JPH1012472A - Manufacture of rare-earth bond magnet - Google Patents

Manufacture of rare-earth bond magnet

Info

Publication number
JPH1012472A
JPH1012472A JP8161274A JP16127496A JPH1012472A JP H1012472 A JPH1012472 A JP H1012472A JP 8161274 A JP8161274 A JP 8161274A JP 16127496 A JP16127496 A JP 16127496A JP H1012472 A JPH1012472 A JP H1012472A
Authority
JP
Japan
Prior art keywords
temperature
rare
molding
bonded magnet
earth bonded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8161274A
Other languages
Japanese (ja)
Other versions
JP3658868B2 (en
Inventor
Takeshi Ikuma
健 井熊
Takatomo Shinohara
孝友 篠原
Kiyoshi Shiobara
清 塩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP16127496A priority Critical patent/JP3658868B2/en
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to US08/952,498 priority patent/US6001272A/en
Priority to TW086103372A priority patent/TW341707B/en
Priority to CNB971905533A priority patent/CN1143332C/en
Priority to EP97907372A priority patent/EP0831501B1/en
Priority to PCT/JP1997/000884 priority patent/WO1997035331A1/en
Priority to DE69713700T priority patent/DE69713700T2/en
Publication of JPH1012472A publication Critical patent/JPH1012472A/en
Application granted granted Critical
Publication of JP3658868B2 publication Critical patent/JP3658868B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rare-earth bond magnet having a low hole rate, high dimensional precision, excellent moldability and excellent magnetic characteristics. SOLUTION: First, rare-earth magnetic powder, binder resin composed of thermoplastic resin and antioxidant are mixed with predetermined ratios and the mixture is kneaded at a temperature higher than the heat deformation temperature. Then the kneaded mixture is granulated or rectified to obtain grains. The grains are subjected to the compression molding at a 1st temperature at which the thermoplastic resin is softened or melt and then cooled to a 2nd temperature which is at least lower than the 1st temperature while the pressure is applied and the thermoplastic resin is solidified to obtain a rare-earth bond magnet. It is recommended that the 2nd temperature is lower than the melting point or the heat deformation temperature of the thermoplastic resin.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、希土類ボンド磁石
の製造方法および希土類ボンド磁石用組成物に関するも
のである。
TECHNICAL FIELD The present invention relates to a method for producing a rare earth bonded magnet and a composition for a rare earth bonded magnet.

【0002】[0002]

【従来の技術】希土類ボンド磁石は、希土類磁石粉末と
結合樹脂(有機バインダー)との混合物(コンパウン
ド)を所望の磁石形状に加圧成形して製造されるもので
ある。この加圧成形による成形方法には、大別して、圧
縮成形法、射出成形法および押出成形法がある。
2. Description of the Related Art Rare earth bonded magnets are manufactured by pressing a mixture (compound) of a rare earth magnet powder and a binder resin (organic binder) into a desired magnet shape. The molding method by the pressure molding is roughly classified into a compression molding method, an injection molding method and an extrusion molding method.

【0003】圧縮成形法は、前記コンパウンドをプレス
金型中に充填し、これを所定温度で圧縮成形して成形体
を得、その後、結合樹脂が熱硬化性樹脂である場合には
それを硬化させて磁石とする方法である。この方法は、
他の方法に比べ、結合樹脂の量が少なくても成形が可能
であるため、得られた磁石中の樹脂量が少なくなり、磁
気特性の向上にとって有利である。
[0003] In the compression molding method, the compound is filled in a press die, and the compound is compression-molded at a predetermined temperature to obtain a molded body. Then, when the binder resin is a thermosetting resin, it is cured. This is a method of making a magnet. This method
Compared with other methods, molding is possible even with a small amount of the binder resin, so that the amount of resin in the obtained magnet is reduced, which is advantageous for improving magnetic properties.

【0004】押出成形法は、加熱溶融された前記コンパ
ウンドを押出成形機の金型から押し出すとともに冷却固
化し、所望の長さに切断して、磁石とする方法である。
この方法では、磁石の形状に対する自由度が大きく、薄
肉、長尺の磁石をも容易に製造できるという利点がある
が、成形時における溶融物の流動性を確保するために、
結合樹脂の添加量を圧縮成形法のそれに比べて多くする
必要があり、従って、得られた磁石中の樹脂量が多く、
磁気特性が低下する傾向があるという欠点がある。
The extrusion molding method is a method of extruding a heated and melted compound from a mold of an extrusion molding machine, solidifying it by cooling, cutting it into a desired length, and forming a magnet.
In this method, the degree of freedom for the shape of the magnet is large, there is an advantage that a thin, long magnet can be easily manufactured, but in order to ensure the fluidity of the melt during molding,
It is necessary to increase the addition amount of the binder resin compared to that of the compression molding method, and therefore, the resin amount in the obtained magnet is large,
There is a disadvantage that the magnetic properties tend to decrease.

【0005】射出成形法は、前記コンパウンドを加熱溶
融し、十分な流動性を持たせた状態で該溶融物を金型内
に注入し、所定の磁石形状に成形する方法である。この
方法では、磁石の形状に対する自由度は、押出成形法に
比べさらに大きく、特に、異形状の磁石をも容易に製造
できるという利点がある。しかし、成形時における溶融
物の流動性は、前記押出成形法より高いレベルが要求さ
れるので、結合樹脂の添加量は、押出成形法のそれに比
べてさらに多くする必要があり、従って、得られた磁石
中の樹脂量が多く、磁気特性が低下する傾向があるとい
う欠点がある。
The injection molding method is a method in which the compound is heated and melted, and the molten material is poured into a mold in a state where the compound has sufficient fluidity, and is molded into a predetermined magnet shape. In this method, the degree of freedom with respect to the shape of the magnet is greater than in the extrusion molding method, and in particular, there is an advantage that a magnet having a different shape can be easily manufactured. However, since the fluidity of the melt during molding requires a higher level than that of the extrusion molding method, the amount of the binder resin to be added needs to be further increased as compared with that of the extrusion molding method. However, there is a disadvantage that the amount of resin in the magnet is large and the magnetic properties tend to deteriorate.

【0006】[0006]

【発明が解決しようとする課題】ところで、以上のよう
な各方法の内、最も磁気性能の高い磁石を成形可能な圧
縮成形には、次にような欠点がある。
Among the above-mentioned methods, compression molding which can form a magnet having the highest magnetic performance has the following disadvantages.

【0007】第1に、製造された希土類ボンド磁石は、
成形体の密度は高いものの空孔率が高くなる傾向を示す
ため、機械的強度が弱く、耐食性に劣る。そのため、特
に圧縮成形法においては、成形圧力を70kgf/mm2 以上
と高圧にする高圧成形を活用したり、成形後に防食用コ
ーティング処理を施す等の方法で対処していた。しかし
ながら、高圧成形は、成形機のへの負担が大きく、ま
た、防食用コーティング処理を行う場合には、そのため
の工程が追加され、製造工程の複雑化による生産性の低
下、製造コストの上昇を招く。
First, the manufactured rare earth bonded magnet is:
Although the density of the molded article is high, the porosity tends to increase, so that the mechanical strength is weak and the corrosion resistance is poor. Therefore, particularly in the compression molding method, high pressure molding in which the molding pressure is as high as 70 kgf / mm 2 or more has been utilized, or a method such as applying a corrosion-resistant coating treatment after molding has been used. However, high-pressure molding imposes a heavy burden on the molding machine, and in the case of performing anticorrosion coating treatment, a step for that purpose is added, which lowers productivity and increases production costs due to the complexity of the production process. Invite.

【0008】第2に、熱硬化性樹脂を使用したコンパウ
ンドは、樹脂が未硬化状態であるため、樹脂の硬化によ
る物性の変化や吸水による物性の変化が生じ、コンパウ
ンドの成形性が経時的に変化する。これにより、同一条
件で成形した場合でも成形体の寸法や密度が変わり、安
定に成形を行うことが困難となる。また、熱硬化性樹脂
を使用した場合には、キュアリング(硬化)工程が必要
になり、これによって工程の増加やコストアップにつな
がるだけでなく、キュアリング時の樹脂の反応による寸
法の変化が生じ、目標寸法を確保するためには、金型寸
法の補正が必要になり、寸法確保が容易でない。
Second, in a compound using a thermosetting resin, since the resin is in an uncured state, a change in physical properties due to the curing of the resin and a change in physical properties due to water absorption occur. Change. As a result, even when molded under the same conditions, the dimensions and density of the molded body change, making it difficult to perform stable molding. In addition, when a thermosetting resin is used, a curing (curing) step is required, which not only leads to an increase in the number of steps and cost, but also a change in dimensions due to a reaction of the resin during the curing. In order to secure the target dimensions, it is necessary to correct the mold dimensions, and it is not easy to secure the dimensions.

【0009】また、従来の圧縮成形の場合、熱硬化性樹
脂として室温で固体のものと液状のものの両者が使用さ
れる。このうち、前者の固体樹脂を用いたときには、給
材性は比較的良好ではあるが成形性が悪く、より空孔率
が高くなる傾向を示す。また、樹脂と磁石粉末の分散性
が悪く、その結果、機械的強度が低下する。一方、後者
の液状樹脂を用いたときには、高密度の成形体を得るこ
とは可能であるが、成形時の環境(温度、湿度)による
影響で敏感に樹脂の物性が変化し、金型への充填性が低
下する。
In the case of conventional compression molding, both thermosetting resins which are solid and liquid at room temperature are used. Among them, when the former solid resin is used, the material supply property is relatively good, but the moldability is poor, and the porosity tends to be higher. In addition, the dispersibility of the resin and the magnet powder is poor, and as a result, the mechanical strength decreases. On the other hand, when the latter liquid resin is used, it is possible to obtain a high-density molded body, but the physical properties of the resin are sensitively affected by the environment (temperature, humidity) at the time of molding, and the The filling property decreases.

【0010】そのため、磁石の目標寸法に対しバラツキ
が生じ、すなわち寸法精度が悪く、成形の安定性に欠け
る。特に、小型の磁石の場合には、この欠点は顕著とな
る。このように寸法のバラツキが大きいことから、最終
磁石製品の目標寸法を確保するために、目標寸法よりも
大きく成形した後、切削・研磨等の二次加工により寸法
を調整する必要がある。これにより、工程の増加を招
き、加工により不良材料が発生するので、生産性が低下
し、製造コストが増加する。また、このような欠点を解
消するためには、成形機の構造や成形工程に特殊な工夫
を施さねばならず、成形機の消耗も著しく、成形のサイ
クルタイムも長くなる。
[0010] For this reason, the target dimensions of the magnet are varied, that is, the dimensional accuracy is poor, and the stability of molding is lacking. In particular, in the case of a small magnet, this disadvantage becomes remarkable. Since the size variation is large in this way, it is necessary to adjust the size by secondary processing such as cutting and polishing after forming the target magnet product larger than the target size in order to secure the target size of the final magnet product. As a result, the number of steps is increased, and a defective material is generated by processing, so that the productivity is reduced and the manufacturing cost is increased. Further, in order to eliminate such defects, special measures must be taken for the structure and the molding process of the molding machine, and the molding machine is significantly consumed and the molding cycle time becomes long.

【0011】さらに、以上のような第1および第2の欠
点は、コンパウンドの製造方法、製造条件、成形時の温
度条件、成形後の冷却条件等が不適切であるのも原因の
一つとなっている。
Further, one of the first and second drawbacks described above is that the compound manufacturing method, manufacturing conditions, temperature conditions during molding, cooling conditions after molding, and the like are inappropriate. ing.

【0012】従って、本発明の目的は、成形性、磁気特
性、寸法安定性に優れた低空孔率の希土類ボンド磁石を
容易に製造することができる希土類ボンド磁石の製造方
法を提供することにある。
Accordingly, an object of the present invention is to provide a method of manufacturing a rare earth bonded magnet which can easily manufacture a low porosity rare earth bonded magnet having excellent moldability, magnetic properties and dimensional stability. .

【0013】[0013]

【課題を解決するための手段】このような目的は、下記
(1)〜(17)の本発明により達成される。
This and other objects are achieved by the present invention which is defined below as (1) to (17).

【0014】(1) 希土類磁石粉末を熱可塑性樹脂よ
りなる結合樹脂により結合してなる希土類ボンド磁石の
製造方法であって、前記希土類磁石粉末と前記結合樹脂
とを混合・混練して混練物を製造する工程と、前記混練
物を造粒または整粒して粒状物とする工程と、前記粒状
物を用いて前記結合樹脂が軟化または溶融状態となる第
1の温度で加圧成形する工程と、少なくとも前記第1の
温度未満である第2の温度まで加圧状態で冷却する工程
とを有することを特徴とする希土類ボンド磁石の製造方
法。
(1) A method for producing a rare-earth bonded magnet in which rare-earth magnet powder is bound by a binding resin made of a thermoplastic resin, wherein the rare-earth magnet powder and the binding resin are mixed and kneaded to obtain a kneaded product. A step of producing, a step of granulating or sizing the kneaded product to form a granular material, and a step of press-molding the binder resin at a first temperature at which the binder resin is in a softened or molten state using the granular material. And cooling at least to a second temperature lower than the first temperature in a pressurized state.

【0015】(2) 前記混練は、前記結合樹脂の熱変
形温度以上の温度で、かつ前記希土類磁石粉末の表面が
溶融または軟化した結合樹脂成分により覆われた状態と
なるように行われる上記(1)に記載の希土類ボンド磁
石の製造方法。
(2) The kneading is performed at a temperature equal to or higher than the thermal deformation temperature of the binder resin and in such a state that the surface of the rare earth magnet powder is covered with the melted or softened binder resin component. The method for producing a rare-earth bonded magnet according to 1).

【0016】(3) 前記混練物中の前記希土類磁石粉
末の含有量が90〜99wt%である上記1または2に記
載の希土類ボンド磁石の製造方法。
(3) The method for producing a rare earth bonded magnet as described in (1) or (2) above, wherein the content of the rare earth magnet powder in the kneaded material is 90 to 99 wt%.

【0017】(4) 前記混練物中に、酸化防止剤を含
有する上記(1)ないし(3)のいずれかに記載の希土
類ボンド磁石の製造方法。
(4) The method for producing a rare earth bonded magnet according to any one of the above (1) to (3), wherein the kneaded material contains an antioxidant.

【0018】(5) 前記混練物中の前記酸化防止剤の
含有量が0.1〜2wt%である上記(4)に記載の希土
類ボンド磁石の製造方法。
(5) The method for producing a rare-earth bonded magnet according to (4), wherein the content of the antioxidant in the kneaded material is 0.1 to 2% by weight.

