JPH07211566A - Manufacture of anisotropic magnet - Google Patents

Manufacture of anisotropic magnet

Info

Publication number
JPH07211566A
JPH07211566A JP6003056A JP305694A JPH07211566A JP H07211566 A JPH07211566 A JP H07211566A JP 6003056 A JP6003056 A JP 6003056A JP 305694 A JP305694 A JP 305694A JP H07211566 A JPH07211566 A JP H07211566A
Authority
JP
Japan
Prior art keywords
powder
magnetic
alloy powder
alloy
oxygen compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6003056A
Other languages
Japanese (ja)
Inventor
Toshikazu Takeda
敏和 竹田
Eiji Okumura
英二 奥村
Shigeo Takita
茂生 滝田
Hideo Ishiyama
日出夫 石山
Masayuki Kato
雅之 加藤
Makoto Ogawa
誠 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP6003056A priority Critical patent/JPH07211566A/en
Publication of JPH07211566A publication Critical patent/JPH07211566A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0558Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together bonded together

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain an anisotropic magnet whose magnetic characteristic is excellent without using a magnetic-field press and whose moldability and mold releasability are enhanced by a method wherein a nonmagnetic-oxygen-compound powder whose particle size is smaller than that of an alloy powder for a rare- earth magnet is mixed with the alloy powder, this mixture is filled into a molding mold and the mixture is pressurized and heated simultaneously so as to be molded and solidified. CONSTITUTION:A nonmagnetic-oxygen-compound powder is mixed with a rare- earth magnetic alloy powder. As the rare-earth magnetic alloy powder, a powder at a particle size of 3 to 500mum is used. As the nonmagnetic-oxygen-compound powder, a powder whose particle size is at 1/3 to 1/50 of that of the alloy powder is used. Then, the alloy powder with which the oxygen-compound powder has been mixed is filled into a prescribed molding mold, and this mixture is pressurized and heated simultaneously so as to be molded and solidified. Thereby, without using a magnetic-field press or the like, it is possible to manufacture a magnet whose magnetic characteristic is excellent and whose moldability and mold releasability are enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、希土類を含む合金磁石
の製造方法に係り、特に所定合金組成に調整した粉末に
酸素化合物を混入して成形固化する異方性磁石の製造方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an alloy magnet containing a rare earth element, and more particularly to a method for producing an anisotropic magnet in which an oxygen compound is mixed with a powder adjusted to have a predetermined alloy composition to be molded and solidified. is there.

【0002】[0002]

【従来の技術】従来、希土類を含む合金の異方性磁石
は、その多くがOA機器のモータや磁界発生に用いられ
ており、目的とする希土類磁石用の原料である所定組成
の合金を溶解調整してインゴットにした後、これを粉砕
して粉末にし、この粉末を、圧縮成形後焼結したり、プ
ラスチックスや低融点金属と混合して形成したりして製
造されてきた。
2. Description of the Related Art Conventionally, most of anisotropic magnets of alloys containing rare earths have been used for generating motors and magnetic fields of OA equipment, and melt an alloy having a predetermined composition which is a target raw material for rare earth magnets. It has been manufactured by adjusting it into an ingot, crushing this into a powder, compression-molding and sintering this powder, or mixing it with plastics or a low melting point metal to form it.

【0003】焼結方法は、成分調整された材料粉を、所
定の金型内に充填して加圧し所望の形状に圧縮成形す
る。その際、磁場プレス等を用いて磁化方向に磁界を与
える。そしてこの磁場中圧縮成形された成形体を真空・
イナートガス置換炉において前記原料粉の融点以下の温
度で焼き固める方法である。出来上った焼成体は、粉末
の磁場中圧縮で、その磁化異方性が決定される。
In the sintering method, material powders whose components have been adjusted are filled in a predetermined mold and pressed to form a desired shape by compression. At that time, a magnetic field is applied in the magnetization direction using a magnetic field press or the like. Then, the molded body compression-molded in this magnetic field is vacuumed.
It is a method of baking at a temperature below the melting point of the raw material powder in an inert gas replacement furnace. The magnetization anisotropy of the finished fired body is determined by compressing the powder in a magnetic field.

