JPS62284027A - Manufacture of rare-earth magnet - Google Patents

Manufacture of rare-earth magnet

Info

Publication number
JPS62284027A
JPS62284027A JP9976286A JP9976286A JPS62284027A JP S62284027 A JPS62284027 A JP S62284027A JP 9976286 A JP9976286 A JP 9976286A JP 9976286 A JP9976286 A JP 9976286A JP S62284027 A JPS62284027 A JP S62284027A
Authority
JP
Japan
Prior art keywords
magnet
magnetic properties
r2co17
temperature
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9976286A
Other languages
Japanese (ja)
Inventor
Teruhiko Fujiwara
照彦 藤原
Etsuo Otsuki
悦夫 大槻
Tsutomu Otsuka
大塚 務
Kinya Sasaki
佐々木 欣也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tohoku Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Metal Industries Ltd filed Critical Tohoku Metal Industries Ltd
Priority to JP9976286A priority Critical patent/JPS62284027A/en
Publication of JPS62284027A publication Critical patent/JPS62284027A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0556Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together pressed

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To develop a magnet excellent in toughness as well as in magnetic properties, by mixing the powders of specific low-m.p. metals with the powder of an R2Co17 magnet such as Sm2Co17, etc., and by subjecting the resulting powder mixture to hot compaction. CONSTITUTION:The ingot to a magnet represented by R2Co17 (where R is at least one kind among Y and rare earth metals) such as Sm2Co17, etc., is crushed, to which powders of low-m.p. metals such as Al, Pb, Sn, Zn, etc., are added by 5-35% by volume ratio to undergo mixing. The resulting powder mixture is hot-compacted at >=400 deg.C, so that R2Co17 magnet free from cracks, breakage, slip, etc., and excellent in magnetic properties can be obtained.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明はSm2Co 17を代表とするR2C047系
磁石の製造方法に関するものである。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method of manufacturing an R2C047-based magnet, typified by Sm2Co 17.

〔従来技術〕[Prior art]

R(イツトリウムおよび希土類金属の少なくとも一種)
とCOとの金属間化合物からなる希土類磁石の製造方法
としては焼結による方法、鋳造による方法、および結合
剤を用いる方法の三つに大別される(特開昭60−48
884号公報)。
R (at least one of yttrium and rare earth metal)
Methods for producing rare earth magnets made of intermetallic compounds of CO and CO are roughly divided into three types: sintering, casting, and using a binder (Japanese Patent Laid-Open No. 60-48
Publication No. 884).

〔従来技術の問題点〕[Problems with conventional technology]

ところで、結合剤を用いる方法には、結合剤に高分子樹
脂を用いるもの(高分子複合磁石と呼ぶ)と金属を用い
るものとがあるが、前者は強固でありながら複雑な形状
のものも成形によって得やすい利点がある反面、焼結法
や鋳造法による磁石に比して磁石特性が低いという欠点
がある。また後者の方法は、量産効率が低くかつ得られ
た磁石は磁石特性が低いばかりでなく、耐熱性も低い欠
点がある(特開昭60−214505号公報)。
By the way, there are two methods that use a binder: one that uses a polymer resin as the binder (called a polymer composite magnet) and the other that uses metal.The former is strong but also allows for molding of complex shapes. Although it has the advantage of being easy to obtain, it has the disadvantage of having poor magnetic properties compared to magnets made by sintering or casting. Furthermore, the latter method has the drawbacks of low mass production efficiency and the resulting magnet not only has poor magnetic properties but also low heat resistance (Japanese Patent Application Laid-Open No. 60-214505).

一方、焼結法による磁石は、加圧成形時に割れ。On the other hand, magnets made using the sintering method crack during pressure forming.

かけ、スリップが発生し易い。しかも焼結による収縮変
形があるので、成形時に製品の最終形状を得ることがで
きず、そのため焼結体の加工を必要とし、製品の歩留が
良くない。
It is easy to run and slip. Moreover, since there is shrinkage deformation due to sintering, the final shape of the product cannot be obtained during molding, and therefore processing of the sintered body is required, resulting in poor product yield.

