JPS5923803A - Production of magnet consisting of rare earth element - Google Patents

Production of magnet consisting of rare earth element

Info

Publication number
JPS5923803A
JPS5923803A JP13207982A JP13207982A JPS5923803A JP S5923803 A JPS5923803 A JP S5923803A JP 13207982 A JP13207982 A JP 13207982A JP 13207982 A JP13207982 A JP 13207982A JP S5923803 A JPS5923803 A JP S5923803A
Authority
JP
Japan
Prior art keywords
sintering
rare earth
sintered
alloy
earth element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13207982A
Other languages
Japanese (ja)
Inventor
Tadakuni Sato
忠邦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tohoku Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Metal Industries Ltd filed Critical Tohoku Metal Industries Ltd
Priority to JP13207982A priority Critical patent/JPS5923803A/en
Publication of JPS5923803A publication Critical patent/JPS5923803A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • C22C1/0441Alloys based on intermetallic compounds of the type rare earth - Co, Ni

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To produce a permanent magnet having high residual magnetic flux density and high max. energy product in production of a magnet alloy consisting of a rare earth element and a transition element by sintering the alloy dividedly in two stages: low pressure and high pressure. CONSTITUTION:An R2T17 magnet alloy (R: yttrium, rare earth element, T: transition metal), for example, Sm-Co permanent magnet, is first sintered in a non-oxidative atmosphere kept at 10<-3>-760Torr until the voids among the particles of a molded body turn into open cells. The variance of magnetic characteristics is reduced by the above-mentioned sintering. The alloy is then sintered in an inert atmosphere kept at 760-1520Torr to prevent the incorporation of oxidative gas such as air and to provide >= about 8.2 (gr/cc) sintered density in the final. The permanent magnet material having high performance is thus obtd.

Description

【発明の詳細な説明】 本発明はSm −Co永久磁石を代表とする。希土類金
属(R)と遷移金属(T)とからなるR2T17系金属
間−化合物磁石の製造方法であって、特に粉末冶金法に
よって製造されるこの種磁石の特性の改善に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention is typified by an Sm-Co permanent magnet. The present invention relates to a method for manufacturing an R2T17 intermetallic compound magnet made of a rare earth metal (R) and a transition metal (T), and particularly relates to improving the characteristics of this type of magnet manufactured by powder metallurgy.

従来のSm −Co系の永久磁石としては金属間化合物
SmCo5 (以下1−5系と呼ぶ)が主流であったが
、近年これより磁石特性が改善されたものとして金属間
化合物5m2Co17(以下2−17系と呼ぶ)が実用
化されつつある。
The mainstream of conventional Sm-Co-based permanent magnets has been the intermetallic compound SmCo5 (hereinafter referred to as 1-5 system), but in recent years, the intermetallic compound 5m2Co17 (hereinafter referred to as 2-5 system) has been improved in magnetic properties. 17 series) is being put into practical use.

実用的には、この2−17系においてCoの一部をFe
 、 Co 、 Cu + Ti + Zr等の組み合
わせたもので置換し製造されている。そしてこれらのS
m −Co永久磁石は粉末冶金法によって製造されてい
る。一般に本系磁石は、溶解、粉砕、磁場中配向、圧縮
成型、焼結溶体化、熱処理(時効)の製造工程によシ製
造される。溶解はレビテーゾヨン、アーク、高周波等の
手段により不活性雰囲気中で行なう。粉砕は粗粉砕と微
粉砕にわけられるが、粗粉砕は鉄乳鉢やブラウンミルで
行なわれ。
Practically, in this 2-17 system, a part of Co is replaced with Fe.
, Co, Cu + Ti + Zr and the like. and these S
m-Co permanent magnets are manufactured by powder metallurgy. In general, this type of magnet is manufactured through the following manufacturing processes: melting, crushing, orientation in a magnetic field, compression molding, sintering solution, and heat treatment (aging). The melting is carried out in an inert atmosphere by means such as Levitation, arc, radio frequency, etc. Grinding can be divided into coarse grinding and fine grinding, and coarse grinding is done in an iron mortar or brown mill.

微粉砕はボール・ミル、振動ミル、ジェットミル等で行
われる。磁場中配向および圧縮成型は金型を用いる場合
は同時に行なうのが通例である。
Fine pulverization is performed using a ball mill, vibration mill, jet mill, etc. Orientation in a magnetic field and compression molding are usually performed at the same time when a mold is used.