【0004】また、プラスチックス等の結合材を用いて
固められる磁石は、結合材と磁石粉を混合した粉体を加
熱された型内で圧縮成形、冷却固化させる。加熱冷却の
サイクル中に型に磁路を作り、この磁路にそって磁化の
異方性を決定させる。
Further, in a magnet which is hardened by using a binder such as plastics, powder obtained by mixing the binder and magnet powder is compression-molded in a heated mold and cooled and solidified. A magnetic path is created in the mold during the heating and cooling cycle, and the anisotropy of magnetization is determined along this magnetic path.

【0005】[0005]

【発明が解決しようとする課題】ところで、前述の異方
性磁石の製造方法では、優れた磁気特性を得るためには
磁場プレスや磁路を有する型などを用いて磁界を与えな
ければならず、磁場プレスなどの特別の部材が必要とな
る。
By the way, in the above-mentioned method for producing an anisotropic magnet, in order to obtain excellent magnetic characteristics, a magnetic field must be applied by using a magnetic field press or a mold having a magnetic path. , A special member such as a magnetic field press is required.

【0006】また、圧縮成形時、圧力分布を均一化し、
成形性を向上させるために、原料粉にステアリン酸等の
滑材及びワックス等の滑材・バインダ材を混入するが、
圧縮成形後、これらの樹脂分を所定の温度で処理・除去
しなければならず、製造時間が掛かる。また、それらの
樹脂分を処理・除去すると、収縮率の形状効果により所
望の形状が得られず、その形状修正のための後加工を要
するという課題があった。
Further, during compression molding, the pressure distribution is made uniform,
In order to improve the moldability, a lubricant such as stearic acid and a lubricant / binder such as wax are mixed in the raw material powder.
After compression molding, these resin components must be treated and removed at a predetermined temperature, which requires a long manufacturing time. Further, when the resin components are treated and removed, there is a problem that a desired shape cannot be obtained due to the shape effect of shrinkage, and post-processing for correcting the shape is required.

【0007】さらに、前記圧縮成形と焼結との工程をホ
ットプレス法により同時に行って熱間成形を行う方法も
あるが、この場合、金型を使用すると、焼結温度によっ
て金型と原料粉とが反応接合していわゆる焼付きを生じ
るため、離型性が劣るという問題があった。なお、離型
性を向上させるべくカーボン型を使用することも考えら
れるが、この場合は焼結体の表面が炭化してしまう。
Further, there is a method in which the steps of compression molding and sintering are simultaneously performed by a hot pressing method to perform hot forming. In this case, when a mold is used, the mold and the raw material powder are mixed depending on the sintering temperature. There is a problem that the releasability is inferior because the so-called seizure occurs due to the reaction joining with and. Although it is possible to use a carbon mold in order to improve releasability, in this case, the surface of the sintered body is carbonized.

【0008】本発明の目的は、前記課題に鑑み、磁場プ
レスなどを用いることなく磁気特性に優れ、かつ成形性
及び離型性の向上した磁石を製造することができる異方
性磁石の製造方法を提供することにある。
In view of the above problems, an object of the present invention is to provide a method for producing an anisotropic magnet which can produce a magnet having excellent magnetic characteristics and improved moldability and releasability without using a magnetic field press or the like. To provide.

【0009】[0009]

【課題を解決するための手段】前記目的を達成すべく本
発明の希土類磁石の製造方法は、希土類磁石用の合金粉
末に、該粉末より粒径の小さい非磁性酸素化合物の粉末
を混入し、これを成形型内に充填して加圧と加熱を同時
に行って成形固化するものである。
In order to achieve the above object, a method for producing a rare earth magnet according to the present invention comprises: mixing an alloy powder for a rare earth magnet with a powder of a non-magnetic oxygen compound having a particle size smaller than the powder, This is filled in a molding die and simultaneously pressed and heated to be solidified by molding.