【0019】(6) 前記造粒または整粒は、粉砕によ
り行われる上記(1)ないし(5)のいずれかに記載の
希土類ボンド磁石の製造方法。
(6) The method for producing a rare earth bonded magnet according to any one of the above (1) to (5), wherein the granulation or sizing is performed by pulverization.

【0020】(7) 前記粒状物の平均粒径が10μm
〜2mmである上記(1)ないし(6)のいずれかに記載
の希土類ボンド磁石の製造方法。
(7) The granular material has an average particle size of 10 μm.
The method for producing a rare-earth bonded magnet according to any one of the above (1) to (6), which has a thickness of 2 mm.

【0021】(8) 前記加圧成形は、圧縮成形である
上記(1)ないし(7)のいずれかに記載の希土類ボン
ド磁石の製造方法。
(8) The method for manufacturing a rare earth bonded magnet according to any one of the above (1) to (7), wherein the pressure molding is compression molding.

【0022】(9) 前記第2の温度は、前記結合樹脂
の融点である上記(1)ないし(8)のいずれかに記載
の希土類ボンド磁石の製造方法。
(9) The method for manufacturing a rare earth bonded magnet according to any one of the above (1) to (8), wherein the second temperature is a melting point of the binding resin.

【0023】(10) 前記第2の温度は、前記結合樹脂
の熱変形温度である上記(1)ないし(8)のいずれか
に記載の希土類ボンド磁石の製造方法。
(10) The method for manufacturing a rare earth bonded magnet according to any one of the above (1) to (8), wherein the second temperature is a thermal deformation temperature of the binder resin.

【0024】(11) 前記第1の温度と前記第2の温度
との差が、20℃以上である上記(1)ないし(10)の
いずれかに記載の希土類ボンド磁石の製造方法。
(11) The method for manufacturing a rare-earth bonded magnet according to any one of (1) to (10), wherein a difference between the first temperature and the second temperature is 20 ° C. or more.

【0025】(12) 前記加圧状態での冷却は、前記加
圧成形の際の加圧を解除することなく連続して行われる
上記(1)ないし(11)のいずれかに記載の希土類ボン
ド磁石の製造方法。
(12) The rare earth bond according to any one of (1) to (11), wherein the cooling in the pressurized state is performed continuously without releasing the pressurization during the pressurizing. Manufacturing method of magnet.

【0026】(13) 前記加圧成形時の成形圧力に対
し、前記加圧状態での冷却時の圧力が同等またはそれ以
下である上記(1)ないし(12)のいずれかに記載の希
土類ボンド磁石の製造方法。
(13) The rare earth bond according to any one of the above (1) to (12), wherein the pressure at the time of cooling in the pressurized state is equal to or less than the molding pressure at the time of the pressure molding. Manufacturing method of magnet.

【0027】(14) 前記加圧状態での冷却時の圧力
は、少なくとも前記結合樹脂の融点まで一定に保持され
ている上記(1)ないし(13)のいずれかに記載の希土
類ボンド磁石の製造方法。
(14) The production of the rare-earth bonded magnet according to any one of the above (1) to (13), wherein the pressure during cooling in the pressurized state is kept constant at least up to the melting point of the binder resin. Method.

【0028】(15) 前記加圧状態での冷却時の圧力
は、少なくとも前記第1の温度と第2の温度の間の温度
まで一定に保持されている上記(1)ないし(13)のい
ずれかに記載の希土類ボンド磁石の製造方法。
(15) Any of the above (1) to (13), wherein the pressure at the time of cooling in the pressurized state is kept constant at least up to a temperature between the first temperature and the second temperature. A method for producing a rare-earth bonded magnet according to any one of the above.

【0029】(16) 前記加圧状態での冷却時の冷却速
度は、0.5〜100℃/秒である上記(1)ないし
(15)のいずれかに記載の希土類ボンド磁石の製造方
法。
(16) The method for producing a rare-earth bonded magnet according to any one of the above (1) to (15), wherein the cooling rate at the time of cooling in the pressurized state is 0.5 to 100 ° C./sec.

【0030】(17) 前記加圧成形時の成形圧力は、6
0kgf/mm2 以下である上記(1)ないし(16)のいずれ
かに記載の希土類ボンド磁石の製造方法。
(17) The molding pressure during the pressure molding is 6
The method for producing a rare-earth bonded magnet according to any one of the above (1) to (16), which is 0 kgf / mm 2 or less.

【0031】[0031]

【発明の実施の形態】以下、本発明の希土類ボンド磁石
の製造方法について詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a method for producing a rare earth bonded magnet of the present invention will be described in detail.

【0032】本発明の希土類ボンド磁石の製造方法は、
主に、以下の工程を有している。
The method for producing a rare-earth bonded magnet of the present invention comprises:
It mainly has the following steps.

【0033】<1>希土類ボンド磁石用組成物の混練物
の製造 まず、希土類ボンド磁石用組成物(以下単に「組成物」
と言う)を調整する。この組成物は、主に、希土類磁石
粉末と、結合樹脂(バインダー)とで構成される。ま
た、好ましくは酸化防止剤を含有し、必要に応じその他
の添加剤が添加される。これらの各構成成分は、例え
ば、ヘンシェルミキサー等の混合機や撹拌機を用いて混
合され、さらに、後述するように混練されて混練物を得
る。
<1> Production of Kneaded Product of Rare Earth Bonded Magnet Composition First, a rare earth bonded magnet composition (hereinafter simply referred to as “composition”)
Adjust). This composition is mainly composed of a rare earth magnet powder and a binder resin (binder). Further, it preferably contains an antioxidant, and other additives are added as necessary. These components are mixed using, for example, a mixer such as a Henschel mixer or a stirrer, and further kneaded as described later to obtain a kneaded material.

【0034】以下、これらの各構成成分について説明す
る。
Hereinafter, each of these components will be described.

【0035】1.希土類磁石粉末 希土類磁石粉末としては、希土類元素と遷移金属とを含
む合金よりなるものが好ましく、特に、次の[1]〜
[4]が好ましい。
1. Rare earth magnet powder The rare earth magnet powder is preferably made of an alloy containing a rare earth element and a transition metal. In particular, the following [1]-
[4] is preferred.

【0036】[1] Smを主とする希土類元素と、C
oを主とする遷移金属とを基本成分とするもの(以下、
Sm−Co系合金と言う)。
[1] A rare earth element mainly composed of Sm and C
a transition metal mainly composed of o (hereinafter, referred to as a basic component)
Sm-Co alloy).

【0037】[2] R(ただし、RはYを含む希土類
元素のうち少なくとも1種)と、Feを主とする遷移金
属と、Bとを基本成分とするもの(以下、R−Fe−B
系合金と言う)。
[2] R (where R is at least one of rare earth elements including Y), a transition metal mainly composed of Fe, and B (hereinafter, R-Fe-B)
System alloy).

【0038】[3] Smを主とする希土類元素と、F
eを主とする遷移金属と、Nを主とする格子間元素とを
基本成分とするもの(以下、Sm−Fe−N系合金と言
う)。
[3] A rare earth element mainly composed of Sm and F
A material mainly composed of a transition metal mainly composed of e and an interstitial element mainly composed of N (hereinafter, referred to as an Sm-Fe-N-based alloy).

【0039】[4] R(ただし、RはYを含む希土類
元素のうち少なくとも1種)とFe等の遷移金属とを基
本成分とし、ナノメーターレベルで磁性相を有するもの
(以下、「ナノ結晶磁石」と言う)。
[4] R (where R is at least one of rare earth elements including Y) and a transition metal such as Fe as basic components and having a magnetic phase at the nanometer level (hereinafter referred to as “nanocrystal Magnet ").

【0040】[5] 前記[1]〜[4]の組成のもの
のうち、少なくとも2種を混合したもの。この場合、混
合する各磁石粉末の利点を併有することができ、より優
れた磁気特性を容易に得ることができる。
[5] A mixture of at least two of the above-mentioned compositions [1] to [4]. In this case, the advantages of the respective magnet powders to be mixed can be obtained, and more excellent magnetic properties can be easily obtained.

【0041】Sm−Co系合金の代表的なものとして
は、SmCo5 、Sm2 TM17(ただしTMは、遷移金
属)が挙げられる。
Representative Sm-Co alloys include SmCo 5 and Sm 2 TM 17 (where TM is a transition metal).

【0042】R−Fe−B系合金の代表的なものとして
は、Nd−Fe−B系合金、Pr−Fe−B系合金、N
d−Pr−Fe−B系合金、Ce−Nd−Fe−B系合
金、Ce−Pr−Nd−Fe−B系合金、これらにおけ
るFeの一部をCo、Ni等の他の遷移金属で置換した
もの等が挙げられる。
Representative R-Fe-B alloys include Nd-Fe-B alloys, Pr-Fe-B alloys, and N-Fe-B alloys.
d-Pr-Fe-B-based alloy, Ce-Nd-Fe-B-based alloy, Ce-Pr-Nd-Fe-B-based alloy, in which part of Fe is replaced by another transition metal such as Co or Ni And the like.

【0043】Sm−Fe−N系合金の代表的なものとし
ては、Sm2 Fe17合金を窒化して作製したSm2 Fe
173 が挙げられる。
[0043] Typical examples of the Sm-Fe-N based alloy was prepared by nitriding the Sm 2 Fe 17 alloy Sm 2 Fe
17 N 3 .

【0044】磁石粉末における前記希土類元素として
は、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、
Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、ミ
ッシュメタルが挙げられ、これらを1種または2種以上
含むことができる。また、前記遷移金属としては、F
e、Co、Ni等が挙げられ、これらを1種または2種
以上含むことができる。また、磁気特性を向上させるた
めに、磁石粉末中には、必要に応じ、B、Al、Mo、
Cu、Ga、Si、Ti、Ta、Zr、Hf、Ag、Z
n等を含有することもできる。
The rare earth elements in the magnet powder include Y, La, Ce, Pr, Nd, Pm, Sm, Eu,
Examples include Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and misch metal, and one or more of these may be included. Further, as the transition metal, F
e, Co, Ni and the like, and one or more of these can be included. Further, in order to improve magnetic properties, B, Al, Mo,
Cu, Ga, Si, Ti, Ta, Zr, Hf, Ag, Z
n or the like can be contained.

【0045】また、磁石粉末の平均粒径は、特に限定さ
れないが、0.5〜100μm 程度が好ましく、1〜5
0μm 程度がより好ましい。なお、磁石粉末等の粒径
は、例えば、F.S.S.S.( Fischer Sub-Sieve Sizer)法
により測定することができる。
The average particle size of the magnet powder is not particularly limited, but is preferably about 0.5 to 100 μm.
About 0 μm is more preferable. The particle size of the magnet powder or the like can be measured by, for example, the FSSS (Fischer Sub-Sieve Sizer) method.

【0046】また、磁石粉末の粒径分布は、均一でも、
ある程度分散されていても(バラツキがある)よいが、
後述するような少量の結合樹脂で成形時の良好な成形性
を得るために、後者の方が好ましい。これにより、得ら
れたボンド磁石の空孔率をより低減することもできる。
なお、前記[5]の場合、混合する磁石粉末の組成毎
に、その平均粒径が異なっていてもよい。
Further, even if the particle size distribution of the magnet powder is uniform,
Although it may be dispersed to some extent (varies),
In order to obtain good moldability at the time of molding with a small amount of a binder resin as described later, the latter is preferable. Thereby, the porosity of the obtained bonded magnet can be further reduced.
In the case of the above [5], the average particle size may be different for each composition of the magnet powder to be mixed.

【0047】磁石粉末の製造方法は、特に限定されず、
例えば、溶解・鋳造により合金インゴットを作製し、こ
の合金インゴットを適度な粒度に粉砕し(さらに分級
し)て得られたもの、アモルファス合金を製造するのに
用いる急冷薄帯製造装置で、リボン状の急冷薄片(微細
な多結晶が集合)を製造し、この薄片(薄帯)を適度な
粒度に粉砕し(さらに分級し)て得られたもの等、いず
れでもよい。
The method for producing the magnet powder is not particularly limited.
For example, an alloy ingot is produced by melting and casting, and the alloy ingot is crushed to an appropriate particle size (classified), and a quenched ribbon manufacturing apparatus used to manufacture an amorphous alloy is used to form a ribbon. Quenched flakes (a collection of fine polycrystals) may be produced, and the flakes (ribbons) may be pulverized to an appropriate particle size (further classified), or any other material obtained.

【0048】以上のような磁石粉末の混練物中での含有
量は、90〜99wt%程度であるのが好ましく、93〜
99wt%程度であるのがより好ましく、95〜99wt%
程度であるのがより好ましい。磁石粉末の含有量が少な
過ぎると、磁気特性(特に磁気エネルギー積)の向上が
図れず、また、磁石粉末の含有量が多過ぎると、相対的
に結合樹脂の含有量が少なくなり、成形性が低下する。
The content of the above magnetic powder in the kneaded material is preferably about 90 to 99 wt%, and 93 to 99 wt%.
More preferably, it is about 99% by weight, and 95 to 99% by weight.
More preferably, it is in the order of magnitude. If the content of the magnet powder is too small, the magnetic properties (especially the magnetic energy product) cannot be improved, and if the content of the magnet powder is too large, the content of the binder resin becomes relatively small, and the moldability increases. Decrease.

【0049】2.結合樹脂(バインダー) 結合樹脂(バインダー)としては、熱可塑性樹脂が用い
られる。結合樹脂として熱可塑性樹脂を用いた場合に
は、熱硬化性樹脂を用いた場合に比べ、低空孔率の磁石
を得る上で有利であるが、本発明では、後述する成形時
の温度条件、冷却条件と相まって、より低い空孔率を実
現することができる。
2. Binding resin (binder) As the binding resin (binder), a thermoplastic resin is used. When a thermoplastic resin is used as the binding resin, it is advantageous in obtaining a magnet having a low porosity as compared with the case where a thermosetting resin is used.However, in the present invention, temperature conditions during molding to be described later, Lower porosity can be achieved in combination with cooling conditions.

