strength were measured. FIG. 3 shows the relationship between the resin amount and the density and compressive strength. If the amount of resin is less than 1% by weight, the molded product will crack.

【0029】密度は、樹脂量が1.5〜2重量%の間で
最大値を示し、3重量%を越えると低下が著しくなる。
圧縮強度は、樹脂量を増加すると上昇し、2.5重量%
で最大値を示し、それ以上添加しても効果がない。この
ことから、樹脂量は、ひび割れが出ない1重量%以上は
必要であり、密度が著しく低くしない3重量%までであ
る。好ましくは、2重量%前後であることが判る。
The density shows a maximum value when the amount of resin is between 1.5 and 2% by weight, and when it exceeds 3% by weight, the decrease is remarkable.
The compressive strength increases with increasing amount of resin, 2.5% by weight
Shows the maximum value, and no effect is obtained if more is added. From this, the amount of resin is required to be 1% by weight or more so that cracking does not occur, and up to 3% by weight which does not significantly lower the density. It can be seen that it is preferably around 2% by weight.

【0030】[0030]

【発明の効果】本発明の製造方法によれば、通常の成形
方法では達成することのできない、磁気特性及び高い強
度を有するボンド磁石の作製が可能である。現在、小形
軽量化が進むOA機器、あるいは高トルク特性を必要と
する電動工具用モータへの適用が、少ないコストで可能
となる。また、本発明で製造する等方性ボンド磁石の磁
気特性は、汎用の異方性Sm−Coボンド磁石に匹敵す
るものであり、Smを必要としないので工業的価値は大
きい。
According to the manufacturing method of the present invention, it is possible to manufacture a bonded magnet having magnetic characteristics and high strength, which cannot be achieved by a usual molding method. Currently, it can be applied to OA equipment, which is becoming smaller and lighter, or to electric tool motors that require high torque characteristics, at low cost. In addition, the magnetic properties of the isotropic bonded magnet manufactured by the present invention are comparable to those of a general-purpose anisotropic Sm-Co bonded magnet, and since Sm is not required, the industrial value is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における密度と圧縮強度の関係を示すグ
ラフである。
FIG. 1 is a graph showing the relationship between density and compressive strength in the present invention.

【図2】本発明における磁性粉末の平均粒子径と、圧縮
強度、残留磁束密度及び最大エネルギー積との関係を示
すグラフである。
FIG. 2 is a graph showing the relationship between the average particle size of magnetic powder, the compressive strength, the residual magnetic flux density, and the maximum energy product in the present invention.

【図3】本発明における樹脂量と、密度及び圧縮強度と
の関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the amount of resin and the density and compressive strength in the present invention.

【図4】従来の1回成形における成形圧量と密度の関係
を示すグラフである。
FIG. 4 is a graph showing a relationship between a molding pressure amount and a density in conventional single molding.

【図5】従来の1回成形における密度と圧縮強度を示す
グラフである。
FIG. 5 is a graph showing the density and the compressive strength in the conventional one-time molding.

【図6】従来の1回成形における密度と最大エネルギー
積の関係を示すグラフである。
FIG. 6 is a graph showing the relationship between the density and the maximum energy product in conventional single molding.

【図7】従来の1回成形における密度と残留磁束密度の
関係を示すグラフである。
FIG. 7 is a graph showing the relationship between the density and the residual magnetic flux density in the conventional one-time molding.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 急冷凝固法で作られた組成が希土類金属
・鉄・コバルト・ボロン系の磁性粉末を樹脂結合剤を用
いて圧縮成形する方法において、磁性粉末に樹脂結合剤
を付着させた粉末を、押型内に充填して圧力120kg
f/mm2 以上で圧縮成形して一旦圧力を解放し、再度
前記成形圧力と同等以上の圧力で圧縮して離型したの
ち、加熱して樹脂を硬化することを特徴とする等方性ボ
ンド磁石の製造方法。
1. A method of compression-molding a magnetic powder having a composition of rare earth metal / iron / cobalt / boron, which is produced by a rapid solidification method, using a resin binder, and powder obtained by attaching a resin binder to the magnetic powder. With a pressure of 120 kg
An isotropic bond characterized by compression-molding at f / mm 2 or higher, releasing the pressure once, then compressing again at a pressure equal to or higher than the molding pressure to release the mold, and then heating to cure the resin. Magnet manufacturing method.
【請求項2】 平均粒子径が30〜155μmの磁性粉
末に樹脂結合剤1〜3重量%をコーティングした粉末を
用いることを特徴とする請求項1記載の等方性ボンド磁
石の製造方法。
2. The method for producing an isotropic bonded magnet according to claim 1, wherein a magnetic powder having an average particle diameter of 30 to 155 μm coated with 1 to 3% by weight of a resin binder is used.
JP4195365A 1992-07-22 1992-07-22 Manufacture of isotropic bond magnet Withdrawn JPH0645167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4195365A JPH0645167A (en) 1992-07-22 1992-07-22 Manufacture of isotropic bond magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4195365A JPH0645167A (en) 1992-07-22 1992-07-22 Manufacture of isotropic bond magnet

