JPH0478699B2 - - Google Patents

Info

Publication number
JPH0478699B2
JPH0478699B2 JP9976386A JP9976386A JPH0478699B2 JP H0478699 B2 JPH0478699 B2 JP H0478699B2 JP 9976386 A JP9976386 A JP 9976386A JP 9976386 A JP9976386 A JP 9976386A JP H0478699 B2 JPH0478699 B2 JP H0478699B2
Authority
JP
Japan
Prior art keywords
magnet
molding
temperature
powder
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9976386A
Other languages
Japanese (ja)
Other versions
JPS62284028A (en
Inventor
Teruhiko Fujiwara
Etsuo Ootsuki
Tsutomu Ootsuka
Kinya Sasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP9976386A priority Critical patent/JPS62284028A/en
Publication of JPS62284028A publication Critical patent/JPS62284028A/en
Publication of JPH0478699B2 publication Critical patent/JPH0478699B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0558Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together bonded together

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はSmCo5を代表とするRCo5系磁石の製
造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing RCo 5 -based magnets, typified by SmCo 5 .

〔従来技術〕[Prior art]

R(イツトリウムおよび希土類金属の少なくと
も一種)とCoとの金属間化合物からなる希土類
磁石の製造方法としては焼結による方法、鋳造に
よる方法、および結合剤を用いる方法の三つに大
別される(特開昭60−48884号公報)。
Methods for manufacturing rare earth magnets made of intermetallic compounds of R (yttrium and at least one of rare earth metals) and Co can be roughly divided into three methods: sintering, casting, and using a binder. (Japanese Patent Application Laid-Open No. 60-48884).

〔従来技術の問題点〕[Problems with conventional technology]

ところで結合剤を用いる方法には、結合剤に高
分子樹脂を用いるもの(高分子複合磁石と呼ぶ)
と、金属を用いるものとがあるが、前者は強固で
ありながら複雑な形状のものも成形によつて得や
すい利点がある反面、焼結法や鋳造法による磁石
に比して磁石特性が低いという欠点がある。また
後者の方法は、量産効率が低く、かつ得られた磁
石は磁石特性が低いばかりでなく、耐熱性も低い
欠点がある(特開昭60−214505号公報)。
By the way, among the methods that use a binder, there is one that uses a polymer resin as the binder (called a polymer composite magnet).
The former has the advantage of being strong and easy to mold into complex shapes, but has poor magnetic properties compared to magnets made by sintering or casting. There is a drawback. Furthermore, the latter method has the disadvantage that mass production efficiency is low, and the resulting magnet not only has poor magnetic properties but also low heat resistance (Japanese Patent Application Laid-Open No. 60-214505).

一方、焼結法による磁石は、加圧成形時に、割
れ、かけ、スリツプが発生し易い。しかも焼結に
よる収縮変形があるので、成形時に製品の最終形
状を得ることができず、そのため焼結体の加工を
必要とし、製品の歩留が良くない。
On the other hand, magnets manufactured using the sintering method are susceptible to cracking, chipping, and slipping during pressure molding. Moreover, since there is shrinkage deformation due to sintering, the final shape of the product cannot be obtained during molding, and therefore processing of the sintered body is required, resulting in poor product yield.

従つて、本発明の目的は成形時に製品の最終形
状が得られるとともに前述の従来の結合剤を用い
た高分子複合磁石よりはるかに高い磁石特性およ
び改善された機械強度を有するRCo5系磁石を製
造する方法を提供することである。
Therefore, it is an object of the present invention to produce RCo 5- based magnets that can obtain the final shape of the product during molding and have much higher magnetic properties and improved mechanical strength than the previously mentioned conventional binder-based polymer composite magnets. An object of the present invention is to provide a manufacturing method.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、RCo5系磁石合金粉末に、粉末状の
低融点金属M(MはAl,Znの一種または二種)を
体積比で5〜30%混合し、真空中または不活性ガ
ス雰囲中において500℃を越え750℃以下の温度に
て熱間加圧成形することを特徴とする。
In the present invention, powdered low-melting point metal M (M is one or two of Al and Zn) is mixed with RCo 5 magnet alloy powder in a volume ratio of 5 to 30%, and the mixture is heated in vacuum or in an inert gas atmosphere. It is characterized by hot press forming at a temperature of more than 500°C and less than 750°C.