従って2本発明の目的は成形時に製品の最終形状が得ら
れるとともに前述の従来の結合剤を用いた高分子複合磁
石よりはるかに高い磁石特性および改善された機械強度
を有するR2 CO17系磁石を製造する方法を提供す
ることである。
Therefore, the object of the present invention is to produce R2 CO17-based magnets that can obtain the final shape of the product during molding and have much higher magnetic properties and improved mechanical strength than the aforementioned conventional polymer composite magnets using binders. The goal is to provide a method to do so.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明はr R2C017系磁石合金粉末に、粉末状の
低融点金属M(MはAt 、 Pb 、 Zn 、 S
nの一種または二種以上)を体積比で5〜35%混合し
In the present invention, a powdery low melting point metal M (M is At, Pb, Zn, S
One or more types of n) are mixed in a volume ratio of 5 to 35%.

400℃以上の温度にて熱間加圧成形することを特徴と
する。
It is characterized by hot press forming at a temperature of 400°C or higher.

ここで、低融点金属Mの混合量が5%未満であると粉末
間の空隙を満すのに不充分であり、成形後の機械的強度
が低くなり、また35%を越えると非磁性相が多くなp
すぎ、磁石特性の改善が得られなくなる。従って1Mの
混合量は5〜35%とする。
Here, if the mixing amount of the low melting point metal M is less than 5%, it will be insufficient to fill the voids between the powders, resulting in low mechanical strength after molding, and if it exceeds 35%, non-magnetic phase will occur. There are many p
If the temperature is too high, it will not be possible to improve the magnetic properties. Therefore, the mixing amount of 1M is 5 to 35%.

また、熱間加圧における温度が400℃未満では、成形
体のち密化かはフかれないので、400℃以上を必要と
する。成形温度に上限は無いが。
Further, if the temperature during hot pressing is less than 400°C, the molded product will not be densified or not, so a temperature of 400°C or higher is required. There is no upper limit to the molding temperature.

850℃以上では、密度向上効果が飽和してしまうので
、850℃を超えた高温で成形することはエネルギー消
費の点から好ましくない。
If the temperature is 850°C or higher, the density improvement effect will be saturated, so molding at a high temperature exceeding 850°C is not preferable from the viewpoint of energy consumption.

なお加圧は通常の熱間ゾレスだけでなく熱間静水圧プレ
スで行なっても良く、成形体の緻密化のためには、少な
くとも5kfIy/Crn2の加圧力が好ましい。
Note that pressing may be carried out not only by ordinary hot Soles but also by hot isostatic pressing, and in order to make the compact compact, a pressing force of at least 5 kfIy/Crn2 is preferable.

以下2本発明の詳細な説明する。Two aspects of the present invention will be described in detail below.

実施例 I Smが26. Owt%、 Feが14.8wt%、 
Cuが4,8wt%、 Zrが2.3wt%、 Tiが
0.2 wt%、残部Coとなるように、アルゴン雰囲
気中で高周波加熱により溶解し、インコ゛ットを作製し
た。
Example I Sm is 26. Owt%, Fe is 14.8wt%,
An incoat was prepared by melting Cu by high-frequency heating in an argon atmosphere so that Cu was 4.8 wt%, Zr was 2.3 wt%, Ti was 0.2 wt%, and the balance was Co.

このインゴットを1190℃で2時間保持し急冷した後
、800℃で8時間保持した後1℃/分で冷却し時効し
た。以上の熱処理を行なったインゴットを、平均粒子径
が10μmになるようにボールミルにて粉砕した。
This ingot was held at 1190°C for 2 hours and rapidly cooled, then held at 800°C for 8 hours, and then cooled at 1°C/min for aging. The ingot subjected to the above heat treatment was ground in a ball mill so that the average particle size was 10 μm.

この磁石粉末に、5〜35 vo1%の粉末状のZnを
混合し、成形用粉末とした。この成形用粉末を成形金型
につめ、 20 koeの磁場をかけながら。
Powdered Zn of 5 to 35 vol% was mixed with this magnet powder to obtain a molding powder. This molding powder was packed into a mold and a magnetic field of 20 koe was applied.

真空下で600℃の温度、 1000 kf/1yn2
(D 圧力で15分間圧力成形した。
Temperature of 600℃ under vacuum, 1000 kf/1yn2
(Pressure molded at D pressure for 15 minutes.

