JPS5819409A - Manufacture of isotropic mn-al-c magnet - Google Patents

Manufacture of isotropic mn-al-c magnet

Info

Publication number
JPS5819409A
JPS5819409A JP11681181A JP11681181A JPS5819409A JP S5819409 A JPS5819409 A JP S5819409A JP 11681181 A JP11681181 A JP 11681181A JP 11681181 A JP11681181 A JP 11681181A JP S5819409 A JPS5819409 A JP S5819409A
Authority
JP
Japan
Prior art keywords
magnet
sintered
isotropic
sintered body
partial pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11681181A
Other languages
Japanese (ja)
Inventor
Yoshinobu Takeda
義信 武田
Atsushi Kuroishi
黒石 農士
Akio Hara
昭夫 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP11681181A priority Critical patent/JPS5819409A/en
Publication of JPS5819409A publication Critical patent/JPS5819409A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain a high density isotropic Mn-Al-C magnet of high performance by sintering a molded body of Mn-Al-C powder having a prescribed composition in an evacuated atmosphere under a specified partial pressure of gaseous CO and by subjecting the sintered body to hot hydrostatic pressure molding and soln. heat treatment. CONSTITUTION:A magnet material consisting of 70wt% Mn, 29.5% Al and 0.5% C is cast, pulsverized, and cold molded into a prescribed shape. The molded body is sintered in an evacuated atmosphere under 1-100Torr partial pressure of gaseous CO. The sintered body is subjected to hot hydrostatic pressure molding at about 1,000-1,100 deg.C to increase the density, and soln. heat treatment is carried out in a cooling stage. By this method a sintered isotropic Mn- Al-C magnet comparable to a refined material in magnetic characteristics can be manufactured simply.

Description

【発明の詳細な説明】 Mn−Aj!−C系磁石は希少資源であるCOを全く使
用しない材料であるため経済性に優れ、かつ軽量であり
重量あたりの磁気エネルギーが大きく、磁石応用機器の
高性能化、軽量化、薄型化等に好適であり積極的に実用
化開発が行われて来た。
DETAILED DESCRIPTION OF THE INVENTION Mn-Aj! -C-based magnets are materials that do not use CO, which is a rare resource, and are therefore highly economical. They are also lightweight and have a large amount of magnetic energy per unit weight, making them useful for improving the performance, weight, and thickness of magnet-applied equipment. It is suitable and has been actively developed for practical use.

本材料は他の磁石材料であるアルニコ合金等と比較すれ
ば被削加工性は優れているが、硬度がHRc50〜55
と高いためやはり難削材であり、旋削加工や穴あけ加工
の効率が著しく劣っており実用上の障害となる問題があ
った。
This material has excellent machinability when compared to other magnet materials such as alnico alloys, but its hardness is HRc50-55.
Because of its high surface area, it is also a difficult material to cut, and the efficiency of turning and drilling is extremely poor, which poses a problem in practical use.

このような難削材である磁石部品を製造する方法の一つ
として粉末冶金法の利用が考えられる。
Powder metallurgy may be used as one of the methods for manufacturing magnetic components that are difficult to cut.

しかし乍ら、従来の粉末冶金法でMn −fi−12−
C系材料を製造するのは極めて困難なことであった。何
故ならMn−AノーC系材料は前述の通り硬くて脆いた
め型押成型が難しく、また酸素との結合力の極めて高い
MnやMを主成分としているため加熱中に  ′容易に
酸化するため焼結が殆んど進まないからである。このた
め例えば焼結雰囲気を高純度の水素にする方法が提案さ
れたが顕著な効果はなく充分な密度を有する焼結体が得
られないため磁石としての使用に耐えなかった。又、低
融点元素を添加して焼結する方法(特開昭55−100
944号)が提案されているが磁気特性が充分でなかっ
た。
However, Mn-fi-12-
It has been extremely difficult to produce C-based materials. This is because, as mentioned above, Mn-A-no-C materials are hard and brittle, making it difficult to mold them, and because the main components are Mn and M, which have extremely high bonding strength with oxygen, they easily oxidize during heating. This is because sintering hardly progresses. For this reason, for example, a method was proposed in which the sintering atmosphere was made of high-purity hydrogen, but this method had no significant effect and could not be used as a magnet because a sintered body with sufficient density could not be obtained. Also, a method of adding a low melting point element and sintering (Japanese Patent Application Laid-Open No. 55-100
No. 944) has been proposed, but its magnetic properties were not sufficient.