ここで、低融点金属Mの混合量が5%未満であ
ると粉末間の空隙を満すのに不充分であり、成形
後の機械的強度が低くなり、また30%を越えると
非磁性相が多くなりすぎ、磁石特性の改善が得ら
れなくなる。従つて、Mの混合量は5〜30%とす
る。
Here, if the mixing amount of the low melting point metal M is less than 5%, it will be insufficient to fill the voids between the powders, resulting in low mechanical strength after molding, and if it exceeds 30%, non-magnetic phase will occur. becomes too large, making it impossible to improve the magnetic properties. Therefore, the mixing amount of M is 5 to 30%.

また、熱間加圧の条件を真空中または不活性ガ
ス雰囲気中としたのは、大気中で行うと磁性粉末
の酸化により成形後の磁石の特性劣化が著しいた
めである。
Further, the reason why the hot pressurization was performed in a vacuum or in an inert gas atmosphere is because if the hot pressurization is performed in the air, the characteristics of the magnet after molding will be significantly deteriorated due to oxidation of the magnetic powder.

また、熱間加圧における温度が500℃以下では、
保磁力が著しく低下するため好ましくない。これ
は、磁石組織の観察およびX線回析の解析結果に
よれば、RCo5がR2Co7相とR2Co17相とに分解し
たためと考えられる。
In addition, if the temperature during hot pressing is 500℃ or less,
This is not preferable because the coercive force is significantly reduced. This is considered to be because RCo 5 was decomposed into an R 2 Co 7 phase and an R 2 Co 17 phase, according to the observation of the magnet structure and the analysis results of X-ray diffraction.

他方、熱間加圧における温度が750℃を超える
場合には、残留磁化Brが低下し、ひいては最大
エネルギ積(BH)naxが低下するため好ましくな
い。これは、磁石組織の観察によれば、磁石粒子
相と低融点金属相との界面において反応層が発生
するため、即ち磁石粒子相の体積分率が低下する
ためと考えられる。750℃を超える場合はまた、
密度向上効果が飽和するため、製造工程のエネル
ギ消費の点からも好ましくない。
On the other hand, if the temperature during hot pressurization exceeds 750° C., the residual magnetization Br decreases, and as a result, the maximum energy product (BH) nax decreases, which is not preferable. This is considered to be because, according to observation of the magnet structure, a reaction layer is generated at the interface between the magnet particle phase and the low melting point metal phase, that is, the volume fraction of the magnet particle phase is reduced. If the temperature exceeds 750℃,
Since the density improvement effect is saturated, this is also unfavorable from the point of view of energy consumption in the manufacturing process.

なお加圧は通常の熱間プレスだけでなく熱間静
水圧プレスで行なつても良く、成形体の緻密化の
ためには、少なくとも5Kg/cm2の加圧力が好まし
い。
Note that pressing may be carried out not only by ordinary hot pressing but also by hot isostatic pressing, and a pressing force of at least 5 kg/cm 2 is preferable in order to make the compact compact.

以下、本発明の実施例について説明する。 Examples of the present invention will be described below.

実施例 1 Smが36.5wt%、Coが63.5wt%となるように、
アルゴン雰囲気中で高周波加熱により溶解し、イ
ンゴツトを作製した。
Example 1 Sm was 36.5wt% and Co was 63.5wt%.
An ingot was produced by melting by high frequency heating in an argon atmosphere.

このインゴツトを1100℃で2時間保持した後、
2℃/分で800℃まで冷却した後、室温まで急冷
した。以上の熱処理を行なつたインゴツトを、平
均粒子径が7μmになるようにボールミルにて粉砕
した。
After holding this ingot at 1100℃ for 2 hours,
After cooling to 800°C at 2°C/min, it was rapidly cooled to room temperature. The ingots subjected to the above heat treatment were ground in a ball mill so that the average particle size was 7 μm.

この磁石粉末に、5〜30vol%の粉末状のZnを
混合し、成形用粉末とした。この成形用粉末を成
形金型につめ、20kOeの磁場をかけながら、真空
下で600℃の温度、1000Kg/cm2の圧力で15分間圧
力成形した。
This magnet powder was mixed with 5 to 30 vol% of powdered Zn to obtain a molding powder. This molding powder was packed into a mold and pressure molded under vacuum at a temperature of 600° C. and a pressure of 1000 Kg/cm 2 for 15 minutes while applying a magnetic field of 20 kOe.