配向に必要な磁場は8〜20 KOeて成型圧力は2〜
l Oton/に7712である。焼結は非酸化性雰囲
気即ちfi、r 、 He等の不活性雰囲気ないし真空
中で1180〜1250℃の温度範囲で行なう。溶体化
は一般に焼結と同時に進行するが、もし必要であれば両
工程を分離するととも可能である。
The magnetic field required for orientation is 8-20 KOe and the molding pressure is 2-20 KOe.
It is 7712 in l Oton/. The sintering is carried out in a non-oxidizing atmosphere, that is, an inert atmosphere such as fi, r, He, etc. or in vacuum at a temperature in the range of 1180 to 1250°C. Solution treatment generally proceeds simultaneously with sintering, but it is possible to separate both steps if necessary.

しかしながら、上記従来製法で得られた永久磁套は履歴
曲線の第2象限の角型が悪く、高いエネルギー積が得ら
れない欠点があった。
However, the permanent magnetic mantle obtained by the above-mentioned conventional manufacturing method has a disadvantage that the square shape of the second quadrant of the hysteresis curve is poor, and a high energy product cannot be obtained.

高性能の磁石を得るには、高Br 、高Heの月別であ
ることが必要となるが、高Brであることが第1条件と
なる。
In order to obtain a high-performance magnet, it is necessary to have high Br and high He monthly, and high Br is the first condition.

高いBrを得るには、飽和磁化、結晶粒の配向性、密度
等を高くする必要がある。
In order to obtain high Br, it is necessary to increase saturation magnetization, crystal grain orientation, density, etc.

本発明の目的は上記従来技術における履歴曲線の第2象
限の角型を改良し、ぎらに高いエネルギー積を持つ永久
磁石月の製法を提供し、2−17系希土類コバルト磁石
の焼結密度を向上させることにより高性能化を行なうも
ので、ある。上記目的。
The purpose of the present invention is to improve the rectangular shape of the second quadrant of the hysteresis curve in the above-mentioned prior art, provide a method for manufacturing a permanent magnet with an extremely high energy product, and improve the sintered density of a 2-17 rare earth cobalt magnet. The performance is improved by improving the performance. The above purpose.

を達成するだめ2本発明は焼結工程で、粉末間の空隙が
閉孔になるまで10〜760Torr  の非酸化性雰
囲気中で焼結した後に、続いて760〜1520Tor
rの不活性ガス雰囲気で焼結すること′を特徴とする。
To achieve this, the present invention involves a sintering process in which the powder is sintered in a non-oxidizing atmosphere of 10 to 760 Torr until the voids between the powders become closed, and then sintered in a non-oxidizing atmosphere of 760 to 1520 Torr.
It is characterized by sintering in an inert gas atmosphere of r.

なお、焼結初期における焼結雰囲気を10 〜760T
orr (1気圧)としたのは高価々真空機器を必要と
しないこと、高真空におけるSm等の蒸発による組成の
バラツキに起因する磁石特性の・ぐラツキを少なくでき
ること、といつだ工業上有益な事柄のためである。又後
半の焼結雰囲気を760〜1520Torrとしたのは
外気よりも圧力を高くすることにより事故による空気等
の酸化性のガスの混入が防止できること、容気内のju
l−力が1520Torrを越えると圧力容器とし←設
備が高価になること、といった工業上の有益さを考慮し
ただめである。
In addition, the sintering atmosphere at the initial stage of sintering is 10 to 760T.
orr (1 atm) because it eliminates the need for expensive vacuum equipment and reduces fluctuations in magnetic properties caused by compositional variations due to evaporation of Sm, etc. in high vacuum. It's for the sake of things. The reason for setting the sintering atmosphere in the second half at 760 to 1520 Torr is that by increasing the pressure higher than the outside air, it is possible to prevent the mixing of oxidizing gases such as air due to accidents, and to reduce the
This is not possible considering industrial advantages, such as if the l-force exceeds 1520 Torr, the equipment would be expensive.