このように従来の粉末冶金法では高性能焼結Mn−Aノ
ー〇系磁石の製造は困難であった。
As described above, it has been difficult to manufacture high-performance sintered Mn-A No. 0 magnets using conventional powder metallurgy methods.

本発明はCOガス分圧が1−1 ’00 Torrの減
圧奪回る焼結よりも高性能な磁石の焼結ができることを
見出したものであり、更にこの焼結体を熱間静水圧成形
によって等方的に緻密化し、空孔を殆んど無くすことに
よってほぼ溶製材に匹適する性能を有する。磁石材料を
得る方法を見出したものである。
The present invention is based on the discovery that it is possible to sinter a magnet with higher performance than vacuum recapture sintering with a CO gas partial pressure of 1-1'00 Torr, and furthermore, this sintered body can be sintered by hot isostatic pressing. It is isotropically densified and has almost no pores, so it has performance comparable to that of ingot lumber. We have discovered a method to obtain magnetic materials.

焼結体を熱間静水圧成型(以下1(IPと略称する)す
ることによって、空孔や巣のない緻密な成型体を得る方
法はすでに広汎に実用化されている。
A method of obtaining a dense molded body without voids or voids by hot isostatic pressing (hereinafter referred to as 1 (abbreviated as IP)) a sintered body has already been widely put into practical use.

しかし、Mn−AノーC系材料においてはこのHIPを
施して緻密化することは従来不可能であった。
However, it has conventionally been impossible to densify Mn-A/C-based materials by applying HIP.

何故なら従来の粉末冶金法たよる焼結体は空孔率が高く
、しかも独立空孔よりも連続空孔が多数存在していた為
、ガスを圧力媒体とするHIPでは空孔内に圧力媒体が
容易に浸入してしまい、空孔を押しつぶすような周囲か
らの圧力が全く作用せず何んら塑性変形による体積変化
をきたさないからである。勿論、このような焼結体でも
気密容器内に封入してHIPする方法もあるが、本材料
に対しては経済性が著しく損うため意味がない。
This is because sintered bodies made using conventional powder metallurgy have a high porosity and more continuous pores than independent pores. This is because the pores are easily penetrated, no pressure from the surroundings that would crush the pores acts, and no volume change occurs due to plastic deformation. Of course, there is also a method of sealing such a sintered body in an airtight container and HIPing it, but it is meaningless for this material because it significantly impairs economic efficiency.

しかし乍ら、本発明の焼結方法によれば連続空孔の殆ん
どない空孔率の低い、しかも酸化物の少い良好な焼結体
が得られるために容易にHIP処理を施すことが可能と
なったのである。
However, according to the sintering method of the present invention, a good sintered body with almost no continuous pores, low porosity, and low oxide content can be obtained, so HIP treatment can be easily performed. became possible.

先ず減圧Coガス中焼結について説明する。First, sintering in reduced pressure Co gas will be explained.

Mn −fiJ−C系合金はMnやMの酸化物が粉末表
面に形成されるために従来の雰囲気では焼結中にこれら
の酸化物を還元除去することができず、残留した酸化物
が磁気特性を損うことが避けられなかった。Mnの酸化
物は主としてMnOであり、この酸化物の解離圧は、 MnO’ニー Mn +10g の式においてΔG0= 91950−17.4T であ
ることから最高加熱温度1200°Cのときには IQ
−19以上にもなり、通常の真空によっては分解が不可
能であった。
In Mn-fiJ-C alloys, Mn and M oxides are formed on the powder surface, so these oxides cannot be reduced and removed during sintering in a conventional atmosphere, and the remaining oxides become magnetic. It was inevitable that the characteristics would be lost. The oxide of Mn is mainly MnO, and the dissociation pressure of this oxide is ΔG0 = 91950-17.4T in the formula MnO'+10g, so when the maximum heating temperature is 1200°C, IQ
-19 or more, and it was impossible to decompose it under normal vacuum.