【0050】熱可塑性樹脂としては、例えば、ポリアミ
ド(例:ナイロン6、ナイロン46、ナイロン66、ナ
イロン610、ナイロン612、ナイロン11、ナイロ
ン12、ナイロン6−12、ナイロン6−66)、熱可
塑性ポリイミド、芳香族ポリエステル系樹脂等の液晶ポ
リマー、ポリフェニレンオキシド、ポリフェニレンサル
ファイド、ポリエチレン、ポリプロピレン、エチレン−
酢酸ビニル共重合体等のポリオレフィン、変性ポリオレ
フィン、ポリエーテル、ポリアセタール等、またはこれ
らを主とする共重合体、ブレンド体、ポリマーアロイ等
が挙げられ、これらのうちの1種または2種以上を混合
して用いることができる。
As the thermoplastic resin, for example, polyamide (eg, nylon 6, nylon 46, nylon 66, nylon 610, nylon 612, nylon 11, nylon 12, nylon 6-12, nylon 6-66), thermoplastic polyimide , Liquid crystal polymers such as aromatic polyester resins, polyphenylene oxide, polyphenylene sulfide, polyethylene, polypropylene, ethylene-
Polyolefins such as vinyl acetate copolymers, modified polyolefins, polyethers, polyacetals, and the like, or copolymers, blends, and polymer alloys containing these as main components, and one or more of these are mixed. Can be used.

【0051】これらのうちでも、成形性に優れ、また機
械的強度が強いことから、ポリアミドまたはその共重合
体、耐熱性向上の点から、液晶ポリマー、ポリフェニレ
ンサルファイドを主とするもの、成形の容易性や低コス
トの点で、ポリオレフィンを主とするものが好ましい。
また、これらの熱可塑性樹脂は、磁石粉末との混練性に
も優れている。
Of these, polyamides or copolymers thereof, which are excellent in moldability and mechanical strength, and mainly liquid crystal polymers and polyphenylene sulfide in view of improvement in heat resistance, are easy to mold. From the viewpoints of properties and low cost, those mainly composed of polyolefin are preferred.
These thermoplastic resins are also excellent in kneadability with magnet powder.

【0052】用いられる熱可塑性樹脂は、融点が120
℃以上のものであるのが好ましく、122℃〜400℃
のものであるのがより好ましく、125℃〜350℃の
ものであるのがさらに好ましい。融点が前記下限値未満
のものであると、磁石成形体の耐熱性が低下し、十分な
温度特性(磁気的または機械的)を確保することが困難
となる。また、融点が前記上限値を超えるものである
と、成形時の温度が上昇し、磁石粉末等の酸化が生じ易
くなる。
The thermoplastic resin used has a melting point of 120.
C. or higher, preferably 122 ° C. to 400 ° C.
More preferably, it is 125 ° C. to 350 ° C. When the melting point is lower than the lower limit, the heat resistance of the magnet molded body is reduced, and it is difficult to secure sufficient temperature characteristics (magnetic or mechanical). On the other hand, when the melting point exceeds the upper limit, the temperature at the time of molding increases, and oxidation of the magnet powder and the like is likely to occur.

【0053】また、成形性をより向上させるために、用
いられる熱可塑性樹脂の平均分子量(重合度)は、10
000〜60000程度であるのが好ましく、1000
0〜35000程度であるのがより好ましい。
In order to further improve the moldability, the thermoplastic resin used has an average molecular weight (degree of polymerization) of 10%.
It is preferably about 000 to 60000, and 1000
More preferably, it is about 0 to 35,000.

【0054】以上のような結合樹脂の混練物中での含有
量は、1〜10wt%程度であるのが好ましく、1〜8wt
%程度であるのが好ましく、1〜5wt%程度であるのが
さらに好ましい。結合樹脂の含有量が多過ぎると、磁気
特性(特に最大磁気エネルギー積)の向上が図れず、ま
た、寸法精度が低下する傾向を示す。また、結合樹脂の
含有量が少な過ぎると、成形性が低下する。
The content of the binder resin in the kneaded product is preferably about 1 to 10% by weight, and 1 to 8% by weight.
%, More preferably about 1 to 5% by weight. If the content of the binder resin is too large, the magnetic properties (particularly, the maximum magnetic energy product) cannot be improved, and the dimensional accuracy tends to decrease. On the other hand, when the content of the binding resin is too small, the moldability is reduced.

【0055】3.酸化防止剤 酸化防止剤は、混練物の製造の際等に、希土類磁石粉末
の酸化劣化や結合樹脂の酸化による変質(希土類磁石粉
末の金属成分が触媒として働くことにより生じる)を防
止するために該組成物中に添加される添加剤である。こ
の酸化防止剤の添加は、希土類磁石粉末の酸化を防止
し、磁石の磁気特性の向上を図るのに寄与するととも
に、希土類ボンド磁石用組成物の混練時、成形時におけ
る熱的安定性の向上に寄与し、少ない結合樹脂量で良好
な成形性を確保する上で重要な役割を果たしている。
3. Antioxidant The antioxidant is used to prevent deterioration of the rare earth magnet powder due to oxidation and alteration due to oxidation of the binder resin (produced by the metal component of the rare earth magnet powder acting as a catalyst) during the production of a kneaded product. It is an additive added to the composition. The addition of the antioxidant prevents oxidation of the rare-earth magnet powder and contributes to improving the magnetic properties of the magnet, and also improves the thermal stability during kneading and molding of the rare-earth bonded magnet composition. And plays an important role in ensuring good moldability with a small amount of binder resin.

【0056】この酸化防止剤は、混練時や磁石への成形
時等において揮発したり、変質したりするので、製造さ
れた希土類ボンド磁石中には、その一部が残留した状態
で存在する。
The antioxidant volatilizes or deteriorates at the time of kneading, molding into a magnet, or the like. Therefore, a part of the antioxidant remains in the manufactured rare earth bonded magnet.

【0057】酸化防止剤としては、希土類磁石粉末等の
酸化を防止または抑制し得るものであればいかなるもの
でもよく、例えば、アミン系化合物、アミノ酸系化合
物、ニトロカルボン酸類、ヒドラジン化合物、シアン化
合物、硫化物等の、金属イオン、特にFe成分に対しキ
レート化合物を生成するキレート化剤が好適に使用され
る。なお、酸化防止剤の種類、組成等については、これ
らのものに限定されないことは言うまでもない。
As the antioxidant, any antioxidant can be used as long as it can prevent or suppress the oxidation of rare earth magnet powder and the like. Examples thereof include amine compounds, amino acid compounds, nitrocarboxylic acids, hydrazine compounds, cyanide compounds, and the like. A chelating agent that forms a chelate compound for a metal ion, particularly an Fe component, such as a sulfide, is preferably used. It goes without saying that the type, composition and the like of the antioxidant are not limited to these.

【0058】このような酸化防止剤を添加する場合、混
練物中の酸化防止剤の含有量は、0.1〜2wt%程度と
するのが好ましく、0.5〜1.5wt%程度とするのが
より好ましい。この場合、酸化防止剤の含有量は、結合
樹脂の含有量に対し2〜150%程度であるのが好まし
く、30〜100%程度であるのがより好ましい。
When such an antioxidant is added, the content of the antioxidant in the kneaded product is preferably about 0.1 to 2% by weight, more preferably about 0.5 to 1.5% by weight. Is more preferred. In this case, the content of the antioxidant is preferably about 2 to 150%, more preferably about 30 to 100%, based on the content of the binding resin.

【0059】なお、本発明では、酸化防止剤の添加量
は、前記範囲の下限値以下であってもよく、また、無添
加であってもよいことは、言うまでもない。
In the present invention, it goes without saying that the amount of the antioxidant to be added may be equal to or less than the lower limit of the above range, or may not be added.

【0060】前記結合樹脂と酸化防止剤との添加量は、
次のようなことに留意して決定される。
The added amount of the binder resin and the antioxidant is
The decision is made in consideration of the following.

【0061】すなわち、結合樹脂が少ないときには、相
対的に磁石粉末量が増加して、混練の際の混練物の粘度
が高くなり、混練トルクが増大し、発熱により樹脂の酸
化が促進される傾向となる。この時、酸化防止剤量が少
ないと、樹脂の酸化を十分に抑制することができなくな
り、混練物(樹脂溶融物)の粘度上昇が生じて混練性、
成形性が低下し、低空孔率、高機械的強度で寸法安定性
に優れた磁石が得られない。また、酸化防止剤量が多い
と、相対的に樹脂量が減少し、成形体の機械的強度が低
下する傾向を示す。
That is, when the amount of the binder resin is small, the amount of the magnet powder relatively increases, the viscosity of the kneaded material during kneading increases, the kneading torque increases, and the resin tends to be oxidized by heat generation. Becomes At this time, if the amount of the antioxidant is small, the oxidation of the resin cannot be sufficiently suppressed, and the viscosity of the kneaded product (resin melt) increases, and the kneading property increases.
Moldability is reduced, and a magnet having low porosity, high mechanical strength, and excellent dimensional stability cannot be obtained. In addition, when the amount of the antioxidant is large, the amount of the resin relatively decreases, and the mechanical strength of the molded body tends to decrease.

【0062】一方、結合樹脂が多いときには、相対的に
磁石粉末量が減少して、磁石粉末の樹脂に対する影響が
低下して樹脂の酸化が起こりにくくなる。そのため、酸
化防止剤が少なくても樹脂の酸化を抑制することが可能
となる。
On the other hand, when the amount of the binder resin is large, the amount of the magnet powder is relatively reduced, and the influence of the magnet powder on the resin is reduced, so that oxidation of the resin becomes difficult. Therefore, even if the amount of the antioxidant is small, the oxidation of the resin can be suppressed.

【0063】このように、結合樹脂の含有量が比較的多
ければ、酸化防止剤の含有量を少なくすることができ、
逆に、結合樹脂の含有量が少なければ、酸化防止剤の含
有量を多くする必要がある。
As described above, when the content of the binding resin is relatively large, the content of the antioxidant can be reduced,
Conversely, if the content of the binding resin is small, it is necessary to increase the content of the antioxidant.

【0064】従って、混練物中の結合樹脂と酸化防止剤
との合計含有量は、1.0〜8.0wt%であるのが好ま
しく、2.0〜6.0wt%であるのがより好ましい。こ
のような範囲とすることにより、成形時における成形
性、成形の容易性、磁石粉末等の酸化防止の向上に寄与
し、低空孔率、高機械的強度、高磁気特性の磁石が得ら
れる。
Therefore, the total content of the binder resin and the antioxidant in the kneaded product is preferably 1.0 to 8.0 wt%, more preferably 2.0 to 6.0 wt%. . By setting the content in such a range, it is possible to improve the moldability at the time of molding, the ease of molding, and the prevention of oxidation of the magnet powder and the like, and a magnet having low porosity, high mechanical strength, and high magnetic properties can be obtained.

【0065】4.その他の添加剤 また、混練物中には、必要に応じ、例えば、可塑剤(例
えば、ステアリン酸亜鉛等の脂肪酸塩、脂肪酸)、潤滑
剤(例えば、シリコーンオイル、各種ワックス、脂肪
酸、アルミナ、シリカ、チタニア等の各種無機潤滑
剤)、その他成形助剤等の各種添加剤が添加されていて
もよい。
4. Other additives In the kneaded material, if necessary, for example, a plasticizer (for example, a fatty acid salt such as zinc stearate, a fatty acid), a lubricant (for example, silicone oil, various waxes, a fatty acid, alumina, silica) , Various inorganic lubricants such as titania) and other various additives such as molding aids may be added.

【0066】可塑剤の添加は、成形時の流動性を向上さ
せるので、より少ない結合樹脂の添加量で同様の特性を
得ることができ、また、より低い成形圧で圧縮成形する
ことを可能とする。潤滑剤の添加についても同様であ
る。可塑剤の添加量は、0.01〜0.2wt%程度であ
るのが好ましく、潤滑剤の添加量は、0.05〜0.5
wt%程度であるのが好ましい。
The addition of a plasticizer improves the fluidity during molding, so that similar characteristics can be obtained with a smaller amount of binder resin added, and compression molding can be performed with a lower molding pressure. I do. The same applies to the addition of a lubricant. The addition amount of the plasticizer is preferably about 0.01 to 0.2 wt%, and the addition amount of the lubricant is 0.05 to 0.5 wt%.
It is preferably about wt%.

【0067】以上のような希土類磁石粉末と、結合樹脂
と、好ましくは酸化防止剤と、必要に応じその他の添加
剤とを混合し、さらに混練して混練物を製造する。
The above rare earth magnet powder, the binder resin, preferably an antioxidant, and other additives as necessary are mixed and kneaded to produce a kneaded product.

【0068】混合は、例えば、ヘンシェルミキサー等の
混合機や撹拌機を用いて行われる。
The mixing is performed using a mixer such as a Henschel mixer or a stirrer.

【0069】混練は、例えば2軸押出混練機、ロール式
混練機、ニーダー等の混練機を用いて行われる。
The kneading is carried out using a kneader such as a twin screw extruder, a roll type kneader or a kneader.

【0070】この混練は、好ましくは用いる結合樹脂の
熱変形温度(ASTM D648 による方法で測定)以上の温
度、より好ましくは用いる結合樹脂の融点以上の温度で
行われる。
This kneading is preferably carried out at a temperature not lower than the heat distortion temperature of the binder resin used (measured by a method according to ASTM D648), more preferably at a temperature not lower than the melting point of the binder resin used.

【0071】例えば、結合樹脂としてポリアミド(熱変
形温度145℃、融点178℃)を用いた場合には、好
ましい混練温度は、150〜280℃程度である。ま
た、混練時間は、結合樹脂の種類や、混練温度等の諸条
件により異なるが、通常は、5〜40分程度とされる。
For example, when polyamide (heat deformation temperature: 145 ° C., melting point: 178 ° C.) is used as the binder resin, the preferable kneading temperature is about 150 to 280 ° C. The kneading time varies depending on the type of the binder resin and various conditions such as the kneading temperature, but is usually about 5 to 40 minutes.

【0072】また、この混練は、希土類磁石粉末の表面
が溶融または軟化した結合樹脂成分により覆われた状態
となるように、十分に行われる。前記混練温度で混練し
た場合、このような状態を得るための混練時間は、結合
樹脂の種類や使用する混練機、混練温度等の諸条件によ
り異なるが、通常5〜90分程度とするのが好ましく、
5〜60分程度とするのがより好ましい。
The kneading is sufficiently performed so that the surface of the rare earth magnet powder is covered with the molten or softened binder resin component. When kneading at the kneading temperature, the kneading time for obtaining such a state varies depending on the type of the binder resin and the kneading machine to be used, various conditions such as the kneading temperature, but is usually about 5 to 90 minutes. Preferably
More preferably, it is about 5 to 60 minutes.

【0073】このような条件で混練することにより、混
練の効率が向上し、常温で混練する場合に比べてより短
時間で均一に混練することができるとともに、結合樹脂
の粘度が下がった状態で混練されるので、希土類磁石粉
末の周囲を結合樹脂が均一に覆った状態となり、混練物
中の空孔率の減少、すなわち製造された磁石中の空孔率
の減少に寄与する。
By kneading under these conditions, the efficiency of kneading is improved, and the kneading can be carried out more uniformly in a shorter time than in the case of kneading at room temperature, while the viscosity of the binder resin is reduced. Since the mixture is kneaded, the binder resin uniformly covers the periphery of the rare earth magnet powder, which contributes to a decrease in the porosity in the kneaded material, that is, a decrease in the porosity in the manufactured magnet.