【0010】[0010]

【作用】合金粉末に、合金粉末より粒径の小さい非磁性
酸素化合物の粉末を混入することで、合金粉末の周囲に
非磁性酸素化合物の粉末が介在する。これを、加圧と加
熱を同時に行って成形固化することで、合金粉末が加熱
圧縮されて塑性変形しようとするが、非磁性酸素化合物
の粉末がアンカー的作用となり、合金内部の変形を起こ
らしめる。これにより、内部に発生する歪エネルギーは
合金内部の組成を歪方向に異方化することになり、磁気
異方性化した磁石が製造されることになる。従って、磁
場プレスなどを用いることなく、磁気特性に優れた異方
性磁石を製造することが可能となる。
[Function] By mixing the powder of the non-magnetic oxygen compound having a smaller particle size than the alloy powder, the powder of the non-magnetic oxygen compound is present around the alloy powder. By pressing and heating at the same time to form and solidify the alloy powder, the alloy powder is heated and compressed to try to plastically deform, but the powder of the non-magnetic oxygen compound acts as an anchor, causing deformation inside the alloy. . As a result, the strain energy generated inside makes the composition inside the alloy anisotropic in the strain direction, so that a magnet having magnetic anisotropy is manufactured. Therefore, it is possible to manufacture an anisotropic magnet having excellent magnetic properties without using a magnetic field press or the like.

【0011】その成形固化時、非磁性酸素化合物粉末が
還元されてガスが発生し、この発生ガスは流体滑性作用
を有し、これにより粒子間の滑性が高められる。また、
この流体滑性作用による成形固化時のずれ応力により、
粒内の再結晶速度が高められると共に、成形固化の均一
性も高められる。これによって、成形性を向上させるこ
とが可能となる。
At the time of molding and solidification, the non-magnetic oxygen compound powder is reduced to generate a gas, and the generated gas has a fluid lubrication action, thereby enhancing the lubricity between particles. Also,
Due to the shear stress during molding and solidification due to this fluid lubrication effect,
The recrystallization rate in the grains is increased, and the uniformity of molding and solidification is also increased. This makes it possible to improve moldability.

【0012】また、還元された非磁性酸素化合物粉末
は、加圧による粒界拡散によって成形型内で焼結体を覆
い込むような状態で存在することにもなるため、合金粉
末と成形型との反応を抑制し、成形型からの離型性が向
上する。
Further, the reduced non-magnetic oxygen compound powder also exists in such a state that it covers the sintered body in the molding die due to grain boundary diffusion under pressure, so that the alloy powder and the molding die. The reaction of is suppressed and the releasability from the mold is improved.

【0013】[0013]

【実施例】以下、本発明の実施例を詳述する。EXAMPLES Examples of the present invention will be described in detail below.

【0014】まず、希土類磁性合金粉末に非磁性酸素化
合物粉末を混入する。希土類磁性合金粉末としては、下
記の組成で粒径が 3〜500 μmの粉末を用いる。
First, a non-magnetic oxygen compound powder is mixed with a rare earth magnetic alloy powder. As the rare earth magnetic alloy powder, a powder having the following composition and a particle size of 3 to 500 μm is used.