一方、炭素によってMnOを還元する方法は、MnO+
 C’:: Mn + C0 ΔG0= 65250−38.857 であることから加熱温度が1428°C以上でなければ
MnOを還元することが出来ず、この温度ではMn −
AJ−C合金は融液となってしまい焼結することが不可
能であった。しかし本発明の方法においては、上記反応
のCOガスを減圧にすることによって、即ちP。。=7
60 ”= 760とすることにより、平衡反応温度を
融点以下まで低下させることが良好な焼結体が得られる
ことを見出したのである。COガスの分圧はl Tor
r以下にすると高真空雰囲気と類似の雰囲気となり、単
純には熱力学的計算では更に還元反応を生じ易くするか
の如く思われるが実際にはMn−AノーC中のCが消費
され、最適組成範囲からずれる等好ましくない。即ち雰
囲気から適度なCが供給されることが良好な焼結体を得
る為の条件であることが判明した。一方、Pcoは必ず
しもMnOがその温度で還元可能な理論分圧よりも高く
ても、低酸素粉末を用いれば十分焼結ができることも見
出した。この理由は、雰囲気ガス中の酸素分圧が低(M
n −A−jl −C合金の酸化が抑制される為である
と思われる。
On the other hand, the method of reducing MnO with carbon is MnO+
Since C':: Mn + C0 ΔG0 = 65250-38.857, MnO cannot be reduced unless the heating temperature is 1428°C or higher, and at this temperature Mn -
The AJ-C alloy turned into a melt and could not be sintered. However, in the method of the present invention, by reducing the pressure of the CO gas in the above reaction, that is, P. . =7
60'' = 760, it was found that a good sintered body could be obtained by lowering the equilibrium reaction temperature to below the melting point.The partial pressure of CO gas was l Tor.
When the temperature is lower than r, the atmosphere becomes similar to a high vacuum atmosphere, and although based on simple thermodynamic calculations it seems that the reduction reaction is more likely to occur, in reality, the C in the Mn-A no C is consumed, and the optimum condition is reached. This is undesirable as it deviates from the composition range. That is, it has been found that supplying an appropriate amount of C from the atmosphere is a condition for obtaining a good sintered body. On the other hand, we have also found that even if Pco is higher than the theoretical partial pressure at which MnO can be reduced at that temperature, sufficient sintering can be achieved by using a low-oxygen powder. The reason for this is that the oxygen partial pressure in the atmospheric gas is low (M
This seems to be because oxidation of the n-A-jl-C alloy is suppressed.

実験の結果P。0が1〜100 Torr の場合が良
好な焼結が可能であった。
Experimental results P. Good sintering was possible when 0 was 1 to 100 Torr.

このようにして得られた焼結体をHIPによって緻密化
することによって高性能のMn−A)−〇系磁石焼結体
を製造するのが本発明の要件である。
A requirement of the present invention is to produce a high-performance Mn-A)-〇-based magnet sintered body by densifying the sintered body thus obtained by HIP.

HIP処理の温度は高温変形抵抗の小さい1000〜1
100°Cにすることによって比較的短時間で緻密化の
効果が得られるだけでなく、溶体化処理も同時に行われ
、冷却速度を制御するだけで溶体化処理を終了させるこ
とができることを見出した。
The temperature of HIP treatment is 1000~1, which has low high temperature deformation resistance.
It was discovered that by heating the material to 100°C, not only the effect of densification can be obtained in a relatively short period of time, but also solution treatment is performed at the same time, and solution treatment can be completed simply by controlling the cooling rate. .