上記の方法で成形した成形体の抗折力を第1図に示す。FIG. 1 shows the transverse rupture strength of the molded product molded by the above method.

5〜20 vol %混合量では混合量と抗折力が比例
しているがp 20 vo1%を越える量を混合しても
、抗折力にそれほど大きな変化はなく。
At a mixing amount of 5 to 20 vol %, the transverse rupture strength is proportional to the mixing amount, but even if an amount exceeding 1% p 20 vol is mixed, there is no significant change in the transverse rupture strength.

35%で飽和する。Saturation occurs at 35%.

また、Zn混合量に対する磁気特性の変化を第2図に示
す。Zn添加量とともに磁気特性が劣化し。
Further, FIG. 2 shows the change in magnetic properties with respect to the amount of Zn mixed. Magnetic properties deteriorate with increasing amount of Zn added.

40襲添加のとき、従来の高分子複合磁石の特性とほぼ
同一となる。従ってZn添加量は40%以下とすること
が必要である。
When 40% is added, the properties are almost the same as those of conventional polymer composite magnets. Therefore, it is necessary that the amount of Zn added be 40% or less.

実施例 2 実施例1と同様に、 (Sm−Co−Fe−Cu−Zr
−Ti)の磁石粉末に5〜35 vo1%Zn粉末を混
合した成形用粉末を400℃〜800℃の温度範囲で、
 1000kfl/cpn2の加圧力にて熱間加圧成形
した。一定の成形温度に於て、理論密度の成形体を得る
ためには。
Example 2 Similarly to Example 1, (Sm-Co-Fe-Cu-Zr
-Ti) magnet powder mixed with 5 to 35 vol% Zn powder in a temperature range of 400°C to 800°C,
Hot pressure molding was performed at a pressure of 1000 kfl/cpn2. To obtain a molded product with the theoretical density at a constant molding temperature.

成形温度が低い程、多くの結合相を必要とする。Lower molding temperatures require more binder phase.

そこで第3図には、成形温度と理論密度を得るために必
要な最少Zn混合量の関係を示す。成形温度が高くなる
に従い、 Zn混合量を減少させることができる。
Therefore, FIG. 3 shows the relationship between the molding temperature and the minimum mixing amount of Zn required to obtain the theoretical density. As the molding temperature increases, the amount of Zn mixed can be reduced.

実施例では、結合剤としてZnのみで述べたが。In the examples, only Zn was used as the binder.

他の低融点金属である、kA p Pb g Sn *
の純金属及び合金を一種または二種以上を用いても、同
様の効果が得られる。
Other low melting point metals, kA p Pb g Sn *
Similar effects can be obtained by using one or more pure metals and alloys.

〔発明の効果〕 本発明について以上詳しく説明したが、 R2Co17
系磁石合金粉末と、低融点金属(Azypbyznys
n)を混合し、熱間加圧成形することで、高分子複合磁
石と同等の強い靭性をもちながら2歩留を著しく向上さ
せ、かつ、高分子複合磁石に比較し、はるかに高い磁石
特性が得られ、工業的に非常に有益である。
[Effects of the Invention] Although the present invention has been explained in detail above, R2Co17
based magnet alloy powder and low melting point metal (Azypbyznys
By mixing n) and hot-pressing, it has the same strong toughness as a polymer composite magnet, while significantly improving the 2 yield, and has much higher magnetic properties than a polymer composite magnet. is obtained and is industrially very useful.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例1におけるSm 2 CO17系合金
粉末に対するZn粉末の混合量と抗折力の関係を示す図
、第2図は、実施例1における5m2co、7系合金粉
末に対するZn粉末の混合量と磁石特性の関係を示す図
、第3図は、実施例2における熱間加圧成形時の温度と
、理論密度の成形体を得るのに必要な最少のZn量との
関係を示す図である。 伐理人(7783)弁理士池田志保 第1図 第3図 熱間加圧成形特温度(℃)
Fig. 1 is a diagram showing the relationship between the mixing amount of Zn powder and transverse rupture strength for Sm 2 CO17 alloy powder in Example 1, and Fig. 2 is a diagram showing the relationship between the amount of Zn powder mixed and transverse rupture strength for Sm 2 CO 17 alloy powder in Example 1. Figure 3, a diagram showing the relationship between the mixing amount and magnetic properties, shows the relationship between the temperature during hot press forming in Example 2 and the minimum amount of Zn necessary to obtain a compact with the theoretical density. It is a diagram. Logger (7783) Patent Attorney Shiho Ikeda Figure 1 Figure 3 Special temperature for hot pressing (℃)