【0015】(Nd1-X X 11〜18 (Fe1-Y Co
Y 4〜11Z 但し、0≦X≦1,0≦Y≦0.3 ,0≦Z≦3 RはDy,Pr,Tb,Ceのうち1種又は2種以上 MはGa,Zn,Al,Ta,Hf,Ti,Zr,Cu
のうち1種又は2種以上 非磁性酸素化合物粉末としては、粒径が合金粉末の 1/
3 〜 1/50の粉末で、反磁性もしくは反強磁性を示すも
のか、CuO,FeO,TiO2 ,Al2 3 ,ZrO
2 ,Bi2 3 ,MoO2 ,Ca2 3 ,ZnO,WO
2 などの絶縁体を用い、その混合割合は合金粉末に対し
て0.01〜5.0 重量%の範囲とする。酸素化合物粉末を非
磁性とするのは、この粉末を合金粉末の周囲に介在させ
るためだからであり、磁性を有するものを使用すると、
磁性粉末の周囲でN−S回路が閉じた状態となり、磁石
機能が低下するからである。
[0015] (Nd 1-X R X) 11~18 (Fe 1-Y Co
Y ) Remaining B 4 to 11 M Z However, 0 ≦ X ≦ 1, 0 ≦ Y ≦ 0.3, 0 ≦ Z ≦ 3 R is one or more of Dy, Pr, Tb and Ce M is Ga, Zn , Al, Ta, Hf, Ti, Zr, Cu
One or more of the above non-magnetic oxygen compound powders have a particle size of 1 / the alloy powder.
Powder of 3 to 1/50, which shows diamagnetic or antiferromagnetic property, CuO, FeO, TiO 2 , Al 2 O 3 , ZrO
2 , Bi 2 O 3 , MoO 2 , Ca 2 O 3 , ZnO, WO
Insulators such as 2 are used, and their mixing ratio is in the range of 0.01 to 5.0% by weight based on the alloy powder. The reason why the oxygen compound powder is made non-magnetic is to interpose this powder around the alloy powder.
This is because the N-S circuit is closed around the magnetic powder and the magnet function deteriorates.

【0016】非磁性酸素化合物粉末の混入は、できるだ
け合金粉末と酸素化合物粉末が隣り合うように均一化す
るのがよく、乳バチ等を用いて行うか、機械的に分散混
合化させたり、スパッタなど放電を用いたり、湿式法で
合金粉末の周辺に最終的に酸素化合物として晶出させた
りしてもよい。
The mixing of the non-magnetic oxygen compound powder is preferably made uniform so that the alloy powder and the oxygen compound powder are adjacent to each other as much as possible. For example, a dairy bee or the like may be used, or the powder may be mechanically dispersed and mixed, or sputtered. For example, discharge may be used, or a wet method may be used to finally crystallize the alloy powder as an oxygen compound.

【0017】そして、酸素化合物粉末を混入した合金粉
末を、所定の成形型内に充填して、加圧と加熱(例えば
放電を含む通電によっての加熱)を同時に行って成形固
化する。加圧は、油圧力、機械的発生圧力等を用いて行
う。加熱は、高周波による加熱又は電気ヒータ等を用い
て間接的に加熱してもよい。
Then, the alloy powder mixed with the oxygen compound powder is filled in a predetermined molding die and subjected to pressurization and heating (for example, heating by energization including electric discharge) at the same time to mold and solidify. Pressurization is performed using hydraulic pressure, mechanically generated pressure, or the like. The heating may be performed by high frequency or indirectly using an electric heater or the like.

【0018】加圧力は、50〜10000kg/cm2 の範囲で可能
である。この場合、低圧力域では型にWC−Co合金等
の金属やカーボンを使用し、高圧力域では型に超合金等
を使用することが好ましい。このように、圧力に応じて
型の材質を変える場合、発熱熱伝導が異なるが試料の温
度管理において所定の温度が得られるべく電力調整を行
うようにする。
The pressing force can be in the range of 50 to 10,000 kg / cm 2 . In this case, it is preferable to use a metal such as a WC-Co alloy or carbon in the mold in the low pressure region, and use a superalloy or the like in the mold in the high pressure region. As described above, when the material of the mold is changed according to the pressure, heat generation and heat conduction are different, but the power is adjusted so that a predetermined temperature can be obtained in temperature control of the sample.

【0019】そして、成形固化後、離型すれば異方性磁
石としての焼結体を得られる。
After molding and solidification, the mold is released to obtain a sintered body as an anisotropic magnet.