上記温度範囲でもHIP処理は可能であるが、例えば7
00°Cでは緻密化の効果を出すのに極めて長時間を要
し、又より高温では溶体化処理との関係で熱処理が複雑
となり好ましくない。上記温度範囲でHIPすることに
より短時間で製造することが可能である。
Although HIP treatment is possible even in the above temperature range, for example,
At 00°C, it takes an extremely long time to achieve the densification effect, and at higher temperatures, the heat treatment becomes complicated due to solution treatment, which is not preferred. By HIPing in the above temperature range, it is possible to manufacture in a short time.

次に実施例によって説明する。Next, an example will be explained.

実施例1゜ 70wt%Mn  29.5 wt % All  0
15wt% C組成の合金を鋳造後、粉砕によって一1
00メツシュの粉末を得た。この粉末を冷間静水圧成型
機を用いて1.6 t/crn2の圧力で30餞φ×1
00鯨の円柱に成型した。この成型体をCOガス分圧3
0Torrの減圧雰囲気中で1210°C180分間焼
結後、1080°Cで2時間、1600気圧のArガス
中でHIP処理を施した。
Example 1゜70wt%Mn 29.5wt% All 0
After casting an alloy with a composition of 15 wt% C, it is crushed to
A powder of 0.00 mesh was obtained. This powder was molded into 30 mm diameter x 1 at a pressure of 1.6 t/crn2 using a cold isostatic press machine.
It was molded into a cylinder of a 00 whale. This molded body is heated to a CO gas partial pressure of 3
After sintering at 1210° C. for 180 minutes in a reduced pressure atmosphere of 0 Torr, HIP treatment was performed at 1080° C. for 2 hours in Ar gas at 1600 atm.

得られた焼結体は比重496g/cc であり、磁力を
示す最大エネルギー積(BH)Maxは3.1MGOe
であった。
The obtained sintered body has a specific gravity of 496 g/cc and a maximum energy product (BH) Max indicating magnetic force of 3.1 MGOe.
Met.

実施例2゜ 実施例1と同様にして得られた焼結体を119σCで3
0分間、1600気圧のArガス中でHIP処理後10
50°Cまで急速冷却して更に1時間保持径制御冷却を
行うことによって溶体化処理を連続して施した。得られ
た焼結体は比重495g/ccであり、最大エネルギー
積は&OMG Oeであった。
Example 2 A sintered body obtained in the same manner as Example 1 was heated at 119σC for 3
10 minutes after HIP treatment in Ar gas at 1600 atm.
Solution treatment was continuously performed by rapid cooling to 50°C and further cooling with diameter control for 1 hour. The obtained sintered body had a specific gravity of 495 g/cc and a maximum energy product of &OMG Oe.

以上説明した如く本発明の方法により等方性Mn−Aノ
ー〇系焼結磁石が比較的簡単な工程で製造でき、その磁
気特性も溶製材に匹敵するものであり、しかも粉末の成
型によるため複雑形状のものを高い材料歩留で切削加工
なしに製造できるようになった。
As explained above, by the method of the present invention, an isotropic Mn-A No. It has become possible to manufacture products with complex shapes with a high material yield without cutting.

Claims (1)