希土類コバルト磁石の焼結は一般に不活(Ilガスの雰
囲気中で行なわれているが、■−5系ばij’7iい焼
結密度奪得ることは容5易であるか、2−17系は困難
であり、焼結温度を高くしていってもf15%程度止シ
であり、しかもHeが低下してくるkめに磁石特性が低
下してくる。そのだめHcを高く保った状態で高密度の
焼結体を得ることが重要となる。
Sintering of rare earth cobalt magnets is generally carried out in an inert (Il gas) atmosphere, but it is easy to obtain a higher sintered density in the case of ■-5 series, or in the case of 2-17 series. Even if the sintering temperature is increased, the sintering temperature is only about 15%, and as the He decreases, the magnetic properties deteriorate. It is important to obtain a sintered body with high density.

本発明の焼結時の焼結温度プログラムと雰囲気月力との
関係を第1図に示す。同図に示されるように、本発明で
は焼結の初期過程(時間L+ ’lて)てバカを1気月
以下とし、焼結が促進して閉孔となっ/・−状態で1〜
2気圧の正の圧力を加えて行うものである。初期段階て
の1気圧以下の負圧の雰囲気とすることは、プレス成型
体での粒子間に生じている空隙からの気?包を脱泡しつ
つ焼結をさせるもので+ J、llj #i’iが進み
閉孔となるところまで負圧(目:、;、HりらJする。
FIG. 1 shows the relationship between the sintering temperature program and the atmospheric pressure during sintering of the present invention. As shown in the figure, in the present invention, the initial stage of sintering (time L + 'l) is made to have a void of 1 month or less, and sintering is accelerated and the pores become closed.
This is done by applying a positive pressure of 2 atmospheres. Creating an atmosphere of negative pressure of 1 atm or less at the initial stage prevents air from escaping from the voids between particles in the press-molded product. This is to sinter the capsule while defoaming it, and apply negative pressure until the pores are closed.

この状態て(fi、 7.8〜8.0 (9r/cc 
)の孔度をiU、この後1〜2気圧の正圧力に切り換;
ξることに」、す、さらに強制的に気孔を消滅させる」
、うにし、最終的には8.2 (、!9r/cc) j
ン、土の焼結孔)I’L?し1!Iるものである。
In this state (fi, 7.8~8.0 (9r/cc
) pore size iU, then switch to positive pressure of 1 to 2 atm;
ξIn addition, s-even more forcefully eliminates the stomata.''
, sea urchin, finally 8.2 (,!9r/cc) j
I'L? Shi1! It is something that I do.

4\発明の牛’i にQ、 (r土、初1υ1段階で負
Jf=とじ、その後11j[とずチことが孔度を高める
ために重要なことで 、1′、QもθJ′1シい状態と
ずitば8.−1 (l gr/ccす、土の密度を得
ることを可能としだものである。
4\ Inventive cow'i Q, (r soil, negative Jf = binding at the first 1υ1 stage, then 11j [Tozuchi is important to increase the porosity, 1', Q also θJ'1 This makes it possible to obtain the density of the soil in a soil condition of 8.-1 (l gr/cc).

以下2本発明の実施例について説明する。Two embodiments of the present invention will be described below.

実施例 I Smが26wt%、 Cuが9 wt%、 Feが15
.5wL%。
Example I Sm is 26 wt%, Cu is 9 wt%, Fe is 15
.. 5wL%.

Zrが1.5wt%、 Tiが0.1wt%、 Co残
となる様にアルゴン雰囲気中で、面周波加熱により主成
分といて平均粒径約4μmに微粉砕しプこ。この粉末を
10 KOeの磁界中1 tqn、4m2の圧力で成形
し/ζ。月粉体を1210℃で焼結する際に、圧粉体の
粉末間の空隙が閉孔になる丑での焼結初jυ1の過程で
、焼結雰囲気を760 Torr以下の非酸化性雰囲気
即ち不活性ガス雰囲気あるいは3!4;空とし、その後
Arガスを封入し760−1.520 Torrで11
Rj間保持して焼結した。この焼結体を]]80’Cて
] lllj間溶体化処工甲をした後、800℃て1 
[I+i間熱処J’lllを行fj:い。
The main components were pulverized to an average particle diameter of about 4 μm by surface frequency heating in an argon atmosphere so that Zr was 1.5 wt%, Ti was 0.1 wt%, and Co remained. This powder was compacted at a pressure of 1 tqn and 4 m2 in a magnetic field of 10 KOe/ζ. When the moon powder is sintered at 1210°C, the sintering atmosphere is changed to a non-oxidizing atmosphere of 760 Torr or less during the initial sintering process, in which the voids between the powders in the green compact become closed pores. Inert gas atmosphere or 3!4: Empty, then fill with Ar gas and set at 760-1.520 Torr for 11
Sintering was carried out by holding for Rj. This sintered body was subjected to solution treatment at 80'C, and then heated at 800C for 1
[Run heat treatment J'llll between I+i fj:I.