【0020】これは、酸素化合物粉末を混入した合金粉
末に加圧と加熱を同時に行うことで、合金粉末が加熱圧
縮されて塑性変形しようとするが、合金粉末の周囲に介
在している非磁性酸素化合物粉末が、塑性変形しようと
する合金粉末のアンカー的作用となり、主として介在物
で流動せず、合金内部の変形を起こらしめるからであ
る。これにより、内部に発生する歪エネルギーは合金内
部の組成を歪方向に異方化することになり、磁気異方性
化した高性能の異方性磁石が製造されることになる。
This is because the alloy powder mixed with the oxygen compound powder is pressed and heated at the same time so that the alloy powder is heated and compressed so as to be plastically deformed. This is because the oxygen compound powder acts as an anchor for the alloy powder that is about to undergo plastic deformation, does not flow mainly due to inclusions, and causes deformation inside the alloy. As a result, the strain energy generated inside makes the composition inside the alloy anisotropic in the strain direction, so that a high-performance anisotropic magnet with magnetic anisotropy is manufactured.

【0021】具体的には、合金粉末としてNd12.5Fe
65.6Co16.55.4 の組成のもの(A)とNd12.5Dy
1.5 Fe63.6Co16.95.5 の組成のもの(B)を、非
磁性酸素化合物粉末としてCuO,TiO2 ,Al2
3 ,ZrO2 をそれぞれ用いて下記の条件で焼結体を製
造した。
Specifically, as the alloy powder, Nd 12.5 Fe is used.
65.6 Co 16.5 B 5.4 composition (A) and Nd 12.5 Dy
(B) having a composition of 1.5 Fe 63.6 Co 16.9 B 5.5 , CuO, TiO 2 , Al 2 O as non-magnetic oxygen compound powder
3 and ZrO 2 were used to produce a sintered body under the following conditions.

【0022】粉末の粒径は合金粉末が 200μm、酸素化
合物粉末が平均 5μmで、酸素化合物粉末を 2重量%の
割合で混合した。
The particle size of the powder was such that the alloy powder was 200 μm and the oxygen compound powder was 5 μm on average, and the oxygen compound powder was mixed at a ratio of 2% by weight.

【0023】成形固化は、加圧力を300kg/cm2 、通放電
電力を18KW、処理時間を2min、最大加熱温度を 750℃で
行った。
The molding and solidification were carried out at a pressing force of 300 kg / cm 2 , a discharge power of 18 KW, a treatment time of 2 min, and a maximum heating temperature of 750 ° C.

【0024】このようにして製造した各種焼結体の残留
磁束密度、保持力及び最大エネルギー積を測定し、その
結果を表1に示す。尚、表2は、合金粉末AとBの単体
で焼結体を製造した際の残留磁束密度、保持力及び最大
エネルギー積を測定した結果を示す。
The residual magnetic flux density, the coercive force, and the maximum energy product of the various sintered bodies thus produced were measured, and the results are shown in Table 1. Table 2 shows the results of measuring the residual magnetic flux density, the coercive force, and the maximum energy product when a sintered body was manufactured from the alloy powders A and B alone.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表2】 [Table 2]

【0027】表1及び表2からも明らかなように、合金
粉末に非磁性酸素化合物粉末を混入することで、残留磁
束密度、保持力及び最大エネルギー積の3つの磁気特性
がいずれも向上した。
As is clear from Tables 1 and 2, by mixing the non-magnetic oxygen compound powder with the alloy powder, all three magnetic characteristics, that is, the residual magnetic flux density, the coercive force and the maximum energy product, were improved.

【0028】従って、合金粉末に非磁性酸素化合物粉末
を混入し、これを加圧と加熱を同時に行って成形固化し
て焼結体を製造することにより、磁気特性に優れた異方
性磁石を製造することができる。
Therefore, by mixing the non-magnetic oxygen compound powder with the alloy powder, and simultaneously pressurizing and heating the mixture to form and solidify it to produce a sintered body, an anisotropic magnet having excellent magnetic properties can be obtained. It can be manufactured.