【0074】なお、結合樹脂として、n種類の熱可塑性
樹脂を混合して用いる場合、前記「用いる結合樹脂の熱
変形温度(または融点)」は、例えば、次のようにして
換算することができる。
When n kinds of thermoplastic resins are mixed and used as the binder resin, the “thermal deformation temperature (or melting point) of the binder resin used” can be converted, for example, as follows. .

【0075】熱可塑性樹脂の合計を1重量部としたとき
の各熱可塑性樹脂の量をそれぞれA1 、A2 ・・・An
重量部、各熱可塑性樹脂の熱変形温度(または融点)を
それぞれT1 、T2 ・・・Tn としたとき、用いる熱可
塑性樹脂の熱変形温度(または融点)は、A11 +A
22 +・・・An Tn で表される。なお、この換算
は、以下の工程において、n種類の熱可塑性樹脂を混合
して用いる場合にも同様とする。
When the total amount of the thermoplastic resins is 1 part by weight, the amounts of the respective thermoplastic resins are A 1 , A 2 ...
The thermal deformation temperature (or melting point) of the thermoplastic resin to be used is A 1 T 1 + A, where T 1 , T 2 ...
2 T 2 +... An Tn This conversion is also applied to the case where n kinds of thermoplastic resins are mixed and used in the following steps.

【0076】<2>造粒物の製造 前記<1>で製造された混練物を造粒または整粒し、所
定の粒径の粒状物を製造する。
<2> Production of Granulated Material The kneaded product produced in the above <1> is granulated or sized to produce a granular material having a predetermined particle size.

【0077】造粒または整粒の方法は、特に限定されな
いが、混練物を粉砕することによりなされるのが好まし
い。この粉砕は、例えば、ボールミル、振動ミル、破砕
機、ジェットミル、ピンミル等を用いて行われる。
The method of granulation or sizing is not particularly limited, but is preferably performed by pulverizing the kneaded material. This pulverization is performed using, for example, a ball mill, a vibration mill, a crusher, a jet mill, a pin mill, or the like.

【0078】また、例えば押出式造粒機のような造粒機
を用いて行うこともでき、さらには、造粒機による造粒
と、前記粉砕とを組み合わせて行うこともできる。
Further, the granulation can be carried out using a granulator such as an extrusion granulator, and further, the granulation by the granulator and the pulverization can be carried out in combination.

【0079】また、粒状物の粒径の調整は、篩い等を用
いて分級することにより行うことができる。
The particle size of the granular material can be adjusted by classification using a sieve or the like.

【0080】粒状物の平均粒径は、10μm 〜2mm程度
であるのが好ましく、20μm 〜2mm程度であるのがよ
り好ましく、50μm 〜2mm程度であるのがさらに好ま
しい。粒状物の平均粒径が2mm以上では、特に成形され
る磁石の寸法が小さい場合に、すなわち成形金型のギャ
ップの寸法が小さい場合に、粒状物の金型への充填量を
微妙に調整することが困難となり、定量性が劣るので、
ボンド磁石の寸法精度の向上が図れない。一方、平均粒
径10μm 以下の粒状物は、製造(造粒)が困難かまた
は手間がかかる場合があり、また、平均粒径が小さ過ぎ
ると、得られたボンド磁石の空孔率が上昇する傾向を示
す。
The average particle size of the granular material is preferably about 10 μm to 2 mm, more preferably about 20 μm to 2 mm, and still more preferably about 50 μm to 2 mm. When the average particle diameter of the granular material is 2 mm or more, particularly when the size of the magnet to be molded is small, that is, when the size of the gap of the molding die is small, the filling amount of the granular material into the mold is finely adjusted. Is difficult and the quantitativeness is poor.
The dimensional accuracy of the bonded magnet cannot be improved. On the other hand, granules having an average particle size of 10 μm or less may be difficult or troublesome to produce (granulate). If the average particle size is too small, the porosity of the obtained bonded magnet increases. Show the trend.

【0081】このような粒状物は、粒径にある程度のバ
ラツキがあるものでもよいが、粒径が均一なものが好ま
しい。これにより、金型への充填密度が増大し、低空孔
率で寸法精度の高いボンド磁石が得られる。
Such a granular material may have a certain degree of variation in the particle size, but preferably has a uniform particle size. Thereby, the packing density in the mold is increased, and a bonded magnet with low porosity and high dimensional accuracy can be obtained.

【0082】なお、ここで言う粒状物は、粒径の大きい
ペレット(塊状物)とは区別される。
The granular material referred to here is distinguished from pellets (mass) having a large particle size.

【0083】<3>加圧成形 前記<2>で得られた粒状物を用いて加圧成形を行う。
以下、代表的な圧縮成形について説明する。
<3> Pressure molding Pressure molding is performed using the granular material obtained in <2>.
Hereinafter, typical compression molding will be described.

【0084】造粒物を圧縮成形機の金型内(ギャップ)
に充填し、磁場中(配向磁場が例えば5〜20kOe 、配
向方向は、縦、横、ラジアル方向のいずれも可)または
無磁場中で圧縮成形する。
The granulated product is placed in a mold (gap) of a compression molding machine.
And compression-molded in a magnetic field (the orientation magnetic field is, for example, 5 to 20 kOe, and the orientation direction can be any of vertical, horizontal, and radial directions) or in the absence of a magnetic field.

【0085】この圧縮成形は、温間成形で行われる。す
なわち、成形金型を加熱する等により、成形時の材料温
度を、用いる熱可塑性樹脂(結合樹脂)が軟化または溶
融状態となる所定の温度(第1の温度)とする。
This compression molding is performed by warm molding. That is, the temperature of the material at the time of molding is set to a predetermined temperature (first temperature) at which the thermoplastic resin (bonding resin) to be used is in a softened or molten state, for example, by heating a molding die.

【0086】この第1の温度は、用いる熱可塑性樹脂の
熱変形温度以上の温度とされる。さらには、用いる熱可
塑性樹脂の融点以上の温度とされるのが好ましく、融点
から(融点+200)℃程度までの範囲の所定の温度と
されるのがより好ましく、融点から(融点+130)℃
程度までの範囲の所定の温度とされるのがさらに好まし
い。
The first temperature is a temperature equal to or higher than the thermal deformation temperature of the thermoplastic resin used. Further, the temperature is preferably set to a temperature equal to or higher than the melting point of the thermoplastic resin to be used, more preferably a predetermined temperature in the range from the melting point to about (melting point + 200) ° C., and from the melting point to (melting point + 130) ° C.
More preferably, the predetermined temperature is in the range up to the extent.

【0087】例えば、用いる熱可塑性樹脂がポリアミド
(融点:178℃)である場合、成形時における特に好
ましい材料温度(第1の温度)は、180〜300℃程
度とされる。
For example, when the thermoplastic resin to be used is polyamide (melting point: 178 ° C.), a particularly preferable material temperature (first temperature) at the time of molding is about 180 to 300 ° C.

【0088】このような温度で成形することにより、金
型内での成形材料の流動性が向上し、円柱状、ブロック
状のものは勿論のこと、円筒状(リング状)、平板状、
湾曲板状等の薄肉部を有する形状のもの、小型のもの、
長尺なものでも、低空孔率で、機械的強度が高く、良好
かつ安定した形状、寸法のものを量産することができ
る。
By molding at such a temperature, the fluidity of the molding material in the mold is improved, and the molding material is not only cylindrical, block-shaped, but also cylindrical (ring-shaped), plate-shaped,
A shape having a thin portion such as a curved plate, a small size,
Even long ones can be mass-produced with low porosity, high mechanical strength, good and stable shape and dimensions.

【0089】圧縮成形における成形圧力は、好ましくは
60kgf/mm2 以下、より好ましくは2〜50kgf/mm2
度、さらに好ましくは5〜40kgf/mm2 程度とされる。
本発明では、前述したような第1の温度で成形を行うた
め、このような比較的低い成形圧力でも、前述したよう
な長所を持つボンド磁石を成形(賦形)することができ
る。
[0089] molding pressure in the compression molding is preferably 60 kgf / mm 2 or less, more preferably 2~50kgf / mm 2 approximately, and further preferably 5~40kgf / mm 2 approximately.
In the present invention, since the molding is performed at the first temperature as described above, the bonded magnet having the advantages as described above can be molded (shaped) even at such a relatively low molding pressure.

【0090】<4>冷却 加圧成形後、成形体を冷却する。この冷却は、少なくと
も前記第1の温度未満である所定の温度(第2の温度)
まで加圧状態で行う。以下、これを「加圧下冷却」と言
う。
<4> Cooling After the pressure molding, the compact is cooled. This cooling is performed at a predetermined temperature (second temperature) that is at least lower than the first temperature.
Perform under pressure until Hereinafter, this is referred to as “cooling under pressure”.

【0091】このような加圧下冷却を行うことにより、
成形時の低空孔率な状態がそのまま維持されるので、低
空孔率で寸法精度が高く、磁気特性に優れる希土類ボン
ド磁石が得られる。
By performing such cooling under pressure,
Since the state of low porosity during molding is maintained as it is, a rare-earth bonded magnet having low porosity, high dimensional accuracy, and excellent magnetic properties can be obtained.

【0092】第2の温度(除圧温度)は、得られたボン
ド磁石の空孔率の低減および寸法精度の向上にとって、
できるだけ低い温度であるのが好ましく、本発明では、
用いる熱可塑性樹脂の融点またはそれ以下の温度である
のが好ましく、用いる熱可塑性樹脂の熱変形温度(軟化
点)またはそれ以下の温度であるのがより好ましい。
The second temperature (decompression temperature) is used to reduce the porosity and improve the dimensional accuracy of the obtained bonded magnet.
Preferably, the temperature is as low as possible.
The temperature is preferably the melting point of the thermoplastic resin used or lower, and more preferably the thermal deformation temperature (softening point) of the thermoplastic resin used or lower.

【0093】また、前記第1の温度と第2の温度との差
は、20℃以上であるのが好ましく、50℃以上である
のがより好ましい。この温度差が大きい程、空孔率の低
減および寸法精度の向上の効果が大きい。
The difference between the first temperature and the second temperature is preferably 20 ° C. or more, and more preferably 50 ° C. or more. The greater the temperature difference, the greater the effect of reducing the porosity and improving the dimensional accuracy.

【0094】なお、磁石粉末の含有量が比較的多い場合
には、第2の温度をより高く設定しても低空孔率のボン
ド磁石を得易い。従って、例えば、混練物中の磁石粉末
の含有量が例えば94wt%以上の場合には、第2の温度
を、用いる熱可塑性樹脂の融点付近の温度または融点以
上の温度(〜融点+10℃程度)としても、空孔率を低
く(4.5%以下または4.0%以下)することができ
る。
When the content of the magnet powder is relatively large, a bonded magnet having a low porosity can be easily obtained even if the second temperature is set higher. Therefore, for example, when the content of the magnetic powder in the kneaded material is, for example, 94% by weight or more, the second temperature is set to a temperature near the melting point of the thermoplastic resin to be used or a temperature higher than or equal to the melting point (up to about + 10 ° C.). In this case, the porosity can be reduced (4.5% or less or 4.0% or less).

【0095】また、加圧下冷却は、加圧成形時の加圧を
一旦解除または緩和した後、行ってもよいが、加圧成形
時の加圧を解除することなく連続して行われるのが、工
程の簡素化および寸法精度の向上等のために好ましい。
Further, the cooling under pressure may be performed after the pressure during the pressure molding is once released or relaxed, but it is preferably performed continuously without releasing the pressure during the pressure molding. This is preferable for simplifying the process and improving the dimensional accuracy.

【0096】また、加圧下冷却の際の圧力は、一定でも
変化してもよいが、少なくとも用いる熱可塑性樹脂の融
点(特に熱変形温度)までは一定に保持されているのが
好ましい。加圧下冷却の際の圧力が変化する場合、例え
ば、圧力が連続的または段階的に増加または減少するよ
うなパターンを含んでいてもよい。
The pressure during cooling under pressure may be constant or may vary, but it is preferable that the pressure is kept constant at least up to the melting point (particularly the heat deformation temperature) of the thermoplastic resin used. When the pressure at the time of cooling under pressure changes, for example, it may include a pattern in which the pressure increases or decreases continuously or stepwise.

【0097】また、加圧下冷却の際の圧力(該圧力が経
時変化する場合にはその平均圧力)は、加圧成形時の成
形圧力と同等またはそれ以下であるのが好ましく、少な
くとも用いる熱可塑性樹脂の融点までは加圧成形時の成
形圧力と同等であるのがより好ましい。用いる熱可塑性
樹脂の融点から熱変形温度までの間も加圧下で冷却する
場合は、その間の圧力は、加圧成形時の成形圧力の40
〜100%程度とするのが好ましく、50〜80%程度
とするのがより好ましい。
The pressure during cooling under pressure (when the pressure changes with time, the average pressure thereof) is preferably equal to or less than the molding pressure during pressure molding. It is more preferable that the pressure up to the melting point of the resin is equal to the molding pressure during pressure molding. When cooling under pressure between the melting point of the thermoplastic resin to be used and the heat deformation temperature, the pressure during that time is 40% of the molding pressure during pressure molding.
It is preferably about 100%, more preferably about 50% to 80%.

【0098】なお、本発明では、加圧下冷却の後(除圧
後)に、非加圧下(常圧下)で冷却を続行してもよいこ
とは、言うまでもない。また、非加圧下冷却を行った
後、再度加圧下冷却を行ってもよい。
In the present invention, it goes without saying that cooling may be continued under non-pressurization (under normal pressure) after cooling under pressure (after depressurization). Further, after cooling under non-pressure, cooling under pressure may be performed again.

【0099】加圧下冷却の際の冷却速度(冷却速度が経
時変化する場合にはその平均値)は、特に限定されない
が、0.5〜100℃/秒であるのが好ましく、1〜8
0℃/秒であるのがより好ましい。冷却速度が速過ぎる
と、冷却に伴う急速な収縮により、成形体内部に微細な
クラックが発生し、機械的強度の低下を招くおそれがあ
り、また、冷却により内部応力が増大し、金型からの除
材時に応力緩和によるひずみや変形が生じて、寸法精度
が低下することがある。一方、冷却速度が遅過ぎると、
成形のサイクルタイムが増加し、生産性が低下する。
The cooling rate during cooling under pressure (when the cooling rate changes over time, the average value thereof) is not particularly limited, but is preferably 0.5 to 100 ° C./sec.
More preferably, it is 0 ° C./sec. If the cooling rate is too fast, rapid cracking due to cooling may cause fine cracks inside the molded body, which may cause a decrease in mechanical strength.In addition, the internal stress increases due to cooling, and When the material is removed, strain or deformation may occur due to stress relaxation, and dimensional accuracy may decrease. On the other hand, if the cooling rate is too slow,
The molding cycle time increases and productivity decreases.