Publications (1)

Publication Number Publication Date
JPH0645167A true JPH0645167A (en) 1994-02-18

Family

ID=16339967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4195365A Withdrawn JPH0645167A (en) 1992-07-22 1992-07-22 Manufacture of isotropic bond magnet

Country Status (1)

Country Link
JP (1) JPH0645167A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5834036A (en) * 1996-10-09 1998-11-10 Nissei Plastic Industrial Co,, Ltd Safety device for use in clamping unit of molding machine
JP2001035714A (en) * 1999-05-19 2001-02-09 Toshiba Corp Bonded magnet, manufacture thereof, and actuator using the magnet
US7087185B2 (en) 1999-07-22 2006-08-08 Seiko Epson Corporation Magnetic powder and isotropic bonded magnet
CN104384510A (en) * 2014-11-13 2015-03-04 湖南航天磁电有限责任公司 Three-dimensional printing manufacturing method of isotropic bonded permanent magnet
CN108176464A (en) * 2018-02-14 2018-06-19 中核(天津)科技发展有限公司 The breaking method and breaker of NdFeB magnetic powder aggregate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5834036A (en) * 1996-10-09 1998-11-10 Nissei Plastic Industrial Co,, Ltd Safety device for use in clamping unit of molding machine
JP2001035714A (en) * 1999-05-19 2001-02-09 Toshiba Corp Bonded magnet, manufacture thereof, and actuator using the magnet
JP4709340B2 (en) * 1999-05-19 2011-06-22 株式会社東芝 Bond magnet manufacturing method and actuator
US7087185B2 (en) 1999-07-22 2006-08-08 Seiko Epson Corporation Magnetic powder and isotropic bonded magnet
CN104384510A (en) * 2014-11-13 2015-03-04 湖南航天磁电有限责任公司 Three-dimensional printing manufacturing method of isotropic bonded permanent magnet
CN108176464A (en) * 2018-02-14 2018-06-19 中核(天津)科技发展有限公司 The breaking method and breaker of NdFeB magnetic powder aggregate

Similar Documents

Publication Publication Date Title
US20040074564A1 (en) Inductive component and method for producing same
US4832891A (en) Method of making an epoxy bonded rare earth-iron magnet
JPH10163055A (en) Manufacture of high electric resistance rare earth permanent magnet
JPH0645167A (en) Manufacture of isotropic bond magnet
US20100321139A1 (en) Permanent magnet and method of producing permanent magnet
JPH05135978A (en) Manufacture of rare earth element magnet
JPH056323B2 (en)
JP2005142308A (en) Magnetic core formed of pressed powder
JP2004214418A (en) Dust core and its alloy powder and method for manufacturing the same
JP3883138B2 (en) Manufacturing method of resin bonded magnet
JPH0831677A (en) Manufacture of magnetic anisotropy resin bonding type magnet and magnetic anisotropy resin type magnet
JP2000173810A (en) Magnetic anisotropic bond magnet and its manufacture
JPH1012472A (en) Manufacture of rare-earth bond magnet
KR100225497B1 (en) Method for manufacturing permanent magnet based on re-tm-b alloy
JP2002237406A (en) Method of manufacturing magnetically anisotropic resin- bonded magnet
JPH09186012A (en) Magnetically isotropic resin bond magnet
JPH06314605A (en) Manufacture of rare earth bonded magnet
JP2004319602A (en) Method of manufacturing isotropic magnet
JPH07211566A (en) Manufacture of anisotropic magnet
JPH08264360A (en) Resin-bonded magnet and its manufacture
JPH02153003A (en) Magnetic compound material having excellent magnetic characteristic and manufacture thereof
JPH03253002A (en) Manufacture of resin-coupled magnet
JP2005019714A (en) Method of manufacturing anisotropical bond magnet
JPH02257603A (en) Bonded magnet
JP2004006881A (en) Manufacture of magnetically anisotropic resin coupled magnet

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991005