【0029】その成形固化時に、混入した非磁性酸素化
合物が還元され、この還元による金属質の生成を利用し
て、粒子間の滑性が高められる。すなわち、非磁性酸素
化合物が還元されるとガス(酸素)が発生し、この発生
ガスは流体滑性作用を有しており、これにより粒子間の
滑性が高められる。また、この流体滑性作用による成形
固化時のずれ応力により、粒内の再結晶速度が高められ
ると共に、成形固化の均一性も高められる。これによっ
て、成形性を向上させることができる。
At the time of molding and solidification, the mixed non-magnetic oxygen compound is reduced, and by utilizing the generation of metallic substance by this reduction, the lubricity between particles is enhanced. That is, when the non-magnetic oxygen compound is reduced, a gas (oxygen) is generated, and this generated gas has a fluid lubrication effect, which enhances lubricity between particles. Further, due to the shearing stress at the time of molding and solidification due to the fluid slipping effect, the recrystallization speed in the grains is increased and the uniformity of molding and solidification is also improved. Thereby, the moldability can be improved.

【0030】また、還元された非磁性酸素化合物は、加
圧による粒界拡散によって成形型内で焼結体を覆い込む
ような状態で存在することにもなる。このように焼結体
と成形型との間に還元された非磁性酸素化合物が介在す
ると、焼結体と成形型との間には成形固化時に放電(通
電)がなく、エネルギ密度の高い部分は発生しないの
で、各素成分で安定した介在をすることになる。すなわ
ち、成形型側の安定被膜も存在し、相互の拡散は非常に
弱いものとなるので、焼結体と成形型との反応が抑制さ
れ、成形型として金属型を使用しても、容易に離型する
ことができるのである。そして、成形型としてカーボン
型を使用しても、この金属被膜によって焼結体の表面が
炭化するのが防止されるものである。
Further, the reduced non-magnetic oxygen compound also exists in a state of covering the sintered body in the molding die by grain boundary diffusion due to pressure. When the reduced non-magnetic oxygen compound is interposed between the sintered body and the molding die in this manner, there is no discharge (current) during the molding and solidification between the sintered body and the molding die, and a portion with a high energy density is obtained. Does not occur, it means that there is stable interposition in each element. That is, since there is also a stable coating on the mold side and mutual diffusion is very weak, the reaction between the sintered body and the mold is suppressed, and even if a metal mold is used as the mold, it is easy to It can be released. Even if a carbon die is used as the forming die, the surface of the sintered body is prevented from being carbonized by the metal coating.

【0031】[0031]

【発明の効果】以上述べたように本発明によれば、磁場
プレスなどを用いることなく磁気特性に優れ、かつ成形
性及び離型性の向上した磁石を製造できるという優れた
効果を奏する。
As described above, according to the present invention, it is possible to manufacture a magnet having excellent magnetic properties and improved moldability and releasability without using a magnetic field press or the like.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石山 日出夫 神奈川県藤沢市土棚8番地 株式会社い すゞ中央研究所内 (72)発明者 加藤 雅之 神奈川県藤沢市土棚8番地 株式会社い すゞ中央研究所内 (72)発明者 小川 誠 神奈川県藤沢市土棚8番地 株式会社い すゞ中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hideo Ishiyama, Inoue Central Research Institute, Fujisawa-shi, Kanagawa 8 Isao Central Research Institute Co., Ltd. (72) Masayuki Kato 8, Isawa Central Research Institute, Fujisawa, Kanagawa Pref. In-house (72) Inventor Makoto Ogawa 8 Tsutana, Fujisawa-shi, Kanagawa Inside Isuzu Central Research Institute