【0100】また、除圧後にも冷却を続行する場合、そ
の冷却速度は特に限定されず、前記と同様の冷却速度と
することができる。
When cooling is continued after depressurization, the cooling rate is not particularly limited, and the same cooling rate as described above can be used.

【0101】なお、加圧下冷却の際および除圧後の冷却
の際の冷却速度は、それぞれ、一定でも変化してもよ
い。
The cooling rates during cooling under pressure and during cooling after depressurization may be constant or variable.

【0102】なお、本工程において、冷却の方法は、例
えば自然空冷、強制空冷、水冷、油冷、水冷と空冷の組
み合わせ等、いかなる方法を採用してもよい。
In this step, any cooling method such as natural air cooling, forced air cooling, water cooling, oil cooling, or a combination of water cooling and air cooling may be employed.

【0103】以上のような本発明の方法で製造された希
土類ボンド磁石は、次のような優れた特性を有する。す
なわち、空孔率が低く、好ましくは4.5%( vol%)
以下、より好ましくは3.5%以下、さらに好ましくは
2.0%以下とすることができる。このように、空孔率
が低い(=密度が高い)ので、機械的強度が高く、耐食
性に優れ、また、寸法精度が高く、量産した場合にも寸
法のバラツキが少なく、寸法安定性に優れている。
The rare earth bonded magnet manufactured by the method of the present invention as described above has the following excellent characteristics. That is, the porosity is low, preferably 4.5% (vol%)
Or less, more preferably 3.5% or less, still more preferably 2.0% or less. As described above, since the porosity is low (= high density), the mechanical strength is high, the corrosion resistance is excellent, and the dimensional accuracy is high, and even when mass-produced, the dimensional variation is small and the dimensional stability is excellent. ing.

【0104】さらに、磁気特性に優れており、特に、磁
石粉末の組成、磁石粉末の含有量の多さ等から、等方性
磁石であっても、優れた磁気特性を有する。
Further, it is excellent in magnetic properties. In particular, isotropic magnets have excellent magnetic properties due to the composition of the magnet powder and the large content of the magnet powder.

【0105】すなわち、無磁場中で成形された希土類ボ
ンド磁石の場合、最大磁気エネルギー積(BH)max が好ま
しくは6MGOe以上、より好ましくは8MGOe以上であり、
磁場中で成形された希土類ボンド磁石の場合、最大磁気
エネルギー積(BH)max が12MGOe以上、より好ましくは
13MGOe以上である。
That is, in the case of a rare-earth bonded magnet formed in the absence of a magnetic field, the maximum magnetic energy product (BH) max is preferably at least 6 MGOe, more preferably at least 8 MGOe,
In the case of a rare earth bonded magnet formed in a magnetic field, the maximum magnetic energy product (BH) max is 12 MGOe or more, more preferably 13 MGOe or more.

【0106】なお、本発明により得られた希土類ボンド
磁石の形状、寸法等は特に限定されず、例えば、形状に
関しては、例えば、円柱状、角柱状、円筒状、円弧状
(かわら状)、平板状、湾曲板状等のあらゆる形状のも
のが可能であり、その大きさも、大型のものから超小型
のものまであらゆる大きさのものが可能である。
The shape and dimensions of the rare-earth bonded magnet obtained according to the present invention are not particularly limited. For example, regarding the shape, for example, a columnar shape, a prismatic shape, a cylindrical shape, an arc shape (tile shape), and a flat plate Any shape, such as a shape, a curved plate shape, etc., is possible, and the size can be any size from a large one to a very small one.

【0107】[0107]

【実施例】以下、本発明の具体的実施例について説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, specific embodiments of the present invention will be described.

【0108】(実施例1)下記の磁石粉末と結合樹脂
(熱可塑性樹脂)と添加剤とを混合し、該混合物を混練
し、該混練物を造粒(整粒)して粒状物を得、該粒状物
を成形機の金型内に充填して無磁場中で圧縮成形(温間
成形)し、成形時の加圧状態を同圧で維持しつつ冷却し
て、結合樹脂の固化により磁石粉末同士が結合された希
土類ボンド磁石(サンプルNo. 1〜9)を製造した。な
お、各物質の含有量は、いずれも混練物中の量を示す。
(Example 1) The following magnet powder, a binder resin (thermoplastic resin) and additives were mixed, the mixture was kneaded, and the kneaded product was granulated (granulated) to obtain a granular material. The granular material is filled in a mold of a molding machine, compression-molded (warm molding) in the absence of a magnetic field, cooled while maintaining the same pressurized state at the time of molding, and solidified by bonding resin. Rare earth bonded magnets (Sample Nos. 1 to 9) in which magnet powders were bonded were manufactured. The content of each substance indicates the amount in the kneaded material.

【0109】・構成 Nd−Fe−B系磁石粉末:Nd12.0Fe77.8Co4.3
5.9 、96.0wt% 熱可塑性樹脂:表1中に記載のA〜G、各々2.8wt% 酸化防止剤:ヒドラジン系酸化防止剤、1.2wt% 混合:ヘンシェルミキサーを用いて混合。
Structure Nd-Fe-B based magnet powder: Nd 12.0 Fe 77.8 Co 4.3
B 5.9 , 96.0 wt% Thermoplastic resin: A to G described in Table 1, 2.8 wt% each Antioxidant: hydrazine antioxidant, 1.2 wt% Mixing: Mixing using Henschel mixer.

【0110】混練:2軸押出混練機により混練。混練温
度は表2参照。
Kneading: Kneading with a twin screw extruder. See Table 2 for kneading temperatures.

【0111】スクリュー回転数100〜300rpm 。混
練時間5〜15分 造粒(整粒):混練物を粉砕と分級により平均粒径0.
8mmの粒に調整。
Screw rotation speed: 100 to 300 rpm. Kneading time 5 to 15 minutes Granulation (granulation): The kneaded product is pulverized and classified to have an average particle size of 0.1.
Adjusted to 8mm grain.

【0112】成形:粒状物を金型に投入し、所定の成形
温度(第1の温度)に加熱したところで加圧成形した。
Molding: The granular material was put into a mold, and heated to a predetermined molding temperature (first temperature) to perform pressure molding.

【0113】成形温度、成形圧力は表2を参照。See Table 2 for the molding temperature and molding pressure.

【0114】冷却:加圧状態を維持しつつ除圧温度(第
2の温度)まで冷却し、除圧後さらに常温まで冷却し
て、サンプルを取り出した。
Cooling: While maintaining the pressurized state, the sample was cooled to the depressurizing temperature (second temperature), and after depressurizing, further cooled to room temperature, and a sample was taken out.

【0115】冷却方法は空冷とした。除圧温度は表2参
照。
The cooling method was air cooling. See Table 2 for decompression temperatures.

【0116】加圧下冷却での冷却速度は1℃/秒。The cooling rate under cooling under pressure is 1 ° C./sec.

【0117】成形品形状:円筒形状(外径φ30mm×内
径φ28mm×高さ7mm) 平板形状(20mm角×厚さ3mm)(機械的強度測定用) 得られた希土類ボンド磁石について、磁気性能(磁束密
度Br、保磁力iHc 、最大磁気エネルギー積(BH)max )、
密度、空孔率、機械的強度、耐食性を調べたところ、下
記表3に示す通りであった。
Molded product shape: cylindrical shape (outside diameter φ30 mm × inside diameter φ28 mm × height 7 mm) Flat plate shape (20 mm square × thickness 3 mm) (for measuring mechanical strength) The magnetic performance (magnetic flux) of the obtained rare-earth bonded magnet was measured. Density Br, coercive force iHc, maximum magnetic energy product (BH) max),
When the density, porosity, mechanical strength, and corrosion resistance were examined, the results were as shown in Table 3 below.

【0118】なお、表3中の各測定項目の評価は、以下
の方法に従った。
The evaluation of each measurement item in Table 3 was performed according to the following method.

【0119】磁気性能:40kOe でパルス着磁した後、
最大印加磁場25kOe で直流磁気測定機により測定。ま
たは、成形サンプルから5mm角×厚さ1mmの磁石片を切
り出した後、VSMで測定。
Magnetic performance: After pulse magnetization at 40 kOe,
Measured with a DC magnetometer at a maximum applied magnetic field of 25 kOe. Alternatively, a magnet piece of 5 mm square × 1 mm thickness is cut out from a molded sample, and measured by VSM.

【0120】密度:アルキメデス法(水中法)により測
定。
Density: Measured by Archimedes' method (underwater method).

【0121】空孔率:秤量組成と成形体の密度の測定値
から算出。
Porosity: Calculated from the weighed composition and the measured value of the density of the molded article.

【0122】機械的強度:打ち抜きせん断試験により測
定。試験機は(株)島津製作所製オートグラフを用い、
円形ポンチ(外径3mm)により剪断速度1.0mm/minで
行った。
Mechanical strength: Measured by a punching shear test. The test machine uses an autograph manufactured by Shimadzu Corporation.
The shearing speed was 1.0 mm / min using a circular punch (outer diameter: 3 mm).

【0123】試料には平板形状の磁石を使用。A flat magnet was used for the sample.

【0124】耐食性:温度80℃、湿度90%の恒温恒
湿槽に、成形磁石を投入し、磁石表面に錆が発生するま
での時間を測定。表面観察は50時間毎に槽から取り出
して光学顕微鏡(×10倍)で観察。500時間後は、
500時間おきに観察を行った。
Corrosion resistance: A molded magnet was put into a constant temperature and humidity chamber at a temperature of 80 ° C. and a humidity of 90%, and the time until rust was generated on the magnet surface was measured. Surface observation was taken out of the tank every 50 hours and observed with an optical microscope (× 10). After 500 hours,
Observations were made every 500 hours.

【0125】[0125]

【表1】 [Table 1]

【0126】[0126]

【表2】 [Table 2]

【0127】[0127]

【表3】 [Table 3]

【0128】表3から明らかなように、熱可塑性樹脂を
結合樹脂として用いた本発明による希土類ボンド磁石
(サンプルNo. 1〜9)は、いずれも、低い成形圧力で
あるにもかかわらず、空孔率が1%以下と低く、ほぼ理
論密度通りの高密度のボンド磁石が得られ、この結果、
非常に機械的強度の高い磁石を得ることができた。
As is evident from Table 3, the rare-earth bonded magnets according to the present invention using the thermoplastic resin as the binder resin (Samples Nos. 1 to 9) were all empty despite the low molding pressure. The porosity is as low as 1% or less, and a high-density bonded magnet having almost the same theoretical density can be obtained.
A magnet with very high mechanical strength was obtained.

【0129】また、磁石表面にコーティングを施さない
状態でも、十分な耐食性を有していた。この理由は、空
孔が少ないことにより、結合樹脂が磁石粉末表面を均一
に覆っているためであると推定される。
Further, even when the magnet surface was not coated, it had sufficient corrosion resistance. It is presumed that this is because the binding resin uniformly covers the surface of the magnet powder due to the small number of holes.

【0130】サンプルNo. 1〜9の各磁石について、そ
の切断面の電子顕微鏡写真(SEM)を撮影し、観察を
行ったところ、空孔はほとんど観察されず、磁石粉末の
周辺を結合樹脂成分が均一に分散しているのが確認され
た。
With respect to each of the magnets of Sample Nos. 1 to 9, an electron micrograph (SEM) of a cut surface thereof was taken and observed. Were confirmed to be uniformly dispersed.

【0131】さらに、磁束密度Br、保磁力iHc 最大磁気
エネルギー積(BH)max が高く、優れた磁気特性であるこ
とがわかる。
Further, the magnetic flux density Br and the coercive force iHc, the maximum magnetic energy product (BH) max, are high, indicating that the magnetic properties are excellent.

【0132】(比較例1)下記の磁石粉末と結合樹脂
(熱硬化性樹脂)とを混合し、該混合物を混練し、該混
練物を造粒(整粒)して粒状物を得、該粒状物を成形機
の金型内に充填して無磁場中で圧縮成形(冷間成形また
は温間成形)し、その後、結合樹脂を硬化させて、希土
類ボンド磁石(サンプルNo. 10〜15)を製造した。
なお、各物質の含有量は、いずれも混練物中の量を示
す。
Comparative Example 1 The following magnet powder and a binder resin (thermosetting resin) were mixed, the mixture was kneaded, and the kneaded product was granulated (regulated) to obtain a granular material. The granular material is filled in a mold of a molding machine, compression-molded (cold molding or warm molding) in a magnetic field-free state, and then the binder resin is cured to form a rare-earth bonded magnet (sample Nos. 10 to 15). Was manufactured.
The content of each substance indicates the amount in the kneaded material.

【0133】・構成 Nd−Fe−B系磁石粉末:Nd12.0Fe77.8Co4.3
5.9 、96.0wt% 熱硬化性樹脂:表4中に記載のもの、4.0wt%(硬化
剤を含む) 混合:室温で固体の樹脂を用いた場合は、V型混合機で
混合。
Structure Nd-Fe-B based magnet powder: Nd 12.0 Fe 77.8 Co 4.3
B 5.9, 96.0wt% thermosetting resin: as described in Table 4, (a curing agent) 4.0 wt% mixed: in the case of using a solid resin at room temperature, mixed in a V-blender.

【0134】室温で液状の樹脂を用いた場合は、撹拌機
で混合。
When a resin that is liquid at room temperature is used, it is mixed with a stirrer.

【0135】混練:ニーダーを用いて混練。混練温度は
表5を参照。
Kneading: Kneading using a kneader. See Table 5 for kneading temperatures.

【0136】ニーダー回転数50〜250rpm 。混練時
間30分。
Kneader rotation speed 50-250 rpm. Kneading time 30 minutes.

【0137】造粒(整粒):混練物を粉砕と分級により
平均粒径0.8mm以下の粒に調整。
Granulation (sizing): The kneaded material is adjusted to particles having an average particle diameter of 0.8 mm or less by pulverization and classification.

【0138】成形:粒状物を金型に投入し、所定の成形
温度で加圧成形した。
Molding: The granular material was charged into a mold and molded under pressure at a predetermined molding temperature.

【0139】成形温度、成形圧力は表5を参照。The molding temperature and the molding pressure are shown in Table 5.