Claims (1)

【特許請求の範囲】[Claims] 1、R_2Co_1_7(Rはイットリウムおよび希土
類金属の少なくとも一種)系磁石合金粉末に、粉末状の
低融点金属M(MはAl、Pb、Zn、Snの一種また
は二種以上)を体積比で5〜35%混合し、400℃以
上の温度にて熱間加圧成形することを特徴とする希土類
磁石の製造方法。
1. Powdered low melting point metal M (M is one or more of Al, Pb, Zn, and Sn) is added to R_2Co_1_7 (R is at least one of yttrium and rare earth metal) based magnet alloy powder at a volume ratio of 5 to 5. A method for producing a rare earth magnet, which comprises mixing 35% and hot pressing at a temperature of 400°C or higher.
JP9976286A 1986-04-30 1986-04-30 Manufacture of rare-earth magnet Pending JPS62284027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9976286A JPS62284027A (en) 1986-04-30 1986-04-30 Manufacture of rare-earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9976286A JPS62284027A (en) 1986-04-30 1986-04-30 Manufacture of rare-earth magnet

Publications (1)

Publication Number Publication Date
JPS62284027A true JPS62284027A (en) 1987-12-09

Family

ID=14255987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9976286A Pending JPS62284027A (en) 1986-04-30 1986-04-30 Manufacture of rare-earth magnet

Country Status (1)

Country Link
JP (1) JPS62284027A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111091943A (en) * 2019-12-24 2020-05-01 中国计量大学 Low-temperature coefficient Sm2Co17Molded sintered magnet and method for producing same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4866524A (en) * 1971-12-14 1973-09-12
JPS5149118A (en) * 1974-10-25 1976-04-28 Suwa Seikosha Kk

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4866524A (en) * 1971-12-14 1973-09-12
JPS5149118A (en) * 1974-10-25 1976-04-28 Suwa Seikosha Kk

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111091943A (en) * 2019-12-24 2020-05-01 中国计量大学 Low-temperature coefficient Sm2Co17Molded sintered magnet and method for producing same

Similar Documents

Publication Publication Date Title
EP0239031B1 (en) Method of manufacturing magnetic powder for a magnetically anisotropic bond magnet
US5085716A (en) Hot worked rare earth-iron-carbon magnets
JPS6181606A (en) Preparation of rare earth magnet
JPS6181603A (en) Preparation of rare earth magnet
JPS62284027A (en) Manufacture of rare-earth magnet
JPS62206801A (en) Manufacture of rare earth magnet
JPS6350444A (en) Manufacture of nd-fe-b sintered alloy magnet
JPS6181607A (en) Preparation of rare earth magnet
JPS5812331B2 (en) intermetallic compound magnet
JPH0478699B2 (en)
JPS61295342A (en) Manufacture of permanent magnet alloy
JPS62282417A (en) Manufacture of rare earth magnet
CA2034632C (en) Hot worked rare earth-iron-carbon magnets
JPS58108711A (en) Manufacture of rare earth permanent magnet
JPS61208808A (en) Manufacture of sintered magnet
JPH07110965B2 (en) Method for producing alloy powder for resin-bonded permanent magnet
JPS61261448A (en) Production of permanent magnet having high energy product
JPS6350469A (en) Manufacture of alloy target for sputtering
JPS63137136A (en) Manufacture of rare earth-iron group sintered permanent magnet material
JPS58108709A (en) Manufacture of rare earth permanent magnet
JPH07211566A (en) Manufacture of anisotropic magnet
JPS5819409A (en) Manufacture of isotropic mn-al-c magnet
JPS63306602A (en) Rare earth co compound magnet and manufacture thereof
JPS61130436A (en) Manufacture of rare earth metal magnet
JPS5827321B2 (en) Permanent magnet manufacturing method