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 希土類磁石用の合金粉末に、該粉末より
粒径の小さい非磁性酸素化合物の粉末を混入し、これを
成形型内に充填して加圧と加熱を同時に行って成形固化
することを特徴とする異方性磁石の製造方法。
1. A rare earth magnet alloy powder is mixed with a powder of a non-magnetic oxygen compound having a smaller particle size than the powder, and the powder is filled in a molding die and simultaneously pressed and heated to be molded and solidified. A method for manufacturing an anisotropic magnet, characterized in that
JP6003056A 1994-01-17 1994-01-17 Manufacture of anisotropic magnet Pending JPH07211566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6003056A JPH07211566A (en) 1994-01-17 1994-01-17 Manufacture of anisotropic magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6003056A JPH07211566A (en) 1994-01-17 1994-01-17 Manufacture of anisotropic magnet

Publications (1)

Publication Number Publication Date
JPH07211566A true JPH07211566A (en) 1995-08-11

Family

ID=11546675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6003056A Pending JPH07211566A (en) 1994-01-17 1994-01-17 Manufacture of anisotropic magnet

Country Status (1)

Country Link
JP (1) JPH07211566A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004079922A (en) * 2002-08-22 2004-03-11 Hitachi Ltd Magnet and motor using it
JP2005209821A (en) * 2004-01-21 2005-08-04 Tdk Corp Rare earth sintered magnet and its production process
JP2005260210A (en) * 2004-02-10 2005-09-22 Tdk Corp Rare earth sintered magnet, and method of improving mechanical strength and corrosion resistance thereof
JP2020057792A (en) * 2019-11-26 2020-04-09 日亜化学工業株式会社 Bond magnet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004079922A (en) * 2002-08-22 2004-03-11 Hitachi Ltd Magnet and motor using it
JP2005209821A (en) * 2004-01-21 2005-08-04 Tdk Corp Rare earth sintered magnet and its production process
JP2005260210A (en) * 2004-02-10 2005-09-22 Tdk Corp Rare earth sintered magnet, and method of improving mechanical strength and corrosion resistance thereof
JP2020057792A (en) * 2019-11-26 2020-04-09 日亜化学工業株式会社 Bond magnet

Similar Documents

Publication Publication Date Title
EP0239031B2 (en) Method of manufacturing magnetic powder for a magnetically anisotropic bond magnet
EP3288043B1 (en) Pressureless sintering method for anisotropic complex sintered magnet containing manganese bismuth
CN107077934A (en) Sintered magnet based on MnBi of heat endurance with raising and preparation method thereof
JP6471669B2 (en) Manufacturing method of RTB-based magnet
KR102045400B1 (en) Manufacturing method of rare earth sintered magnet
JP6691666B2 (en) Method for manufacturing RTB magnet
KR101804313B1 (en) Method Of rare earth sintered magnet
KR102045394B1 (en) Manufacturing method Of rare earth sintered magnet
JP2731150B2 (en) Magnetic anisotropic bonded magnet, magnetic anisotropic magnetic powder used therefor, method for producing the same, and magnetic anisotropic powder magnet
JPH07211566A (en) Manufacture of anisotropic magnet
JP4302498B2 (en) Method for manufacturing isotropic magnet and magnet thereof
KR20180119755A (en) Manufacturing method of rare earth sintered magnet
KR900006533B1 (en) Anisotropic magnetic materials and magnets made with it and making method for it
JPH10172850A (en) Production of anisotropic permanent magnet
JP2007123467A (en) Method for manufacturing anisotropic magnet
JP3037917B2 (en) Radial anisotropic bonded magnet
JP6620570B2 (en) Method for producing metal bonded magnet
JPS61208808A (en) Manufacture of sintered magnet
JPH01155603A (en) Manufacture of oxidation-resistant rare-earth permanent magnet
JPS61276303A (en) Manufacture of rare earths permanent magnet
JPH10189319A (en) Manufacture of material powder for anisotropic permanent magnet
JPS60214505A (en) Manufacture of metallic bonding type magnet
JPH04198402A (en) Production and apparatus for magnet element
JPS63211705A (en) Anisotropic permanent magnet and manufacture thereof
JPH0478699B2 (en)