【0140】冷却:除圧温度まで冷却し(サンプルNo.
10、11を除く)、除圧後さらに常温まで冷却して、
サンプルを取り出した。
Cooling: Cooling to the decompression temperature (sample No.
10 and 11), and after depressurizing, further cool to room temperature,
A sample was taken.

【0141】冷却方法は空冷とした。除圧温度は表5参
照。
The cooling method was air cooling. See Table 5 for decompression temperatures.

【0142】冷却速度は2℃/秒。The cooling rate was 2 ° C./sec.

【0143】熱処理:仮成形品を恒温槽に入れ、熱硬化
性樹脂の硬化を行う。
Heat treatment: The temporary molded product is placed in a thermostat and the thermosetting resin is cured.

【0144】硬化条件は表4を参照。For curing conditions, see Table 4.

【0145】成形品形状:円筒形状(外径φ30mm×内
径φ28mm×高さ7mm) 平板形状(20mm角×厚さ3mm)(機械的強度測定用) 得られた希土類ボンド磁石について、磁気性能(最大磁
気エネルギー積(BH)max )、密度、空孔率、機械的強
度、耐食性を調べたところ、下記表6に示す通りであっ
た。なお、各項目の評価方法は、実施例1と同様であ
る。
Molded product shape: cylindrical shape (outside diameter φ30 mm × inside diameter φ28 mm × height 7 mm) Flat plate shape (20 mm square × thickness 3 mm) (for measuring mechanical strength) The magnetic performance (maximum) of the obtained rare-earth bonded magnet The magnetic energy product (BH) max), density, porosity, mechanical strength, and corrosion resistance were examined. The results are as shown in Table 6 below. The evaluation method for each item is the same as that in the first embodiment.

【0146】[0146]

【表4】 [Table 4]

【0147】[0147]

【表5】 [Table 5]

【0148】[0148]

【表6】 [Table 6]

【0149】表6から明らかなように、結合樹脂として
熱硬化性樹脂を用いた比較例の磁石(サンプルNo. 10
〜15)では、成形圧力を20kgf/mm2 としたときは勿
論のこと、成形圧力を70kgf/mm2 としたときでも、空
孔率が高く、磁石成形体の密度が低い。この結果、磁石
の機械的強度が低く、また耐食性も低い。
As is clear from Table 6, a comparative magnet (sample No. 10) using a thermosetting resin as the binding resin was used.
In (15) to (15), the porosity is high and the density of the molded magnet is low even when the molding pressure is set to 70 kgf / mm 2 , as well as when the molding pressure is set to 20 kgf / mm 2 . As a result, the mechanical strength of the magnet is low and the corrosion resistance is low.

【0150】サンプルNo. 10〜15の各磁石につい
て、その切断面の電子顕微鏡写真(SEM)を撮影し、
観察を行ったところ、内部に空孔が多く存在していた。
また、その空孔の分布は、加圧成形時の圧力伝達の関係
で、中心部に空孔が多く、表面付近に少ないと言うよう
に不均一な状態となっていた。また、樹脂成分が偏析し
ているのが観察された。
For each of the magnets of Sample Nos. 10 to 15, an electron micrograph (SEM) of the cut surface was taken.
Observation revealed that there were many pores inside.
In addition, the distribution of the pores was non-uniform, with many pores in the center and few near the surface due to pressure transmission during pressure molding. Further, segregation of the resin component was observed.

【0151】また、成形圧力を20kgf/mm2 としたとき
には、サンプル内での機械的強度のバラツキが大きく、
そのため円形ポンチによって荷重をかけた場所以外のと
ころで割れやクラックを生じたため、正確な機械的強度
の測定ができなかった。一方、成形圧力を70kgf/mm2
としたときには、混練物中の樹脂成分が漏れ、これによ
るバリが発生した。
When the molding pressure was set to 20 kgf / mm 2 , there was a large variation in mechanical strength in the sample.
As a result, cracks and cracks were generated at places other than the place where the load was applied by the circular punch, so that accurate measurement of mechanical strength could not be performed. On the other hand, the molding pressure was set to 70 kgf / mm 2
In this case, the resin component in the kneaded material leaked, and as a result, burrs occurred.

【0152】(実施例2)下記の磁石粉末と結合樹脂
(熱可塑性樹脂)と添加剤とを混合し、該混合物を混練
し、該混練物を造粒(整粒)して粒状物を得、該粒状物
を成形機の金型内に充填して磁場中で圧縮成形(温間成
形)し、成形時の加圧状態を同圧で維持しつつ冷却し
て、希土類ボンド磁石(サンプルNo. 16〜19)を製
造した。なお、各物質の含有量は、いずれも混練物中の
量を示す。
Example 2 The following magnet powder, a binder resin (thermoplastic resin), and additives were mixed, the mixture was kneaded, and the kneaded product was granulated (granulated) to obtain a granular material. The granular material is filled in a mold of a molding machine, compression-molded (warm-forming) in a magnetic field, and cooled while maintaining the same pressurized state at the time of molding. 16-19). The content of each substance indicates the amount in the kneaded material.

【0153】・構成 Sm−Co系磁石粉末:Sm(Cobal.Fe0.32Cu
0.06Zr0.0167. 8 、95.0wt% 熱可塑性樹脂:PPS樹脂、4.2wt% 酸化防止剤:ヒドラジン系酸化防止剤、0.8wt% 混合:V型混合機を用いて混合。
Structure Sm-Co based magnet powder: Sm (Co bal. Fe 0.32 Cu
0.06 Zr 0.016) 7. 8, 95.0wt % thermoplastic resin: PPS resin, 4.2 wt% antioxidant: hydrazine based antioxidant, 0.8 wt% mixed: using a V-type mixer a mixture.

【0154】混練:各種混練機を使用。混練条件は表7
を参照。
Kneading: Various kneading machines were used. Table 7 shows the kneading conditions.
See

【0155】造粒(整粒):混練物を粉砕と分級により
平均粒径0.8mmの粒に調整。
Granulation (sizing): The kneaded material was adjusted to particles having an average particle diameter of 0.8 mm by pulverization and classification.

【0156】成形:粒状物を金型に投入し、所定の成形
温度(第1の温度)に加熱したところで、横磁場(15
kOe )を印加しながら加圧成形した。
Molding: The granular material was charged into a mold and heated to a predetermined molding temperature (first temperature).
kOe) while applying pressure.

【0157】成形温度は320℃、成形圧力は20kgf/
mm2 とした。
The molding temperature was 320 ° C. and the molding pressure was 20 kgf /
It was mm 2.

【0158】冷却:加圧状態を維持しつつ除圧温度(第
2の温度)150℃まで冷却し、除圧後さらに常温まで
冷却して、サンプルを取り出した。
Cooling: While maintaining the pressurized state, the sample was cooled to a depressurizing temperature (second temperature) of 150 ° C., and after depressurizing, further cooled to room temperature, and a sample was taken out.

【0159】冷却方法は空冷とした。The cooling method was air cooling.

【0160】加圧下冷却での冷却速度は5℃/秒。The cooling rate under cooling under pressure is 5 ° C./sec.

【0161】成形品形状:直方体(縦11mm×横8mm×
高さ7mm、高さ方向が配向方向。) 平板形状(20mm角×厚さ3mm)(機械的強度測定用) 得られた希土類ボンド磁石について、磁気性能(最大磁
気エネルギー積(BH)max )、密度、空孔率、機械的強
度、耐食性を調べたところ、下記表8に示す通りであっ
た。なお、各項目の評価方法は、実施例1と同様であ
る。
[0161] Molded product shape: rectangular parallelepiped (11 mm long x 8 mm wide x
Height 7mm, height direction is orientation direction. ) Flat plate shape (20mm square x 3mm thickness) (for measuring mechanical strength) Magnetic properties (maximum magnetic energy product (BH) max), density, porosity, mechanical strength, corrosion resistance Was as shown in Table 8 below. The evaluation method for each item is the same as that in the first embodiment.

【0162】[0162]

【表7】 [Table 7]

【0163】[0163]

【表8】 [Table 8]

【0164】表8から明らかなように、本発明による希
土類ボンド磁石(サンプルNo. 16〜19)は、いずれ
も、空孔率が1%以下と低く、高密度のボンド磁石が得
られ、この結果、機械的強度および耐食性が高いもので
あった。
As is clear from Table 8, the rare-earth bonded magnets according to the present invention (samples Nos. 16 to 19) all had a low porosity of 1% or less, and high-density bonded magnets were obtained. As a result, mechanical strength and corrosion resistance were high.

【0165】また、サンプルNo. 16〜19の各磁石に
ついて、前記と同様に電子顕微鏡写真(SEM)を撮影
し、観察を行ったところ、空孔はほとんど観察されず、
磁石粉末の周辺を結合樹脂成分が均一に分散しているの
が確認された。
Further, electron micrographs (SEM) of the magnets of Sample Nos. 16 to 19 were taken and observed in the same manner as described above.
It was confirmed that the binder resin component was uniformly dispersed around the magnet powder.

【0166】さらに、最大磁気エネルギー積(BH)max が
高く、優れた磁気特性であることがわかる。
Further, it can be seen that the maximum magnetic energy product (BH) max is high and the magnetic properties are excellent.

【0167】(比較例2)下記の磁石粉末と結合樹脂
(熱可塑性樹脂)と添加剤とを混合し、該混合物を成形
機の金型内に充填して磁場中で圧縮成形(温間成形)
し、希土類ボンド磁石(サンプルNo. 20、21)を製
造した。なお、各物質の含有量は、いずれも混合物中の
量を示す。
Comparative Example 2 The following magnet powder, a binder resin (thermoplastic resin), and an additive were mixed, and the mixture was filled in a mold of a molding machine and compression-molded in a magnetic field (warm molding). )
Then, rare earth bonded magnets (Sample Nos. 20 and 21) were manufactured. The content of each substance indicates the amount in the mixture.

【0168】・構成 Sm−Co系磁石粉末:Sm(Cobal.Fe0.32Cu
0.06Zr0.0167. 8 、95.0wt%(サンプルNo. 2
0)、96.0wt%(サンプルNo. 21) 熱可塑性樹脂:PPS樹脂、4.2wt%(サンプルNo.
20)、3.2wt%(サンプルNo. 21) 酸化防止剤:ヒドラジン系酸化防止剤、0.8wt% 混合:V型混合機を用いて混合。
Structure Sm-Co based magnet powder: Sm (Co bal. Fe 0.32 Cu
0.06 Zr 0.016) 7. 8, 95.0wt % ( Sample No. 2
0), 96.0 wt% (Sample No. 21) Thermoplastic resin: PPS resin, 4.2 wt% (Sample No. 21)
20) 3.2 wt% (Sample No. 21) Antioxidant: hydrazine-based antioxidant, 0.8 wt% Mixing: Mixing using a V-type mixer.

【0169】成形:混合物を金型に投入し、所定の成形
温度に加熱したところで、横磁場(15kOe )を印加し
ながら加圧成形した。
Molding: The mixture was put into a mold and heated to a predetermined molding temperature, whereupon it was molded under pressure while applying a transverse magnetic field (15 kOe).

【0170】成形温度は320℃、成形圧力は20kgf/
mm2 とした。
The molding temperature was 320 ° C. and the molding pressure was 20 kgf /
It was mm 2.

【0171】冷却:温度150℃まで冷却し、サンプル
を取り出した。
Cooling: The temperature was cooled to 150 ° C., and a sample was taken out.

【0172】冷却方法は空冷とした。The cooling method was air cooling.

【0173】冷却速度は5℃/秒。The cooling rate was 5 ° C./sec.

【0174】成形品形状:直方体(縦11mm×横8mm×
高さ7mm、高さ方向が配向方向。) 平板形状(20mm角×厚さ3mm)(機械的強度測定用) サンプルNo. 20および21の磁石は、いずれも、成形
時に樹脂漏れが生じ、成形品のエッジや端面部が成形機
のパンチに付着することにより、成形品のえぐれが生じ
たり、エッジ等のかけが生じて、所望の形状を得ること
ができかった。
Molded product shape: rectangular parallelepiped (length 11 mm x width 8 mm x
Height 7mm, height direction is orientation direction. Flat plate shape (20 mm square x 3 mm thickness) (for measuring mechanical strength) Both magnets of Sample Nos. 20 and 21 leak resin during molding, and the edges and end faces of the molded product are punched by the molding machine. By adhering to the molded article, the molded article is scoured, and edges and the like are formed, and a desired shape cannot be obtained.

【0175】成形された部分の電子顕微鏡写真(SE
M)を撮影し、観察を行ったところ、結合樹脂成分の分
散は不均一となっており、磁石粉末部分と結合樹脂部分
が混在した状態であった。
An electron micrograph (SE) of the molded part
M) was photographed and observed. As a result, the dispersion of the binder resin component was uneven, and the magnet powder portion and the binder resin portion were mixed.

【0176】また、上述したように、サンプルNo. 20
および21の磁石は、いずれも、不良品であったため、
機械的強度等の有効な測定はできなかった。
As described above, sample No. 20
Since the magnets of Nos. 21 and 21 were defective,
An effective measurement such as mechanical strength could not be performed.

【0177】(実施例3)下記の磁石粉末(2種)と結
合樹脂(熱可塑性樹脂)と添加剤とを混合し、該混合物
を混練し、該混練物を造粒(整粒)して粒状物を得、該
粒状物を成形機の金型内に充填して磁場中で圧縮成形
(温間成形)し、成形時の加圧状態を同圧で維持しつつ
冷却して、希土類ボンド磁石(サンプルNo. 22〜3
0)を製造した。なお、各物質の含有量は、いずれも混
練物中の量を示す。
Example 3 The following magnet powder (two types), a binder resin (thermoplastic resin) and an additive were mixed, the mixture was kneaded, and the kneaded product was granulated (granulated). Granules are obtained, and the granules are filled in a mold of a molding machine, compression-molded (warm molding) in a magnetic field, and cooled while maintaining the same pressurized state at the time of molding. Magnet (Sample Nos. 22 to 3)
0) was prepared. The content of each substance indicates the amount in the kneaded material.

【0178】・構成 Sm−Co系磁石粉末:Sm(Co0.672 Fe0.22Cu
0.08Zr0.0288.35、70.5wt% Sm−Fe−N系磁石粉末:Sm2 Fe173 、23.
5wt% 熱可塑性樹脂:ポリアミド樹脂(ナイロン12)、5.
0wt% 酸化防止剤:フェノール系酸化防止剤、1.0wt% 混合:ヘンシェルミキサーを用いて混合。
Structure Sm-Co based magnet powder: Sm (Co 0.672 Fe 0.22 Cu
0.08 Zr 0.028 ) 8.35 , 70.5 wt% Sm-Fe-N magnet powder: Sm 2 Fe 17 N 3 , 23.
4 wt% thermoplastic resin: polyamide resin (nylon 12);
0 wt% antioxidant: phenolic antioxidant, 1.0 wt% Mixing: mixing using a Henschel mixer.