上記の方法で成形した成形体の抗折力を第1図
に示す。
FIG. 1 shows the transverse rupture strength of the molded product molded by the above method.

5〜20vol%混合量では、混合量と抗折力が比
例しているが、20vol%を超える量を混合しても、
抗折力にそれほど大きな変化はなく、30vol%で
飽和してしまう。
At a mixing amount of 5 to 20 vol%, the transverse rupture strength is proportional to the mixing amount, but even if the amount exceeds 20 vol%,
There is no significant change in transverse rupture strength, and it becomes saturated at 30vol%.

また、Zn混合量に対する磁気特性の変化を第
2図に示す。Zn添加量とともに、磁気特性が劣
化し、35%添加のとき、従来の高分子複合磁石の
特性とほぼ同一となる。従つて、Znの添加量は
35%以下とすることが必要である。
Furthermore, FIG. 2 shows the change in magnetic properties with respect to the amount of Zn mixed. The magnetic properties deteriorate as the amount of Zn added increases, and when Zn is added at 35%, the properties become almost the same as those of conventional polymer composite magnets. Therefore, the amount of Zn added is
It is necessary to keep it below 35%.

実施例 2 実施例1と同様に、SmCo5合金磁石粉末に5
〜30vol%Zn粉末を混合した成形用粉末を500℃
〜700℃の温度範囲で、1000Kg/cm2の加圧力で熱
間加圧成形した。
Example 2 As in Example 1, 5 was added to the SmCo 5 alloy magnet powder.
〜500℃ of molding powder mixed with 30vol% Zn powder
Hot pressure molding was carried out at a temperature range of ~700°C and a pressure of 1000 Kg/cm 2 .

一定の成形温度に於て、理論密度の成形体を得
るためには、成形温度が低い程、多くの結合相を
必要とする。そこで第3図には、成形温度と理論
密度を得るために必要な最小Zn混合量の関係を
示す。成形温度が高くなるに従い、Zn混合量を
減少させることができる。
In order to obtain a molded article having the theoretical density at a constant molding temperature, the lower the molding temperature, the more binder phase is required. Therefore, Fig. 3 shows the relationship between the molding temperature and the minimum amount of Zn mixed to obtain the theoretical density. As the molding temperature increases, the amount of Zn mixed can be reduced.

実施例では、結合剤としてZnのみで述べたが、
他の低融点金属であるAlの純金属及び合金につ
いても、その効果が期待される。
In the example, only Zn was used as the binder, but
This effect is also expected for pure metals and alloys of Al, which is another low melting point metal.

〔発明の効果〕〔Effect of the invention〕

本発明について以上詳しく説明したが、RCo5
磁石合金を適切な熱処理を加えて粉砕した合金粉
末と、Zn、Alの低融点金属を混合し、熱間加圧
成形することで、高分子複合磁石と同等の強い靱
性をもちながら、歩留を著しく向上させ、かつ、
高分子複合磁石に比較し、はるかに高い磁石特性
が得られ、工業的に非常に有益である。
Although the present invention has been explained in detail above, RCo 5
By mixing alloy powder obtained by pulverizing a magnetic alloy with appropriate heat treatment and low melting point metals such as Zn and Al, and hot-pressing it, it has the same strong toughness as a polymer composite magnet, but has a high yield. significantly improve, and
Compared to polymer composite magnets, much higher magnetic properties can be obtained, making it very useful industrially.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例1におけるSmCo5合金粉末
に対するZn粉末の混合量と抵折力の関係を示す
図、第2図は、実施例1におけるSmCo5系合金
粉末に対するZn粉末の混合量と磁石特性の関係
を示す図、第3図は、実施例2における熱間加圧
成形時の温度と、理論密度の成形体を得るのに必
要な最少のZn量との関係を示す図である。
Figure 1 is a diagram showing the relationship between the amount of Zn powder mixed with SmCo 5 alloy powder and refractive force in Example 1, and Figure 2 is a graph showing the relationship between the amount of Zn powder mixed with SmCo 5 alloy powder and refractor strength in Example 1. Figure 3, a diagram showing the relationship between magnetic properties, is a diagram showing the relationship between the temperature during hot pressing in Example 2 and the minimum amount of Zn required to obtain a compact with the theoretical density. .