5℃/分Jン、下の冷却速度て400 U tて伶)I
I Lブこ。
5°C/min, cooling rate below 400 Ut) I
IL Buko.

この試料の磁石特性を第2(スに示す。この第2図2で
は9通常行わ)′シている不活性雰囲気中での焼X1′
1は、焼結初期の雰囲気圧760Toorに相当する。
The magnetic properties of this sample are shown in Figure 2.
1 corresponds to an atmospheric pressure of 760 Torr at the initial stage of sintering.

第2図より明らかな様に焼結の初期段階で焼結)5−囲
気の圧力か低いほど密度が高く、密度が高いということ
は粒子間の空隙が閉孔になり、この結果残留磁束密度B
rが改善され、最大エネルギー積(1■)IllaX 
 も大きくなり、磁石特性の向上につながる。
As is clear from Figure 2, sintering occurs at the initial stage of sintering) 5-The lower the surrounding pressure, the higher the density, and high density means that the gaps between particles become closed, resulting in residual magnetic flux density B
r has been improved and the maximum energy product (1■) IllaX
becomes larger, leading to improved magnetic properties.

本発明を以上詳しく説明したが、 R2T17系磁石合
金を粉末冶金法によって製造するにあたって。
Although the present invention has been described in detail above, the following is a description of the production of an R2T17 magnet alloy using a powder metallurgy method.

焼結工程で、粉末間の空隙が閉孔になるまで10’〜7
6(l Torrの雰囲気圧中で焼結した後に、焼結雰
囲気を7(io−1520Torrに加圧することを特
徴とする希土類コバルト磁石の製造方法をとることによ
り密度を真密度に近づけさせ従来得られなかった高残留
磁束密度、高最大エネルギー積を得るこトヲ′iJ能k
cしR2Co 17金属間化合物を主体とする優れた永
久磁石4J料を開発したものである。
In the sintering process, 10'~7' until the voids between the powders become closed pores.
By employing a method for manufacturing rare earth cobalt magnets characterized by sintering in an atmospheric pressure of 6 (1 Torr) and then pressurizing the sintering atmosphere to 7 (io-1520 Torr), the density can be brought closer to the true density than conventionally obtained. It is possible to obtain a high residual magnetic flux density and a high maximum energy product, which was previously not possible.
We have developed an excellent permanent magnet 4J material mainly consisting of R2Co17 intermetallic compound.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による焼結雰囲気圧と焼結温度の時間的
変化を示すグラフ、第2図は2本発明の実施例の磁気特
性と焼結初期雰囲気圧との関係を示す図である。
FIG. 1 is a graph showing temporal changes in sintering atmospheric pressure and sintering temperature according to the present invention, and FIG. 2 is a diagram showing the relationship between magnetic properties and initial sintering atmospheric pressure of two embodiments of the present invention. .

Claims (1)

【特許請求の範囲】[Claims] JR2T17系磁石合金(ここでRはイツトリウムおよ
び希土類元素、Tは遷移元素を表わす。)を粉末冶金法
によって製造する方法において、焼結処理を、まず10
 〜760Torrの非酸化性雰囲気で成型体の粒子間
の空隙が閉孔になる迄行ない、かつ続いて760〜15
20Torrの不活性雰囲気中で行なうことを特徴とす
る希土類磁石の製造方法。
In a method for manufacturing a JR2T17-based magnetic alloy (where R represents yttrium and a rare earth element, and T represents a transition element) by a powder metallurgy method, a sintering process is first carried out for 10
~ 760 Torr in a non-oxidizing atmosphere until the voids between the particles of the molded body become closed, and then 760 ~ 15 Torr.
A method for producing a rare earth magnet, characterized in that it is carried out in an inert atmosphere of 20 Torr.
JP13207982A 1982-07-30 1982-07-30 Production of magnet consisting of rare earth element Pending JPS5923803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13207982A JPS5923803A (en) 1982-07-30 1982-07-30 Production of magnet consisting of rare earth element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13207982A JPS5923803A (en) 1982-07-30 1982-07-30 Production of magnet consisting of rare earth element

Publications (1)

Publication Number Publication Date
JPS5923803A true JPS5923803A (en) 1984-02-07

Family

ID=15073012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13207982A Pending JPS5923803A (en) 1982-07-30 1982-07-30 Production of magnet consisting of rare earth element

Country Status (1)

Country Link
JP (1) JPS5923803A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6184342A (en) * 1984-09-07 1986-04-28 Tohoku Metal Ind Ltd Manufacture of rare earth metal-base magnet
US20130241681A1 (en) * 2012-03-15 2013-09-19 Kabushiki Kaisha Toshiba Permanent magnet, and motor and power generator using the same
US20130241682A1 (en) * 2012-03-15 2013-09-19 Kabushiki Kaisha Toshiba Permanent magnet, and motor and power generator using the same
US20210249165A1 (en) * 2020-02-06 2021-08-12 Tokin Corporation Rare-earth cobalt permanent magnet, manufacturing method therefor, and device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5471034A (en) * 1977-11-16 1979-06-07 Seiko Instr & Electronics Ltd Method of producing rare earth magnet
JPS55164048A (en) * 1979-06-08 1980-12-20 Matsushita Electric Ind Co Ltd Production of intermetallic compound ferromagnetic body
JPS5776102A (en) * 1980-10-28 1982-05-13 Seiko Instr & Electronics Ltd Manufacture of rare earth metal magnet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5471034A (en) * 1977-11-16 1979-06-07 Seiko Instr & Electronics Ltd Method of producing rare earth magnet
JPS55164048A (en) * 1979-06-08 1980-12-20 Matsushita Electric Ind Co Ltd Production of intermetallic compound ferromagnetic body
JPS5776102A (en) * 1980-10-28 1982-05-13 Seiko Instr & Electronics Ltd Manufacture of rare earth metal magnet

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6184342A (en) * 1984-09-07 1986-04-28 Tohoku Metal Ind Ltd Manufacture of rare earth metal-base magnet
US20130241681A1 (en) * 2012-03-15 2013-09-19 Kabushiki Kaisha Toshiba Permanent magnet, and motor and power generator using the same
US20130241682A1 (en) * 2012-03-15 2013-09-19 Kabushiki Kaisha Toshiba Permanent magnet, and motor and power generator using the same
US10573437B2 (en) * 2012-03-15 2020-02-25 Kabushiki Kaisha Toshiba Permanent magnet, and motor and power generator using the same
US10991491B2 (en) * 2012-03-15 2021-04-27 Kabushiki Kaisha Toshiba Permanent magnet, and motor and power generator using the same
US20210249165A1 (en) * 2020-02-06 2021-08-12 Tokin Corporation Rare-earth cobalt permanent magnet, manufacturing method therefor, and device

Similar Documents

Publication Publication Date Title
US4801340A (en) Method for manufacturing permanent magnets
WO2013108830A1 (en) Method for producing r-t-b sintered magnet
JP3865180B2 (en) Heat-resistant rare earth alloy anisotropic magnet powder
JPS6181606A (en) Preparation of rare earth magnet
JPH01219143A (en) Sintered permanent magnet material and its production
JPS6181603A (en) Preparation of rare earth magnet
JPS5923803A (en) Production of magnet consisting of rare earth element
JPS6181607A (en) Preparation of rare earth magnet
JPH0345884B2 (en)
JPS5848608A (en) Production of permanent magnet of rare earths
JPS6350444A (en) Manufacture of nd-fe-b sintered alloy magnet
JPH0344405B2 (en)
JPS62284002A (en) Magnetic alloy powder consisting of rare earth element
JPS61136656A (en) Production of sintered material for permanent magnet
JP2715378B2 (en) Method for producing Nd-Fe-B based sintered magnet
JPS61140108A (en) Manufacture of permanent magnet
JPS58186906A (en) Permanent magnet and preparation thereof
JP2874392B2 (en) Production method of rare earth cobalt 1-5 permanent magnet alloy
JPS61139638A (en) Manufacture of sintered permanent magnet material
JPS61147504A (en) Rare earth magnet
JPH06163226A (en) Method of manufacturing rare earth element magnet
JPS6236366B2 (en)
JPS6184342A (en) Manufacture of rare earth metal-base magnet
JPS5848607A (en) Production of rare earth cobalt magnet
JPS6238841B2 (en)