【0179】混練:2軸押出混練機により混練。混練温
度は150〜300℃。
Kneading: Kneading with a twin screw extruder. The kneading temperature is 150 to 300 ° C.

【0180】スクリュー回転数100〜300rpm 。混
練時間10分 造粒(整粒):混練物を粉砕と分級により表9に示す粒
度に調整。
The screw rotation speed is 100 to 300 rpm. Kneading time 10 minutes Granulation (granulation): The kneaded material was adjusted to the particle size shown in Table 9 by pulverization and classification.

【0181】成形:粒状物をすり切り方式で金型に投入
し、220℃(第1の温度)に加熱したところで、横磁
場(15kOe )を印加しながら加圧成形した。成形圧力
は10kgf/mm2 とした。
Molding: The granular material was put into a mold by a scouring method, and heated to 220 ° C. (first temperature). Then, pressure molding was performed while applying a horizontal magnetic field (15 kOe). The molding pressure was 10 kgf / mm 2 .

【0182】冷却:加圧状態を維持しつつ除圧温度(第
2の温度)100℃まで冷却し、サンプルを取り出し
た。
Cooling: While maintaining the pressurized state, the sample was cooled to a depressurizing temperature (second temperature) of 100 ° C., and a sample was taken out.

【0183】冷却方法は水冷とした。The cooling method was water cooling.

【0184】加圧下冷却での冷却速度は20℃/秒。The cooling rate in cooling under pressure is 20 ° C./sec.

【0185】成形品形状:平板形状(幅15mm×厚さ
2.5mm×高さ5mm、高さ方向が配向方向) 得られた希土類ボンド磁石について、磁石の重量、密
度、空孔率、高さを測定したところ、下記表9に示す通
りであった。
Molded product shape: flat plate shape (width 15 mm × thickness 2.5 mm × height 5 mm, orientation in the height direction) For the obtained rare earth bonded magnet, the weight, density, porosity, and height of the magnet Was as shown in Table 9 below.

【0186】[0186]

【表9】 [Table 9]

【0187】表9から明らかなように、粒状物の粒径の
設定により、優れた定量性が得られ、低空孔率でかつ寸
法精度の高いボンド磁石が得られる。特に、粒状物の粒
径が0.01〜2mmの範囲である場合には、超低空孔率
(1%以下)と、高い寸法精度(寸法誤差が±5/10
0mm以内)と両立することができた。
As is clear from Table 9, by setting the particle size of the granular material, excellent quantitative properties can be obtained, and a bonded magnet having low porosity and high dimensional accuracy can be obtained. In particular, when the particle size of the granular material is in the range of 0.01 to 2 mm, an extremely low porosity (1% or less) and high dimensional accuracy (a dimensional error of ± 5/10
(Within 0 mm).

【0188】(実施例4、比較例3)下記の磁石粉末と
結合樹脂(熱可塑性樹脂)と添加剤とを混合し、該混合
物を混練し、該混練物を造粒(整粒)して粒状物を得、
該粒状物を成形機の金型内に充填して磁場中で圧縮成形
(温間成形)し、成形時の加圧状態を同圧で維持しつつ
冷却して、希土類ボンド磁石(サンプルNo. 31〜4
2)を製造した。なお、各物質の含有量は、いずれも混
練物中の量を示す。
(Example 4, Comparative Example 3) The following magnet powder, binder resin (thermoplastic resin) and additives were mixed, the mixture was kneaded, and the kneaded product was granulated (granulated). Get granules,
The granules were filled in a mold of a molding machine, compression-molded (warm-forming) in a magnetic field, and cooled while maintaining the same pressurized state at the time of molding to form a rare-earth bonded magnet (sample No. 31-4
2) was manufactured. The content of each substance indicates the amount in the kneaded material.

【0189】・構成 Nd−Fe−B系磁石粉末:Nd12.6Fe69.3Co12.0
6.0 Zr0.1 、97.0wt% 熱可塑性樹脂:表1中のAまたはF、各々1.5wt% 酸化防止剤:ヒドラジン系酸化防止剤、1.4wt% 潤滑剤:ステアリン酸亜鉛、0.1wt% 混合:ヘンシェルミキサーを用いて混合。
Structure Nd-Fe-B magnet powder: Nd 12.6 Fe 69.3 Co 12.0
B 6.0 Zr 0.1 , 97.0 wt% Thermoplastic resin: A or F in Table 1, 1.5 wt% each Antioxidant: hydrazine antioxidant, 1.4 wt% Lubricant: zinc stearate, 0.1 wt % Mixing: Mixing using Henschel mixer.

【0190】混練:2軸押出混練機により混練。混練温
度は150〜350℃。
Kneading: Kneading is performed by a twin-screw extruder. The kneading temperature is 150 to 350 ° C.

【0191】スクリュー回転数100〜300rpm 。混
練時間5分 造粒(整粒):混練物を粉砕と分級により平均粒径0.
3mmの粒に調整。
Screw rotation speed 100-300 rpm. Kneading time 5 minutes Granulation (granulation): The kneaded material is pulverized and classified to obtain an average particle size of 0.1.
Adjusted to 3mm grain.

【0192】成形:粒状物を金型に投入し、表10に示
す成形温度(第1の温度)に加熱したところで、ラジア
ル磁場(15kOe )を印加しながら加圧成形した。成形
圧力は15kgf/mm2 とした。
Molding: The granular material was put into a mold and heated to a molding temperature (first temperature) shown in Table 10, and then subjected to pressure molding while applying a radial magnetic field (15 kOe). The molding pressure was 15 kgf / mm 2 .

【0193】冷却:加圧状態を維持しつつ除圧温度(第
2の温度)100℃まで冷却し、除圧後さらに常温まで
冷却して、サンプルを取り出した。
Cooling: While maintaining the pressurized state, the sample was cooled to a depressurizing temperature (second temperature) of 100 ° C. After the depressurizing, the sample was further cooled to room temperature, and a sample was taken out.

【0194】冷却方法は水冷とした。The cooling method was water cooling.

【0195】加圧下冷却での冷却速度は30℃/秒。The cooling rate in cooling under pressure is 30 ° C./sec.

【0196】成形品形状:円筒形状(外径φ20mm×内
径φ18mm×高さ5mm、高さ方向に加圧) 平板形状(20mm角×厚さ3mm)(機械的強度測定用) 得られた希土類ボンド磁石(実施例4:サンプルNo. 3
2〜36、38〜42、比較例3:サンプルNo. 31、
37)について、磁気性能(最大磁気エネルギー積(BH)
max )、密度、空孔率、機械的強度を調べたところ、下
記表10に示す通りであった。なお、各項目の評価方法
は、実施例1と同様である。
Molded product shape: cylindrical shape (outside diameter φ20 mm × inside diameter φ18 mm × height 5 mm, pressurized in the height direction) Flat plate shape (20 mm square × 3 mm thick) (for measuring mechanical strength) Rare earth bond obtained Magnet (Example 4: Sample No. 3
2-36, 38-42, Comparative Example 3: Sample No. 31,
37), the magnetic performance (maximum magnetic energy product (BH)
max), density, porosity, and mechanical strength were as shown in Table 10 below. The evaluation method for each item is the same as that in the first embodiment.

【0197】[0197]

【表10】 [Table 10]

【0198】表10中のサンプルNo. 32〜36、38
〜42(実施例4)のように、成形温度が結合樹脂の熱
変形温度以上のときには、成形時に結合樹脂が軟化また
は溶融状態となり、成形が可能であった。
Sample Nos. 32-36 and 38 in Table 10
When the molding temperature was equal to or higher than the thermal deformation temperature of the binder resin as in Examples 42 to 42 (Example 4), the binder resin was in a softened or molten state during molding, and molding was possible.

【0199】特に、サンプルNo. 33〜36、40、4
2のように、成形温度が結合樹脂の融点以上のときに
は、得られた磁石の空孔率がさらに低減し、磁気性能も
より高くなる。
In particular, Sample Nos. 33 to 36, 40, 4
When the molding temperature is equal to or higher than the melting point of the binding resin as in 2, the porosity of the obtained magnet is further reduced, and the magnetic performance is further improved.

【0200】これに対し、サンプルNo. 31、37(比
較例3)のように、成形温度が結合樹脂の熱変形温度未
満のときには、成形時に結合樹脂が軟化しないため、粒
状物が互いに固着せず、そのため、形状を保持すること
ができず、成形不能または成形不良であった。従って、
各測定項目についても、測定不能であった。
On the other hand, when the molding temperature is lower than the thermal deformation temperature of the binder resin as in Sample Nos. 31 and 37 (Comparative Example 3), the binder resin does not soften at the time of molding, so that the granular materials adhere to each other. Therefore, the shape could not be maintained, and molding was impossible or molding failure. Therefore,
Measurement was not possible for each measurement item.

【0201】(実施例5、比較例4)下記の磁石粉末と
結合樹脂(熱可塑性樹脂)と添加剤とを混合し、該混合
物を混練し、該混練物を造粒(整粒)して粒状物を得、
該粒状物を成形機の金型内に充填して無磁場中で圧縮成
形(温間成形)し、成形時の加圧状態を同圧で維持しつ
つ冷却して、希土類ボンド磁石(サンプルNo. 43〜5
2)を製造した。なお、各物質の含有量は、いずれも混
練物中の量を示す。
Example 5, Comparative Example 4 The following magnet powder, a binder resin (thermoplastic resin) and an additive were mixed, the mixture was kneaded, and the kneaded product was granulated (granulated). Get granules,
The granules are filled in a mold of a molding machine, compression-molded (warm molding) in a magnetic field-free state, cooled while maintaining the same pressurized state at the time of molding, and then mixed with a rare-earth bonded magnet (sample No. . 43-5
2) was manufactured. The content of each substance indicates the amount in the kneaded material.

【0202】・構成 ナノ結晶Nd−Fe−B系磁石粉末:Nd5.5 Fe66
18.5Co5 Cr5、98.0wt% 熱可塑性樹脂:表1中のAまたはG、各々1.0wt% 酸化防止剤:ヒドラジン系酸化防止剤 1.0wt% 混合:ヘンシェルミキサーを用いて混合。
Composition Nanocrystalline Nd—Fe—B magnet powder: Nd 5.5 Fe 66 B
18.5 Co 5 Cr 5 , 98.0 wt% Thermoplastic resin: A or G in Table 1, each 1.0 wt% Antioxidant: Hydrazine antioxidant 1.0 wt% Mixing: Mixing using Henschel mixer.

【0203】混練:2軸押出混練機により混練。混練温
度は150〜350℃。
Kneading: Kneading by a twin-screw extruder. The kneading temperature is 150 to 350 ° C.

【0204】スクリュー回転数100〜300rpm 。混
練時間10分 造粒(整粒):混練物を粉砕と分級により平均粒径0.
1mmの粒に調整。
The screw rotation speed is 100 to 300 rpm. Kneading time 10 minutes Granulation (granulation): The kneaded material is pulverized and classified to obtain an average particle size of 0.1.
Adjusted to 1mm grain.

【0205】成形:粒状物を金型に投入し、所定の成形
温度(第1の温度)に加熱したところで、加圧成形し
た。成形温度は、200℃(樹脂A)および300℃
(樹脂G)、成形圧力は25kgf/mm2 とした。
Molding: The granules were put into a mold and heated to a predetermined molding temperature (first temperature), whereupon they were molded under pressure. The molding temperature is 200 ° C (resin A) and 300 ° C
(Resin G), the molding pressure was 25 kgf / mm 2 .

【0206】冷却:加圧状態を維持しつつ、表11に示
す除圧温度(第2の温度)まで冷却し、サンプルを取り
出した。冷却方法は水冷とした。
Cooling: While maintaining the pressurized state, the sample was cooled to the depressurizing temperature (second temperature) shown in Table 11, and a sample was taken out. The cooling method was water cooling.

【0207】加圧下冷却での冷却速度は50℃/秒。The cooling rate under cooling under pressure is 50 ° C./sec.

【0208】成形品形状:円筒形状(外径φ10mm×内
径φ7mm×高さ7mm、高さ方向に加圧) 得られた希土類ボンド磁石(実施例5:サンプルNo. 4
4〜47、49〜52、比較例4:サンプルNo. 43、
48)について、磁気性能(最大磁気エネルギー積(BH)
max )、密度、空孔率、外径を調べたところ、下記表1
1に示す通りであった。なお、各項目の評価方法は、実
施例1と同様である。
Molded product shape: cylindrical shape (outside diameter φ10 mm × inside diameter φ7 mm × height 7 mm, pressurized in the height direction) The obtained rare earth bonded magnet (Example 5: Sample No. 4
4-47, 49-52, Comparative Example 4: Sample No. 43,
48), the magnetic performance (maximum magnetic energy product (BH)
max), density, porosity, and outer diameter were examined.
As shown in FIG. The evaluation method for each item is the same as that in the first embodiment.

【0209】[0209]

【表11】 [Table 11]

【0210】表11中のサンプルNo. 44〜47、49
〜52(実施例5)のように、除圧温度が結合樹脂の融
点以下または除圧温度と成形温度との差が20℃以上の
ときには、得られた磁石の空孔率が低く、密度が高く、
磁気性能が高く、寸法精度が高い(寸法誤差が±5/1
00mm以内)。このような特性は、除圧温度が低いほ
ど、向上している。
Sample Nos. 44 to 47 and 49 in Table 11
When the depressurization temperature is equal to or lower than the melting point of the binder resin or the difference between the depressurization temperature and the molding temperature is equal to or higher than 20 ° C. as in Examples 52 to 52, the porosity of the obtained magnet is low and the density is low. high,
High magnetic performance and high dimensional accuracy (Dimensional error is ± 5/1
00mm or less). Such characteristics are improved as the decompression temperature is lower.

【0211】特に、サンプルNo. 46、47、50、5
1のように、除圧温度が結合樹脂の熱変形温度以下のと
きには、ほぼ理論密度に近い密度を達成することがで
き、磁石粉末の特性を十分に発揮させることが可能な極
めて優れた磁気性能の磁石となる。
In particular, sample Nos. 46, 47, 50, 5
When the depressurization temperature is equal to or lower than the thermal deformation temperature of the binder resin as in 1, it is possible to achieve a density close to the theoretical density, and to achieve an extremely excellent magnetic performance capable of sufficiently exhibiting the characteristics of the magnet powder. It becomes a magnet.