Claims (1)

【特許請求の範囲】[Claims] 1 RCo5(Rはイツトリウムおよび希土類金属の
少なくとも一種)系磁石合金粉末に、粉末状の低
融点金属M(MはAl、Znの一種または二種)を体
積比で5〜30%混合し、真空中または不活性ガス
雰囲中において500℃を越え750℃以下の温度にて
熱間加圧成形することを特徴とする希土類磁石の
製造方法。
1 RCo 5 (R is at least one of yttrium and rare earth metal) based magnet alloy powder is mixed with powdered low melting point metal M (M is one or two of Al and Zn) at a volume ratio of 5 to 30%, A method for producing a rare earth magnet, characterized by hot press forming at a temperature of more than 500°C and less than 750°C in a vacuum or an inert gas atmosphere.
JP9976386A 1986-04-30 1986-04-30 Manufacture of rare-earth magnet Granted JPS62284028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9976386A JPS62284028A (en) 1986-04-30 1986-04-30 Manufacture of rare-earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9976386A JPS62284028A (en) 1986-04-30 1986-04-30 Manufacture of rare-earth magnet

Publications (2)

Publication Number Publication Date
JPS62284028A JPS62284028A (en) 1987-12-09
JPH0478699B2 true JPH0478699B2 (en) 1992-12-11

Family

ID=14256014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9976386A Granted JPS62284028A (en) 1986-04-30 1986-04-30 Manufacture of rare-earth magnet

Country Status (1)

Country Link
JP (1) JPS62284028A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1679724A4 (en) * 2003-10-31 2010-01-20 Tdk Corp Method for producing sintered rare earth element magnet

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2258780A1 (en) * 1971-12-14 1973-06-28 Goldschmidt Ag Th PROCESS FOR PRODUCING PERMANENT MAGNETS BASED ON COBALT-RARE EARTH ALLOYS
JPS5812331B2 (en) * 1974-10-25 1983-03-08 セイコーエプソン株式会社 intermetallic compound magnet
JPS5245523A (en) * 1975-10-08 1977-04-11 Seiko Instr & Electronics Ltd Rare earths-cobalt magnet and its production process

Also Published As

Publication number Publication date
JPS62284028A (en) 1987-12-09

Similar Documents

Publication Publication Date Title
JPH0424401B2 (en)
EP0595477A1 (en) Method of manufacturing powder material for anisotropic magnets and method of manufacturing magnets using the powder material
US5085716A (en) Hot worked rare earth-iron-carbon magnets
JPH1131610A (en) Manufacture of rare-earth magnet powder with superior magnetic anisotropy
JPH0478699B2 (en)
CA2034632C (en) Hot worked rare earth-iron-carbon magnets
JPS61208808A (en) Manufacture of sintered magnet
JPH10172850A (en) Production of anisotropic permanent magnet
JPS62284027A (en) Manufacture of rare-earth magnet
JPS62282417A (en) Manufacture of rare earth magnet
JPS58186906A (en) Permanent magnet and preparation thereof
JPH07211566A (en) Manufacture of anisotropic magnet
JPH07110965B2 (en) Method for producing alloy powder for resin-bonded permanent magnet
JPS61208809A (en) Manufacture of sintered magnet
JPS63137136A (en) Manufacture of rare earth-iron group sintered permanent magnet material
JPS58108711A (en) Manufacture of rare earth permanent magnet
JP2794704B2 (en) Manufacturing method of anisotropic permanent magnet
JP2730441B2 (en) Manufacturing method of alloy powder for permanent magnet
JP2000021614A (en) Manufacture of rare earth magnet powder superior in magnetic anisotropy
JPS58108709A (en) Manufacture of rare earth permanent magnet
JPS61130436A (en) Manufacture of rare earth metal magnet
JPS5819409A (en) Manufacture of isotropic mn-al-c magnet
JPS63306602A (en) Rare earth co compound magnet and manufacture thereof
JPH0732102B2 (en) Rare earth alloy permanent magnet manufacturing method
JPS58108710A (en) Manufacture of rare earth permanent magnet