【特許請求の範囲】[Claims] (1) Mn 70重量%、IU29.5重量%、C0
,5重量%からなる磁石材料を溶解鋳造後粉砕して粉末
化し、所定形状に冷開成型した後、COガス分圧1−1
00Torrの減圧雰囲気中で焼結し、更に熱間静水圧
成型によって緻密化したのち溶体化熱処理を施すことを
特徴とする轡方性Mn−Aノー〇系磁石の製造法。 (2、特許請求の範囲第(1)項において、1000〜
1100°Cで熱間静水圧成型を施すと同時に溶体化処
理を行うことを特徴とする等方性Mn −AA−C系磁
石の製造法。
(1) Mn 70% by weight, IU 29.5% by weight, C0
, 5% by weight of magnet material was melted and cast, pulverized into powder, cold-opened into a predetermined shape, and then CO gas partial pressure 1-1.
1. A method for producing a cuboidal Mn-A No. 0 magnet, which comprises sintering in a reduced pressure atmosphere of 0.00 Torr, densifying it by hot isostatic pressing, and then subjecting it to solution heat treatment. (2. In claim (1), 1000 to
A method for producing an isotropic Mn-AA-C magnet, characterized by performing hot isostatic pressing at 1100°C and solution treatment at the same time.
JP11681181A 1981-07-25 1981-07-25 Manufacture of isotropic mn-al-c magnet Pending JPS5819409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11681181A JPS5819409A (en) 1981-07-25 1981-07-25 Manufacture of isotropic mn-al-c magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11681181A JPS5819409A (en) 1981-07-25 1981-07-25 Manufacture of isotropic mn-al-c magnet

Publications (1)

Publication Number Publication Date
JPS5819409A true JPS5819409A (en) 1983-02-04

Family

ID=14696230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11681181A Pending JPS5819409A (en) 1981-07-25 1981-07-25 Manufacture of isotropic mn-al-c magnet

Country Status (1)

Country Link
JP (1) JPS5819409A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6029406A (en) * 1983-07-27 1985-02-14 Tohoku Metal Ind Ltd Manufacture of sintered body
JPS6130328A (en) * 1984-07-24 1986-02-12 Toyo Rikagaku Kenkyusho:Kk Method and device for mirror surface like polishing stainless steel
JPH03206396A (en) * 1989-12-30 1991-09-09 Tadahiro Omi Pump

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6029406A (en) * 1983-07-27 1985-02-14 Tohoku Metal Ind Ltd Manufacture of sintered body
JPS6130328A (en) * 1984-07-24 1986-02-12 Toyo Rikagaku Kenkyusho:Kk Method and device for mirror surface like polishing stainless steel
JPH03206396A (en) * 1989-12-30 1991-09-09 Tadahiro Omi Pump

Similar Documents

Publication Publication Date Title
US4101348A (en) Process for preparing hot-pressed sintered alloys
CN108588471B (en) One-step synthesis method of copper-based electrode material containing nano zirconium carbide ceramic particles
JP5265867B2 (en) Method for producing a high density semi-finished product or component
JPH0775205B2 (en) Method for producing Fe-P alloy soft magnetic sintered body
CN112453403A (en) Preparation method of low-cost powder metallurgy aluminum lithium alloy
JPS5819409A (en) Manufacture of isotropic mn-al-c magnet
CN110983152A (en) Fe-Mn-Si-Cr-Ni based shape memory alloy and preparation method thereof
JPS5858241A (en) Manufacture of isotropic mn-al-c magnet
JPS62287041A (en) Production of high-alloy steel sintered material
JPS61295342A (en) Manufacture of permanent magnet alloy
JPS5837102A (en) Production of powder parts
JP2009013471A (en) Ru TARGET MATERIAL, AND METHOD FOR PRODUCING THE SAME
JPS61229314A (en) Target material and manufacture thereof
JP3106196B1 (en) Method for producing TiAl-Ti based alloy sintered joint
JP3069115B2 (en) Manufacturing method of ceramic dispersion strengthened copper
JPS6350469A (en) Manufacture of alloy target for sputtering
JPH08183661A (en) Production of silicon carbide sintered compact
JPS5858706A (en) Manufacture of mn-al-c family permanent magnet
JPS5923803A (en) Production of magnet consisting of rare earth element
JPS62284027A (en) Manufacture of rare-earth magnet
JPH03229832A (en) Manufacture of nb-al intermetallic compound
JPH0478699B2 (en)
JPS59190338A (en) Manufacture of alnico type permanent magnet alloy
JP2945115B2 (en) Method for producing large sintered body made of iron-based metal powder
JPH05263177A (en) Manufacture of nb3al intermetallic compound base alloy having a15 type crystalline structure