【0212】これに対し、サンプルNo. 43、48(比
較例4)のように、除圧温度と成形温度が同一である場
合、寸法精度が低く、空孔率も前記サンプルNo. 44〜
47、49〜52に比べて高い。
On the other hand, when the depressurizing temperature and the molding temperature were the same as in Sample Nos. 43 and 48 (Comparative Example 4), the dimensional accuracy was low and the porosity was low.
47, 49-52.

【0213】[0213]

【発明の効果】以上述べたように、本発明によれば、混
練物の粒状物を用いて温間成形により加圧成形を行うこ
と、さらには、温間成形の後、所定温度まで加圧状態で
冷却を行うことにより、少ない結合樹脂量でも成形性に
優れ、低空孔率で、機械的強度が高く、また、寸法安定
性(寸法精度)が高く、磁気特性に優れた希土類ボンド
磁石を提供することができる。
As described above, according to the present invention, press molding is performed by warm forming using the granulated material of the kneaded material. By cooling in a state, a rare earth bonded magnet with excellent moldability, low porosity, high mechanical strength, high dimensional stability (dimensional accuracy), and excellent magnetic properties even with a small amount of binder resin is obtained. Can be provided.

【0214】この場合、粒状体の粒径が所望の範囲であ
る場合には、空孔率が極めて低く、しかも、寸法安定性
がさらに向上する。
In this case, when the particle size of the granular material is in a desired range, the porosity is extremely low, and the dimensional stability is further improved.

【0215】また、熱可塑性樹脂を軟化または溶融状態
として加圧成形するので、比較的低い成形圧力で上記特
性の希土類ボンド磁石を製造することができ、製造が容
易である。
Further, since the thermoplastic resin is press-formed in a softened or molten state, a rare-earth bonded magnet having the above characteristics can be manufactured at a relatively low forming pressure, and the manufacturing is easy.

【0216】特に、冷却時における第2の温度(除圧温
度)が、用いる熱可塑性樹脂の融点以下の温度、さらに
は熱変形温度以下の温度である場合や、第1の温度と所
定温度以上乖離している場合には、空孔率が極めて低く
かつ寸法安定性が極めて高い希土類ボンド磁石を提供す
ることができる。
In particular, the second temperature (decompression temperature) at the time of cooling is a temperature lower than the melting point of the thermoplastic resin to be used, or a temperature lower than the heat deformation temperature, or the first temperature and the predetermined temperature or higher. In the case of deviation, a rare-earth bonded magnet with extremely low porosity and extremely high dimensional stability can be provided.

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】 希土類磁石粉末を熱可塑性樹脂よりなる
結合樹脂により結合してなる希土類ボンド磁石の製造方
法であって、 前記希土類磁石粉末と前記結合樹脂とを混合・混練して
混練物を製造する工程と、 前記混練物を造粒または整粒して粒状物とする工程と、 前記粒状物を用いて前記結合樹脂が軟化または溶融状態
となる第1の温度で加圧成形する工程と、 少なくとも前記第1の温度未満である第2の温度まで加
圧状態で冷却する工程とを有することを特徴とする希土
類ボンド磁石の製造方法。
1. A method for producing a rare-earth bonded magnet in which a rare-earth magnet powder is bound by a binding resin made of a thermoplastic resin, wherein the rare-earth magnet powder and the binding resin are mixed and kneaded to produce a kneaded product. Performing the step of granulating or sizing the kneaded material to obtain a granular material; and performing pressure molding at a first temperature at which the binder resin is softened or melted using the granular material. Cooling in a pressurized state to at least a second temperature that is lower than the first temperature.
【請求項2】 前記混練は、前記結合樹脂の熱変形温度
以上の温度で、かつ前記希土類磁石粉末の表面が溶融ま
たは軟化した結合樹脂成分により覆われた状態となるよ
うに行われる請求項1に記載の希土類ボンド磁石の製造
方法。
2. The method according to claim 1, wherein the kneading is performed at a temperature equal to or higher than a thermal deformation temperature of the binder resin and in a state where the surface of the rare earth magnet powder is covered with a melted or softened binder resin component. 3. The method for producing a rare earth bonded magnet according to item 1.
【請求項3】 前記混練物中の前記希土類磁石粉末の含
有量が90〜99wt%である請求項1または2に記載の
希土類ボンド磁石の製造方法。
3. The method for producing a rare earth bonded magnet according to claim 1, wherein the content of the rare earth magnet powder in the kneaded material is 90 to 99 wt%.
【請求項4】 前記混練物中に、酸化防止剤を含有する
請求項1ないし3のいずれかに記載の希土類ボンド磁石
の製造方法。
4. The method for producing a rare earth bonded magnet according to claim 1, wherein the kneaded material contains an antioxidant.
【請求項5】 前記混練物中の前記酸化防止剤の含有量
が0.1〜2wt%である請求項4に記載の希土類ボンド
磁石の製造方法。
5. The method for producing a rare earth bonded magnet according to claim 4, wherein the content of the antioxidant in the kneaded material is 0.1 to 2% by weight.
【請求項6】 前記造粒または整粒は、粉砕により行わ
れる請求項1ないし5のいずれかに記載の希土類ボンド
磁石の製造方法。
6. The method for producing a rare-earth bonded magnet according to claim 1, wherein the granulation or sizing is performed by pulverization.
【請求項7】 前記粒状物の平均粒径が10μm 〜2mm
である請求項1ないし6のいずれかに記載の希土類ボン
ド磁石の製造方法。
7. An average particle size of the granular material is 10 μm to 2 mm.
The method for producing a rare-earth bonded magnet according to any one of claims 1 to 6, wherein
【請求項8】 前記加圧成形は、圧縮成形である請求項
1ないし7のいずれかに記載の希土類ボンド磁石の製造
方法。
8. The method for manufacturing a rare-earth bonded magnet according to claim 1, wherein the pressure molding is compression molding.
【請求項9】 前記第2の温度は、前記結合樹脂の融点
である請求項1ないし8のいずれかに記載の希土類ボン
ド磁石の製造方法。
9. The method according to claim 1, wherein the second temperature is a melting point of the binder resin.
【請求項10】 前記第2の温度は、前記結合樹脂の熱
変形温度である請求項1ないし8のいずれかに記載の希
土類ボンド磁石の製造方法。
10. The method according to claim 1, wherein the second temperature is a thermal deformation temperature of the binder resin.
【請求項11】 前記第1の温度と前記第2の温度との
差が、20℃以上である請求項1ないし10のいずれか
に記載の希土類ボンド磁石の製造方法。
11. The method according to claim 1, wherein a difference between the first temperature and the second temperature is 20 ° C. or more.
【請求項12】 前記加圧状態での冷却は、前記加圧成
形の際の加圧を解除することなく連続して行われる請求
項1ないし11のいずれかに記載の希土類ボンド磁石の
製造方法。
12. The method for manufacturing a rare-earth bonded magnet according to claim 1, wherein the cooling in the pressurized state is performed continuously without releasing the pressurization in the press-forming. .
【請求項13】 前記加圧成形時の成形圧力に対し、前
記加圧状態での冷却時の圧力が同等またはそれ以下であ
る請求項1ないし12のいずれかに記載の希土類ボンド
磁石の製造方法。
13. The method for producing a rare-earth bonded magnet according to claim 1, wherein a pressure during cooling in the pressurized state is equal to or less than a forming pressure during the press-forming. .
【請求項14】 前記加圧状態での冷却時の圧力は、少
なくとも前記結合樹脂の融点まで一定に保持されている
請求項1ないし13のいずれかに記載の希土類ボンド磁
石の製造方法。
14. The method for manufacturing a rare earth bonded magnet according to claim 1, wherein the pressure during cooling in the pressurized state is kept constant at least up to the melting point of the binder resin.
【請求項15】 前記加圧状態での冷却時の圧力は、少
なくとも前記第1の温度と第2の温度の間の温度まで一
定に保持されている請求項1ないし13のいずれかに記
載の希土類ボンド磁石の製造方法。
15. The method according to claim 1, wherein the pressure during cooling in the pressurized state is kept constant at least up to a temperature between the first temperature and the second temperature. Manufacturing method of rare earth bonded magnet.
【請求項16】 前記加圧状態での冷却時の冷却速度
は、0.5〜100℃/秒である請求項1ないし15の
いずれかに記載の希土類ボンド磁石の製造方法。
16. The method for manufacturing a rare earth bonded magnet according to claim 1, wherein a cooling rate during cooling in the pressurized state is 0.5 to 100 ° C./sec.
【請求項17】 前記加圧成形時の成形圧力は、60kg
f/mm2 以下である請求項1ないし16のいずれかに記載
の希土類ボンド磁石の製造方法。
17. The molding pressure during the pressure molding is 60 kg.
The method for producing a rare-earth bonded magnet according to any one of claims 1 to 16, wherein the f / mm 2 is not more than f / mm 2 .
JP16127496A 1996-03-18 1996-06-21 Rare earth bonded magnet manufacturing method and rare earth bonded magnet Expired - Fee Related JP3658868B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP16127496A JP3658868B2 (en) 1996-06-21 1996-06-21 Rare earth bonded magnet manufacturing method and rare earth bonded magnet
TW086103372A TW341707B (en) 1996-03-18 1997-03-18 Process for producing rare earth bond magnet
CNB971905533A CN1143332C (en) 1996-03-18 1997-03-18 Process for producing rare earth bond magnet, composition for rare earth bond magnet, and rare earth bond magnet
EP97907372A EP0831501B1 (en) 1996-03-18 1997-03-18 Process for producing rare earth bond magnet
US08/952,498 US6001272A (en) 1996-03-18 1997-03-18 Method for producing rare earth bond magnet, composition for rare earth bond magnet, and rare earth bond magnet
PCT/JP1997/000884 WO1997035331A1 (en) 1996-03-18 1997-03-18 Process for producing rare earth bond magnet, composition for rare earth bond magnet, and rare earth bond magnet
DE69713700T DE69713700T2 (en) 1996-03-18 1997-03-18 METHOD FOR THE PRODUCTION OF RARE EARTH MAGNET

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16127496A JP3658868B2 (en) 1996-06-21 1996-06-21 Rare earth bonded magnet manufacturing method and rare earth bonded magnet

Publications (2)

Publication Number Publication Date
JPH1012472A true JPH1012472A (en) 1998-01-16
JP3658868B2 JP3658868B2 (en) 2005-06-08

Family

ID=15731996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16127496A Expired - Fee Related JP3658868B2 (en) 1996-03-18 1996-06-21 Rare earth bonded magnet manufacturing method and rare earth bonded magnet

Country Status (1)

Country Link
JP (1) JP3658868B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11307378A (en) * 1998-04-23 1999-11-05 Seiko Epson Corp Manufacture of rare earth bonded magnet
US6852246B2 (en) 1999-06-11 2005-02-08 Seiko Epson Corporation Magnetic powder and isotropic bonded magnet
US6855265B2 (en) 2000-01-07 2005-02-15 Seiko Epson Corporation Magnetic powder and isotropic bonded magnet
JP2006278461A (en) * 2005-03-28 2006-10-12 Tdk Corp Method of manufacturing resin-bonded permanent magnet
US7465960B2 (en) 2003-11-14 2008-12-16 Sharp Kabushiki Kaisha Submount for light emitting/receiving device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11307378A (en) * 1998-04-23 1999-11-05 Seiko Epson Corp Manufacture of rare earth bonded magnet
US6852246B2 (en) 1999-06-11 2005-02-08 Seiko Epson Corporation Magnetic powder and isotropic bonded magnet
US6855265B2 (en) 2000-01-07 2005-02-15 Seiko Epson Corporation Magnetic powder and isotropic bonded magnet
US7465960B2 (en) 2003-11-14 2008-12-16 Sharp Kabushiki Kaisha Submount for light emitting/receiving device
JP2006278461A (en) * 2005-03-28 2006-10-12 Tdk Corp Method of manufacturing resin-bonded permanent magnet
JP4556238B2 (en) * 2005-03-28 2010-10-06 Tdk株式会社 Manufacturing method of resin bonded permanent magnet

Also Published As

Publication number Publication date
JP3658868B2 (en) 2005-06-08

Similar Documents

Publication Publication Date Title
KR100435610B1 (en) METHOD OF MANUFACTURING RARE TIRE BOND MAGNET AND RARE TIRE BOND MAGNET
EP0831501B1 (en) Process for producing rare earth bond magnet
KR100238371B1 (en) Rare-earth bonded magnet, rare-earth bonded magnetic composition and method for manufacturing rare-earth bonded magnet
EP0769791B1 (en) Rare earth bonded magnet and composition therefor
JP2000036403A (en) Rare earth bonded magnet composition, rare earth bonded magnet, and manufacture thereof
JP2000348918A (en) Rare earth bonded magnet, composition and manufacture of the same
JP3658868B2 (en) Rare earth bonded magnet manufacturing method and rare earth bonded magnet
JP3277932B2 (en) Magnet powder, method for producing bonded magnet, and bonded magnet
JP3277933B2 (en) Magnet powder, method for producing bonded magnet, and bonded magnet
JPH09260170A (en) Manufacture of rare earth bond magnet and composition for rare earth bond magnet
JPH09312207A (en) Composition for rare-earth bonded magnet use, rare-earth bonded magnet and manufacture of rare-earth bonded magnet
JP4433068B2 (en) Rare earth bonded magnet manufacturing method and rare earth bonded magnet
JP3729904B2 (en) Rare earth bonded magnet manufacturing method
JPH09232132A (en) Rare-earth bonded magnet, composition for rare-earth bonded magnet and manufacture of rare-earth bonded magnet
JP3653852B2 (en) Rare earth bonded magnet manufacturing method and rare earth bonded magnet
JP4301222B2 (en) Rare earth bonded magnet manufacturing method and rare earth bonded magnet
JP3840893B2 (en) Bond magnet manufacturing method and bond magnet
JP3812926B2 (en) Rare earth bonded magnet compound, method for producing the same, and R-T-B bonded magnet
JPH11283817A (en) Rare earth bonded magnet and composition thereof
JP4301221B2 (en) Rare earth bonded magnet manufacturing method and rare earth bonded magnet
JP2001267162A (en) Rare-earth bond magnet and method for manufacturing the same
JP2000348922A (en) Rare earth bonded magnet
JP2002141211A (en) Magnet powder, method of manufacturing bonded magnet, and bonded magnet
JP2002319518A (en) Method of manufacturing bonded magnet and bonded magnet
JP2002299142A (en) Method of manufacturing bonded magnet and the bonded magnet

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050307

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080325

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090325

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090325

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100325

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100325

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110325

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120325

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120325

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130325

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140325

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees