JPS58186906A - Permanent magnet and preparation thereof - Google Patents

Permanent magnet and preparation thereof

Info

Publication number
JPS58186906A
JPS58186906A JP57068640A JP6864082A JPS58186906A JP S58186906 A JPS58186906 A JP S58186906A JP 57068640 A JP57068640 A JP 57068640A JP 6864082 A JP6864082 A JP 6864082A JP S58186906 A JPS58186906 A JP S58186906A
Authority
JP
Japan
Prior art keywords
phase
permanent magnet
temperature
rare earth
magnetic alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57068640A
Other languages
Japanese (ja)
Other versions
JPH058562B2 (en
Inventor
Masashi Sahashi
政司 佐橋
Tetsuhiko Mizoguchi
徹彦 溝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57068640A priority Critical patent/JPS58186906A/en
Publication of JPS58186906A publication Critical patent/JPS58186906A/en
Publication of JPH058562B2 publication Critical patent/JPH058562B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5

Abstract

PURPOSE:To obtain composition of metal elements forming a magnet and preparation steps for the same, particularly a rare earth-cobalt system permanent magnet which has excellent magnetic characteristic and a high coercive force and preparation of the same by the quick cooling method for efficiently lowering a high temperature single phase up to a room temperature and combination of such methods. CONSTITUTION:A magnetic alloy having such a composition, in weight percentage, that 20-28% R (one or two kinds of rare earth elements), 1-9% Cu, 14- 40% Fe, 0.5-7% M (one or two kinds selected from Ti, Zr, Hf, V, Nb, Ta, Cr, Mn, Mo, W, Si, Al), remainder mainly consisting of Co and containing, as the main elements, an intermetallic compound having the crystal structure of TbCu7 type or Th2Ni17 or mixed crystal structure of them, is fused and the fused said magnetic alloy is quickly cooled to a temperature lower than the room temperature at a cooling rate of 100 deg.C/sec or higher. Thereafter, it is subjected to an aging process for 0.1-500hr within the temperature area of 350- 900 deg.C. As a rare earth element indicated by R, Sm, Ce, Pr, Se, Y, La, Nd, Pm, Eu, Gd, Dy, Ho, Er, Yb, Lu, Tb and Tm etc. can be considered.

Description

【発明の詳細な説明】 本発明は、希土類−コバルト系永久磁石及びそのm合方
法に関し、更に詳しくは、磁気特性に優れた、とりわけ
保磁力(lHe)の大きい希土類−コバルト系永久磁石
及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a rare earth-cobalt permanent magnet and a method for combining the same, and more particularly to a rare earth-cobalt permanent magnet with excellent magnetic properties, particularly a large coercive force (lHe), and a method thereof. Regarding the manufacturing method.

〔発明の技術的背景及びその間融点〕[Technical background of the invention and its melting point]

従来8mt Cot?糸永久磁石としては、各種組成の
ものが提案されているが、(’oの一部をCut )’
e及びM (Ti、 Zr+ Hft Vt Nbe 
Ta、 Crs Mn、 Mol w。
Conventional 8mt Cot? Various compositions of thread permanent magnets have been proposed, but ('Cut part of o)'
e and M (Ti, Zr+ Hft Vt Nbe
Ta, Crs Mn, Mol w.

Si、 AI)で置換することKより保磁力(IHe 
’)、残I&磁束密度(Br)および最大エネルギー積
((BH)max)ある≠は耐酸化性の改曽が図られて
いる。本発明は、このようなgm、 (Co、 Cu、
 Fe。
By replacing K with Si, AI), the coercive force (IHe
'), residual I&magnetic flux density (Br), and maximum energy product ((BH)max) ≠ are intended to improve oxidation resistance. The present invention provides such gm, (Co, Cu,
Fe.

M)、i系の永久磁石の改良に関するものである。前記
の特性のうちでも(BH)maw及びBrが、モーター
等の用途においては特に重要で、可能な限り大きいこと
が望まれるが、IHcがある一定値以上ないと(BE)
 max 、  Brを高めることは困難である。
M), relates to the improvement of i-based permanent magnets. Among the above characteristics, (BH) maw and Br are particularly important in applications such as motors, and are desired to be as large as possible, but if IHc does not exceed a certain value (BE)
It is difficult to increase max and Br.

従って(13H)max、Brの大龜−永久磁石を得る
ためK if 、IHcを大きくすることも必要となる
Therefore, it is also necessary to increase Kif and IHc in order to obtain a large-sized permanent magnet of (13H)max and Br.

ところで、8rn、 ((’o、 Cut Fce M
)ty系の磁石では、Fe含量を増したり、Cu含量を
減らすと残留磁束密度を増加させ得ることが知られてい
る。しかし、Fe含量を増したり、Cu含量を減らすと
保磁力が低下して来るため、単純’KFe含量を増しC
u含量を減らすととKよって残留磁束密度や最大エネル
ギー積の向上を図ることはできない。そのため、従来の
am、 (Co、 Cu、 Fe、 M)ty Ikの
磁石は、保磁力をある値以上K1m持しながら、残留磁
束密度を可能な限り大きくすることを目的としてその組
成が決定された。例えば、特公昭55−15096号公
報記載のSml (Co+ Cu、 F@* M )I
y系の磁石では、Cu5〜20重量%、F・2〜ls重
量弧である。また特開昭52−109191号公報記載
の磁石では、Cu9〜13重量%、Fe3〜12重量%
である。これらの組成は、Cu含量及びFll含量の変
動に伴って起る、残留磁束密度と保持力の変化を妥協的
に適合させた結果であるから、必ずしも十分なものとF
i台えない鴨のであった。
By the way, 8rn, (('o, Cut Fce M
) It is known that in ty-based magnets, the residual magnetic flux density can be increased by increasing the Fe content or decreasing the Cu content. However, if the Fe content is increased or the Cu content is decreased, the coercive force decreases, so simply increasing the
If the u content is reduced, it is impossible to improve the residual magnetic flux density or the maximum energy product. Therefore, the composition of conventional am, (Co, Cu, Fe, M)ty Ik magnets is determined with the aim of increasing the residual magnetic flux density as much as possible while maintaining a coercive force of K1m above a certain value. Ta. For example, Sml (Co+Cu, F@*M)I described in Japanese Patent Publication No. 55-15096
For y-based magnets, Cu is 5 to 20% by weight and F.2 to ls weight arc. Moreover, in the magnet described in JP-A-52-109191, Cu9 to 13% by weight and Fe 3 to 12% by weight
It is. These compositions are the result of compromising adaptation to the changes in residual magnetic flux density and coercive force that occur with variations in Cu content and Fll content, so they are not necessarily sufficient F.
It was a duck that couldn't stand.

さて、希土類系永久磁石、とりわけgmt Co、y系
永久磁石においては、その磁気特性を向上させるために
、希土類元素以外の元素とし、てコバルト(Co )の
外に−(Cu)、鉄(li’e )、+*−ウム(Ti
 )、ジルコニウム(Zr )、ハフニウム(Hf)、
二1プ(Nb)、マンガン(Mn )などを組成成分と
する磁性合金に、1000℃以上融点以下の高温域で溶
体化処理を施していわゆる2−17型単相状−とし、し
かる後に所定の時効処理を施して上記した2−17m相
の中に1−5型相と呼ばれるbm* Cu  K富んだ
相を微細に析出させるという方法が知られている。
Now, in rare earth-based permanent magnets, especially gmt Co, y-based permanent magnets, in order to improve their magnetic properties, elements other than rare earth elements such as -(Cu) and iron (Li) are used in addition to cobalt (Co). 'e), +*-um (Ti
), zirconium (Zr), hafnium (Hf),
A magnetic alloy containing Nb (Nb), Mn (Mn), etc. is subjected to solution treatment at a high temperature range of 1000°C or higher and lower than the melting point to form a so-called 2-17 type single phase. A method is known in which a bm*CuK-rich phase called a 1-5 type phase is finely precipitated in the 2-17m phase by performing an aging treatment.

一方、永久磁石の磁気特性、とりわけIHcを更に向上
せしめるために#i、飽和磁束密度(Bl)の増大に有
効なFeの組成比を高めることが必要である。
On the other hand, in order to further improve the magnetic properties of the permanent magnet, especially IHc, it is necessary to increase the composition ratio of Fe, which is effective in increasing #i and saturation magnetic flux density (Bl).

しかしながら、磁性合金中のF・濃度が大きくなると、
上記した高温域における溶体化処理温度の範囲が極めて
狭小となり、従来の一造方法、とりわけ、磁性合金を溶
融状態から急冷するときに適用される空冷、水冷、若し
くIIi強制ガス冷却による冷却速度では上記した高温
単−相を過冷却することが困難となる。その結果、好適
な磁気特性、とシわけ大きなIlcを得ることができな
い。
However, when the F concentration in the magnetic alloy increases,
The range of solution treatment temperatures in the above-mentioned high-temperature range is extremely narrow, and the cooling rate by conventional one-manufacturing methods, especially air cooling, water cooling, or IIi forced gas cooling, which is applied when rapidly cooling magnetic alloys from a molten state. In this case, it becomes difficult to supercool the above-mentioned high-temperature single phase. As a result, it is not possible to obtain suitable magnetic properties and a particularly large Ilc.

また、高周波誘導加熱手段を用−た溶解法で磁性合金を
^製し、ついで該磁性合金を粉砕して微粉末とした後、
該微粉末を磁場中で成形してから得られた成形体を焼結
し、その後、溶体住処s4び時効処理を施すと−う製造
方法にあっては、成形体を焼結した後、ある−は焼結と
同時に溶体化処理するために適用される冷却速度は該成
形体の耐熱衝撃性をも勘案して決定されなければならな
いという間−も生ずる。
In addition, a magnetic alloy is produced by a melting method using high-frequency induction heating means, and then the magnetic alloy is pulverized into a fine powder.
In a manufacturing method in which the fine powder is molded in a magnetic field, the resulting molded body is sintered, and then subjected to solution treatment and aging treatment, after sintering the molded body, a certain amount of Another problem arises in that the cooling rate applied for solution treatment at the same time as sintering must be determined taking into account the thermal shock resistance of the compact.

〔発明の目的〕[Purpose of the invention]

本発明の目的社、磁気特性に優れた、とりわけ保磁力(
Inc )の大きい希土類−コバルト系永久磁石及びそ
の製造方法を提供することにある。
The object of the present invention is to provide a magnetic material with excellent magnetic properties, especially coercive force (
Inc.) provides a large rare earth-cobalt permanent magnet and a method for manufacturing the same.

〔発明の概臀〕[Summary of the invention]

本発明者らは、2−17型磁石の保磁力機構け8rrC
ua −Sm2 C0tt  [に元系吠S図における
スピノーダル分解に依拠し、しかも、スピノーダル分解
前の磁性合金相は単相状態でなければならないという事
実を基礎にして、前記した間融点を解決すべく鋭意研究
を真ね、単相状態に関し詳細な検討を加えたところ、2
−17型相の該単相状1iII′1合金の組成及び温度
によって3種類の異なる結晶構造、すなわち、’l’b
Cu、型六方晶、Tht Nl ty型六方晶及びTh
、 Zn1.型斜方晶をとり、しかもこれらの結晶構造
のうちTbCut [!1相及びTht Ni□型相を
高温状態から少くともスピノーダル分解温度以下の温度
にまで単相状態で引き抜き出すと、IHcの大きい優れ
た磁気特性が得られるという新たな知見を得、本発明方
法を完成するに到った。
The present inventors have developed a coercive force mechanism of a 2-17 type magnet with an 8rrC
Based on the spinodal decomposition in the S-diagram, and the fact that the magnetic alloy phase must be in a single phase state before the spinodal decomposition, the above-mentioned intermelting point can be solved. After extensive research and detailed consideration of the single-phase state, we found that 2
-17 type phase, the single-phase 1iII'1 alloy has three different crystal structures depending on the composition and temperature, namely 'l'b
Cu, type hexagonal, Tht Nl ty type hexagonal and Th
, Zn1. Among these crystal structures, TbCut [! We obtained a new finding that excellent magnetic properties with a large IHc can be obtained by extracting the single-phase and Tht Ni□-type phases from a high temperature state to a temperature at least below the spinodal decomposition temperature, and we have developed the method of the present invention. I have reached the point where I have completed the .

まず、本発明者らが見出したSmCu、 −sm、 (
o、y擬二元系の高温状態図の1例を第1図に示す。仁
の状態図から明らかなように1曲線ABCDの右側に存
在する8mt Cot?の固相は、合金組成、温度によ
って、TbCug II相と’l’hm N11f型相
及び’l’ht Znnnn金相することがわかる。ま
た、Cuの組成比が減少する(逆にいえばFeの組成比
が増大する)と、TbCu、金相、Tht N1ty 
金相の範sFi漸次せばまり、ついにはTbCu、 !
!相社消滅して幅の挾いThtNi、マ型相のみが存在
することとなる。
First, SmCu, -sm, (
An example of a high temperature phase diagram of an o,y pseudobinary system is shown in FIG. As is clear from Jin's phase diagram, 8mt Cot exists on the right side of the 1 curve ABCD? It can be seen that the solid phase of is a TbCug II phase, an 'l'hm N11f type phase, and an 'l'ht Znnnn gold phase, depending on the alloy composition and temperature. Moreover, when the composition ratio of Cu decreases (or conversely, the composition ratio of Fe increases), TbCu, gold phase, ThtN1ty
The range of gold phase sFi gradually becomes more and more, and finally TbCu, !
! The Asha disappears, and only the ThtNi and Ma type phases exist.

これらのTbCu7m I  Tht Ni+y II
相はいずれも六方晶(hexagonal )であって
、これらの高温単−相をその11単相処理して少くとも
スピノーダル分解温度以下に引き抜き出すと、得られた
命命の磁気特性は向上する。
These TbCu7m I Tht Ni+y II
All of the phases are hexagonal, and when these high-temperature single phases are extracted to a temperature at least below the spinodal decomposition temperature by processing the 11 single phase, the magnetic properties of the obtained particles are improved.

本発明の効果は、磁石を構成する金属元素の組成と、製
造方法、なかでも高温単−相を室温knで効果的に引き
抜き出す急冷方法との結合によって奏されるものである
The effects of the present invention are achieved by the combination of the composition of the metal elements constituting the magnet and the manufacturing method, especially the rapid cooling method for effectively drawing out the high temperature single phase at room temperature kn.

即ち、本発明の永久磁石は、重量百分率で、20〜28
%のR(希土類元素の1種又韓2種以上を表わす。);
1〜9%のCu;14〜40%のF・;0.5〜7%の
M (Ti、 Zr、 Hfe Vt Nb* Ta、
Cr+Mn、 Mo+ W+ Sit Ajからなる群
より選ばれる1穂又ti2111以上を表わす。);残
部が主としてC。
That is, the permanent magnet of the present invention has a weight percentage of 20 to 28
%R (represents one or more rare earth elements);
1-9% Cu; 14-40% F; 0.5-7% M (Ti, Zr, Hfe Vt Nb* Ta,
Represents one panicle selected from the group consisting of Cr+Mn, Mo+W+Sit Aj, or ti2111 or more. ); the remainder is mainly C.

からなる組成を有し、j’bcuy 114 L <は
7b、 N1tyを又はこれらの型が混在した結晶構造
を有するR1 Co1t金属間化合物を主成分とするこ
とを特徴とし1 また、該永久磁石を構造する本発明方法は、前記組成か
らなる磁性合金を溶融し、つぎに、溶融した該磁性合金
を1000℃/sec以上の冷却速度で室温以下の温度
に急冷し、ついで、350〜900℃の温度域で0.1
〜500時間、時効処理な鍮すことを特徴とするもので
ある。
The permanent magnet is characterized in that it has a composition consisting of j'bcuy 114 L < is 7b, and is mainly composed of an R1 Co1t intermetallic compound having a crystal structure in which N1ty or a mixture of these types. In the method of the present invention, a magnetic alloy having the above composition is melted, and then the melted magnetic alloy is rapidly cooled to a temperature below room temperature at a cooling rate of 1000°C/sec or more, and then heated at a temperature of 350 to 900°C. 0.1 in temperature range
It is characterized by being aged in brass for ~500 hours.

本発明方法に用いる磁性合金において、Rで表わされる
希土類元素としては、8m+ Ce+ Prl 5et
Yt La+ NtL pm、 Eue Gd+ Dy
+ Hot gr、 yb、 Lu+′[b、Ta塾が
あけられる。RFi & Co5t相を形成するための
必腕成分で、その含有量が20重量外未満の場合% I
)1cが増大せず、28重重量上超えると、13rが低
下し、かつ、(BH)mawも増大しないO Cuは、溶体化した磁性合金の高温相(TbCuvll
In the magnetic alloy used in the method of the present invention, the rare earth element represented by R is 8m+ Ce+ Prl 5et
Yt La+ NtL pm, Eue Gd+ Dy
+ Hot gr, yb, Lu+' [b, Ta cram school will be opened. An essential component for forming RFi & Co5t phase, if its content is less than 20% I
)1c does not increase and exceeds 28wt, 13r decreases and (BH)maw also does not increase.
.

The Ni、y六方晶)を安定化する元素であると共
に1スピノ一ダル分解に有効な元素である。Cuの含有
量が1重量襲来溝の場合、The Zn1y ll相を
安定化するため、ll(cは増大せず、9重量憾な超え
るとgrが低下すると共に、(BH) mawも増大し
ない。
It is an element that stabilizes the Ni, y hexagonal crystal) and an element that is effective for 1-spino-unidal decomposition. When the Cu content is 1 weight, it stabilizes the Zn1yll phase, so ll(c does not increase, and if it exceeds 9 weight, gr decreases and (BH) maw also does not increase.

Feは、Brの増大に有効な元素であるが、その含有量
が14重量襲未渦の場合には、Br及び(BH) ma
xの向上が顕著でなく、40重鰍襲を超えるとThtZ
nty II相を安定化するため、IHcが着しく減少
し、かつ、(B)l) maxも減少する。
Fe is an effective element for increasing Br, but when its content is less than 14% by weight, Br and (BH) ma
The improvement in
In order to stabilize the nty II phase, IHc is gradually decreased and (B)l) max is also decreased.

M(前記と同様の意味を有する。)は、Cuと同様に、
磁性合金の高温相(TbCuvll、Tbv N1ty
ll六方晶)を安定化する元素である。Mの含有量が0
.5重量襲来滴の場合は、Th1Zntv型相が混在す
るようになるため、l1icの増大が顕著でなくなり、
7重社%を餡えると、Brが低下すると共に、(BH)
 maxの増大も達成で自ない。
M (has the same meaning as above) is similar to Cu,
High temperature phases of magnetic alloys (TbCuvll, Tbv N1ty
It is an element that stabilizes the hexagonal crystal. M content is 0
.. In the case of a 5-weight attack drop, the Th1Zntv type phase comes to be mixed, so the increase in l1ic becomes less noticeable,
When adding 7jusha%, Br decreases and (BH)
The increase in max is also achieved.

本発明方法では、まず、磁性合金を溶融する。In the method of the present invention, first, a magnetic alloy is melted.

溶融は、前記した元素の粉末又は塊を所定の組成比にな
るように配合し、これを例えば石英容器の中に収容した
後、高周波誘導コイルによる加熱;カーlンや金属発熱
体を用いた抵抗加熱;キセノンランノ等の赤外11によ
る加熱;電子ビームによる加熱;アーク放電による加熱
などの加熱方法を適用して行なわれる。このとき、希土
類元素は酸化又は蒸発し易いので、全体を真空にした後
、系にアルゴンなどの不活性ガスを導入した雰囲気下で
溶融することが必要となる。
Melting is carried out by mixing the powders or lumps of the above-mentioned elements to a predetermined composition ratio, placing the mixture in a quartz container, and then heating it with a high-frequency induction coil; using a curl or a metal heating element. Heating methods such as resistance heating; heating by infrared 11 such as xenon lanthanum; heating by electron beam; and heating by arc discharge are applied. At this time, since rare earth elements are easily oxidized or evaporated, it is necessary to evacuate the entire system and then melt the system in an atmosphere in which an inert gas such as argon is introduced.

さて、本発明方法の第1の特徴社、上記したような方法
で溶融した磁性合金を、急冷して高温相からTbCu7
1JJI相又は’rh、Nt、、 ll相を単相状部で
室温にまで引き抜き出すことである。
Now, the first feature of the method of the present invention is that the magnetic alloy melted by the method described above is rapidly cooled to transform the high temperature phase into TbCu7.
1JJI phase or 'rh, Nt, ll phase is drawn out in a single phase part to room temperature.

第1図の高温状SIi!i1から明らかなように、Fe
組成比か大きくなる(Cu組成比が小さくなる)と、T
bCu、金相、Thx N1ty型相の潜体化処理温度
の範囲は極めて狭くなるので、これらTbCuy #I
i相、Th、 Ni、、金相を単相状・鯵で室温Ktで
引含抜き出すためKは、極めて大きな冷却速度を必要と
する仁とがわかる。
High temperature state SIi in Figure 1! As is clear from i1, Fe
As the composition ratio increases (Cu composition ratio decreases), T
Since the range of temperature for incubation treatment of bCu, gold phase, and Thx N1ty type phase is extremely narrow, these TbCuy #I
Since the i-phase, Th, Ni, and gold phases are extracted as a single phase at room temperature Kt, it is understood that K requires an extremely high cooling rate.

このため、本発明方法にお−ては、上記したTbCu、
 ail相又はTht Nt、、 II相の引き抜きの
ためには、溶融状11Vcある上記−した合金を、高速
で回転する熱伝導性の良好なドラム又は四−ルの回転面
に噴出させる方法、いわゆる溶湯急冷法を適用すること
が好ましい。
Therefore, in the method of the present invention, the above-mentioned TbCu,
In order to extract the ail phase or the ThtNt, II phase, the above-mentioned alloy having a molten state of 11 Vc is jetted onto the rotating surface of a drum or four wheel with good thermal conductivity rotating at high speed, the so-called method. It is preferable to apply a molten metal quenching method.

本発明方法で適用される冷却速度は、通常、1000℃
/sec以上であって、これより小さ一冷却速度の場合
には、凝固偏析が起り、TbCu、 a!I相又はTh
、 Ni、、金相を単相として室温まで引き抜き出すこ
とが困難となって、本発明の目的と合致しなくなる。こ
の冷却速度は、回転体の材質、その回転速度などkよっ
て規定されるが、回転体の材質としては、通常、** 
Ago Cu、 Fs  又はこれらの合金のように熱
伝導性に優れるもの、また回転速度としては100 r
pm以上であることが好壕し―。
The cooling rate applied in the method of the invention is usually 1000°C
/sec or more, and if the cooling rate is less than this, solidification segregation occurs, and TbCu, a! I phase or Th
, Ni, it becomes difficult to extract the gold phase as a single phase to room temperature, which does not meet the purpose of the present invention. This cooling rate is determined by the material of the rotating body, its rotation speed, etc., but the material of the rotating body is usually **
Materials with excellent thermal conductivity such as Ago Cu, Fs, or their alloys, and a rotation speed of 100 r
It is preferable that it is above pm.

このようにして、大部分がTbCuv ji[相又はT
h、 Ni、金相から構成される過冷却合金の薄帯、薄
片(フレーク)、又は粉末が得られる。
In this way, most of the TbCuv ji [phase or T
A thin strip, flake, or powder of a supercooled alloy consisting of h, Ni, and a gold phase is obtained.

本発明方法の第2の特徴は、上記した過冷却合金の**
、薄片、又は粉末に時効処理を施すことである。
The second feature of the method of the present invention is that the supercooled alloy described above is
, flakes, or powders are subjected to aging treatment.

このと色の時効処理温度は、350〜900℃の範囲に
あることが必要で、この範囲を外れると、lHeの増大
が図れない。また、同様の理由から、時効処理時間は、
0,1〜500時間の範囲にあることが必要である。
The aging treatment temperature for this dark brown must be in the range of 350 to 900°C, and if it is out of this range, an increase in lHe cannot be achieved. Also, for the same reason, the aging processing time is
It is necessary that the time is in the range of 0.1 to 500 hours.

本発明における好ましい時効処理の態様の1例としては
、850℃で30分間時効後、以後100℃関−で1時
間、2時間24時間の4段時効処理である。
One example of a preferred aspect of aging treatment in the present invention is aging at 850° C. for 30 minutes, followed by four-stage aging treatment at 100° C. for 1 hour, 2 hours and 24 hours.

このようにして得られた磁性合金を用い、常法にしたが
った方法で本発明にかかる永久磁石が製造される。すな
わち、その方法の1例としては、上記の時効処理を施し
た材料を粉砕して微粉末とし、これを磁気的に配列ぜし
めて加圧成形する方法が好んで適用される。
A permanent magnet according to the present invention is manufactured using the magnetic alloy thus obtained in accordance with a conventional method. That is, as an example of the method, a method is preferably applied in which the above-mentioned aging-treated material is pulverized into a fine powder, which is magnetically arranged and pressure-molded.

例えば、得られた磁性合金を、窒素、アルゴン着しくけ
液体エチルアルコールなどの非酸化性雰囲気中で、酸化
物の生成濠防止しながら、微粉砕する・この場合、磁石
のIHe社時効処理によって形成された合金中の微細組
織に基づくので、この組織が破・壊されない程度に、す
なわち2〜1oμmの粒径になるように粉砕することが
好ましい。粒径が2μm未満の場合には上記した微細組
織が破壊されているのでIHc if減少し%またsl
o*mを超えるとIHc s Brがいずれも減少する
For example, the obtained magnetic alloy is pulverized in a non-oxidizing atmosphere such as nitrogen or argon and liquid ethyl alcohol while preventing the formation of oxides.In this case, the magnet is subjected to IHe aging treatment. Since it is based on the microstructure in the formed alloy, it is preferable to grind to an extent that this structure is not destroyed, that is, to a particle size of 2 to 1 μm. When the particle size is less than 2 μm, the above-mentioned microstructure is destroyed, so IHcif decreases and % or sl
When exceeding o*m, both IHc s Br decrease.

得られた微粉末に、有機パイン〆−(例え社ナイロンを
メチルアルコールに溶解したもの)をやや湿り気を与え
る程度に添加して混和し、これを非磁性材料(例えば、
しんちゅう)の金癩内に充填し10000〜30000
 Gの磁場をかけて微粉末を磁気的に配列せしめながら
、2〜6ton/−の圧力でプレス成形して所宇形状の
永久磁石とする。
Organic pine paste (for example, nylon dissolved in methyl alcohol) is added and mixed to the obtained fine powder to the extent that it becomes slightly moist, and this is mixed with a non-magnetic material (for example,
10,000 to 30,000 for filling in the golden leprosy of brass
While applying a magnetic field of G to magnetically align the fine powder, press molding is performed at a pressure of 2 to 6 tons/- to form a permanent magnet in the shape of a square.

更に必要に応じて社、上記の永久磁石をプラスチック又
はゴムなどの不透水性の可撓容器内に収納して3〜5t
on/−の圧力で静水圧プレスして三次元的に均一な応
力を負荷することkより、磁気歪みがなく、機械的強度
に優れた永久磁石とすることもできる。
Further, if necessary, store the above permanent magnet in a water-impermeable flexible container such as plastic or rubber, and store it in a container of 3 to 5 tons.
By applying a three-dimensionally uniform stress by isostatic pressing with on/- pressure, a permanent magnet with no magnetostriction and excellent mechanical strength can be obtained.

このようにして得られた永久磁石は、TbCuy ml
もしく !l1Th2 Nil、 Ml又祉これらの願
が混在した結晶構造を有するRICOIマ金属間化合物
を主成分とするものであり、磁気特性、と抄わけ保磁力
に優れた性質を有する。
The permanent magnet thus obtained is TbCuy ml
Maybe! The main component is a RICOI intermetallic compound having a crystal structure in which these properties are mixed, and it has excellent magnetic properties and especially coercive force.

〔発明の実施例〕[Embodiments of the invention]

実施例1〜13 表に示す実施例1〜13の組成から成る合金の材料を先
端にノズルを備えた石英容器中に入れ、高周波誘導加熱
法によって、アルゴン雰囲気中で溶融した。
Examples 1 to 13 Alloy materials having the compositions of Examples 1 to 13 shown in the table were placed in a quartz container equipped with a nozzle at the tip, and melted in an argon atmosphere by high frequency induction heating.

融点より50℃高い温度に保持し、溶融合金を100O
rpmで回転する直径300mの銅製片p−ルの回転面
上に噴出した。この急冷処理の冷却速度は約10”C/
 secであった。フレーク状の薄片が得られた。
The temperature is maintained at 50℃ higher than the melting point, and the molten alloy is heated to 100O
It was ejected onto the rotating surface of a copper plate 300 m in diameter rotating at rpm. The cooling rate of this rapid cooling process is approximately 10”C/
It was sec. Flaky flakes were obtained.

この薄片の結晶構造をxma折法で関ぺた。その回折ノ
母ターンの1例を第2図に示した。第2図から明らかな
ように1薄片は大部分がTbCuy I!相の六方晶か
ら構成されており、2#=38〜39度近辺にある7b
l Zntv型の斜方晶の(024’)のピークはほと
んど認められなかった。すなわち、薄片においてはTb
Cuy If相が単相状態で引き抜き出されて−ること
が111gされた。
The crystal structure of this flake was determined using the XMA method. An example of such a diffraction matrix turn is shown in FIG. As is clear from Figure 2, most of one thin section is TbCuy I! It is composed of a hexagonal crystal of the phase, and 7b is located around 2# = 38 to 39 degrees.
The (024') peak of the l Zntv type orthorhombic crystal was hardly observed. That is, in the thin section, Tb
It was found that the Cuy If phase was extracted in a single phase state.

次に上記薄片を、(&) ; 850℃で30分時効処
理後、100℃間隔で1時間、2時間、4時間の4段時
効処理をし1*。得られた薄片の結晶構造をX線回折法
により固定し表に示した。
Next, the above flakes were aged at 850°C for 30 minutes, and then aged in four stages at 100°C intervals for 1 hour, 2 hours, and 4 hours 1*. The crystal structure of the obtained flakes was fixed by X-ray diffraction and shown in the table.

次に、この薄片を20メツシ工タイラー篩通過程度に粗
粉砕した後、更にジエツ)ミルで粉砕して平均粒径4μ
mの微粉末とした。この微粉末を4%ナイロン−メタノ
ール溶液と混和した後、所定の押し型に充填し、20,
000エルステツドの磁界をかけなから2ton/−の
圧力で圧縮成形した。
Next, this flake was coarsely ground to the extent that it could pass through a 20-mesh Tyler sieve, and then further ground in a mesh mill with an average particle size of 4 μm.
It was made into a fine powder of m. After mixing this fine powder with a 4% nylon-methanol solution, it was filled into a predetermined pressing mold, and
Compression molding was carried out under a pressure of 2 tons/- while applying a magnetic field of 000 oersted.

この圧粉体をゴム容器にいれ更に5ton/csjで静
水圧ブレスした。
This green compact was placed in a rubber container and subjected to hydrostatic pressing at 5 tons/csj.

得られた永久磁石の残留磁束密度(Br)保磁力(IH
c ) 、最大エネルギー積((BH) maw )を
表比較例1〜3 表に示す比較例1〜3の組成の合金については、実施@
1−13の場合と同一の条件で溶湯急冷法な用いて薄片
を作成後、(b) ; 980 ’Cで30分時効処理
陵、100℃間隔で1時間、2時間、4時間の4段時効
処理、(c) ; 750℃で750時間の時効処理(
d) ; 300℃で500時間の時効処理を施した後
、この薄片を実施例1〜13と同様粗粉砕、微粉砕して
平均粒径4μmの微粉末とし、以下実施例1〜13の場
合と同一の条件で永久磁石を得た。
Residual magnetic flux density (Br) and coercive force (IH) of the obtained permanent magnet
c), Maximum energy product ((BH) maw) Table Comparative Examples 1 to 3 For alloys with compositions of Comparative Examples 1 to 3 shown in Table
After creating a thin section using the molten metal quenching method under the same conditions as in case 1-13, (b); Aging treatment at 980'C for 30 minutes, followed by 4 steps of 1 hour, 2 hours, and 4 hours at 100 degrees Celsius. Aging treatment, (c); Aging treatment at 750°C for 750 hours (
d); After aging treatment at 300°C for 500 hours, this flake was coarsely and finely pulverized in the same manner as in Examples 1 to 13 to obtain a fine powder with an average particle size of 4 μm, and in the following Examples 1 to 13 A permanent magnet was obtained under the same conditions.

比較例4〜8 比較例4〜8の組成の合金については、合金の材料20
Iをアルコ0ン中で1200 ’C11時間加熱処珈し
先後、1000℃/minの冷却速度で急冷した。冷却
後の該合金材料にっきXS回折したところ、その回折パ
ターンFi2θ=38〜39度近辺にある特徴的な’r
h、 zntt型の斜方晶の(024’)のピークを示
した0ついで、この合金は実施例1〜8と同様の時効処
理を施した後、同様の粉砕、圧粉成形をして永久磁石と
した。
Comparative Examples 4-8 For the alloys having the compositions of Comparative Examples 4-8, the alloy material 20
I was heat-treated at 1200° C. for 11 hours in Alco, followed by rapid cooling at a cooling rate of 1000° C./min. When the alloy material was subjected to XS diffraction after cooling, the diffraction pattern had a characteristic 'r around Fi2θ=38 to 39 degrees.
h, zntt-type orthorhombic (024') peak was exhibited.Then, this alloy was subjected to the same aging treatment as in Examples 1 to 8, and then crushed and compacted in the same manner as in Examples 1 to 8, and then permanently I used it as a magnet.

比較例9〜23 比較例9〜23の組成の合金については、実施例1〜1
3の場合と閤−の条件で永久磁石とした゛。
Comparative Examples 9-23 For alloys having the compositions of Comparative Examples 9-23, Examples 1-1
Permanent magnets were used in case 3 and under conditions.

以上の比較例につき、組成、製造条件、結晶構造、Br
s Inc、 (BH) maxを表に併記した。
Regarding the above comparative examples, composition, manufacturing conditions, crystal structure, Br
s Inc, (BH) max is also listed in the table.

2 〔発明の効果〕 以上のように、本発明方法はF・組成比が太き(Cu組
成比が小さくても、IHcの大きい希土類系永久磁石を
製造することができるのでその工業的価値は極めて大で
ある。tた、得られた永久磁石は従来の焼結法による磁
石に比べてその機械加工性に優れるので有用である。 
tl!に、本発明は8m、Co、、相中の7b Cuy
型相金相ThtNi1g型相を単相状金相引き抜き出す
ので、高価な希土類元素、COの組成比を小さくするこ
とができて得られる磁石は安価となる。また、前記しえ
ような耐熱衝撃性を勘案することなく製造することがで
きることも効果の1つである。
2 [Effects of the Invention] As described above, the method of the present invention can produce rare earth permanent magnets with large IHc even if the F composition ratio is large (Cu composition ratio is small), so its industrial value is high. Furthermore, the obtained permanent magnet is useful because it has superior machinability compared to magnets produced by conventional sintering methods.
tl! In this invention, 8m, Co, 7b Cuy in the phase
Since the type phase metal phase ThtNi1g type phase is extracted as a single phase metal phase, the composition ratio of expensive rare earth elements and CO can be reduced, and the obtained magnet can be made inexpensive. Another advantage is that it can be manufactured without considering the thermal shock resistance mentioned above.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はam Cm、 −8fl1mCOsv擬二元系
の高温状態図、1g2図は本発明の実施例にかかる薄片
のX線回折パターンの1例である。
FIG. 1 is a high-temperature phase diagram of the am Cm, -8fl1mCOsv pseudo-binary system, and FIG. 1g2 is an example of the X-ray diffraction pattern of a thin piece according to an example of the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)重量百分率で、20〜2B弧のRCs土土兄元素
1種又゛は2種以上を表わす。);l〜9−のCu;1
4〜40%のFe ; 0.−5〜7 IllのM (
Ti、 Zlfj V、 Nba Tie Cr、 M
n# Mo1W、 81. Ajからなる群より運ばれ
る1種又は2種以上を表わす。);残部が主としてC。 からなる組成を有し、 ThCuy聾もしくはTbt Ni、、型又はこれらの
型が混在した結晶構造を有する& CO1? 金属間化
合物を主成分とする仁とを特徴とする永久磁石。
(1) In terms of weight percentage, RCs of 20-2B arc represent one or more elements. );l~9-Cu;1
4-40% Fe; 0. -5~7 Ill's M (
Ti, Zlfj V, Nba Tie Cr, M
n# Mo1W, 81. Represents one or more species carried by the group consisting of Aj. ); the remainder is mainly C. It has a composition consisting of ThCuy, TbtNi, type, or a crystal structure in which these types are mixed &CO1? A permanent magnet characterized by a magnet whose main component is an intermetallic compound.
(2)重量百分率で、20〜28憾のR(希土類元素の
1種又は2種以上を表わす。)11〜9囁のCu;14
〜40%の%; 0.5〜7 %のM (Ti、 Zr
、 HL Vs Nb、 Tbt Or、 Mn、 m
olwlSt、M  からなる群よ抄選ばれる1種又は
2種以上を表わす。);残部が主としてCOからなる磁
性合金を溶融し、つぎに1 溶融した該磁性合金を1000℃/減以上の冷却速度で
室温以下の温度に急冷し、ついで、350〜900℃の
温度域で0.1〜500時間、時効処理を施すことを特
徴とする永久磁石の製造方法。
(2) R of 20 to 28 (representing one or more rare earth elements) Cu of 11 to 9 in weight percentage; 14
% of ~40%; 0.5-7% M (Ti, Zr
, HL Vs Nb, Tbt Or, Mn, m
Represents one or more types selected from the group consisting of olwlSt, M. ); Melt a magnetic alloy in which the remainder mainly consists of CO, then 1. Rapidly cool the molten magnetic alloy to a temperature below room temperature at a cooling rate of 1000°C/reduction or more, and then cool it in a temperature range of 350 to 900°C. A method for producing a permanent magnet, characterized by subjecting it to aging treatment for 0.1 to 500 hours.
JP57068640A 1982-04-26 1982-04-26 Permanent magnet and preparation thereof Granted JPS58186906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57068640A JPS58186906A (en) 1982-04-26 1982-04-26 Permanent magnet and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57068640A JPS58186906A (en) 1982-04-26 1982-04-26 Permanent magnet and preparation thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP4006542A Division JPH0582319A (en) 1992-01-17 1992-01-17 Permanent magnet

Publications (2)

Publication Number Publication Date
JPS58186906A true JPS58186906A (en) 1983-11-01
JPH058562B2 JPH058562B2 (en) 1993-02-02

Family

ID=13379524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57068640A Granted JPS58186906A (en) 1982-04-26 1982-04-26 Permanent magnet and preparation thereof

Country Status (1)

Country Link
JP (1) JPS58186906A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0372948A2 (en) * 1988-12-08 1990-06-13 Fuji Electrochemical Co.Ltd. Permanent magnet composition
US5383978A (en) * 1992-02-15 1995-01-24 Santoku Metal Industry Co., Ltd. Alloy ingot for permanent magnet, anisotropic powders for permanent magnet, method for producing same and permanent magnet
CN1035700C (en) * 1992-07-07 1997-08-20 上海跃龙有色金属有限公司 Rare-earth magnetic alloy powder and its processing method
RU2566090C1 (en) * 2014-10-06 2015-10-20 Открытое акционерное общество "Спецмагнит" METHOD OF MATERIAL MANUFACTURING FOR PERMANENT MAGNETS OUT OF CAST ALLOYS BASED ON SYSTEM Sm-Co-Fe-Cu-Zr

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6613010B2 (en) * 2017-09-15 2019-11-27 株式会社東芝 Permanent magnet, rotating electric machine, and vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58136757A (en) * 1982-02-05 1983-08-13 Namiki Precision Jewel Co Ltd Manufacture of permanent magnet alloy
JPS58147537A (en) * 1982-02-24 1983-09-02 Namiki Precision Jewel Co Ltd Permanent magnet alloy and its manufacture
JPS58182802A (en) * 1982-04-21 1983-10-25 Pioneer Electronic Corp Preparation of permanent magnet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58136757A (en) * 1982-02-05 1983-08-13 Namiki Precision Jewel Co Ltd Manufacture of permanent magnet alloy
JPS58147537A (en) * 1982-02-24 1983-09-02 Namiki Precision Jewel Co Ltd Permanent magnet alloy and its manufacture
JPS58182802A (en) * 1982-04-21 1983-10-25 Pioneer Electronic Corp Preparation of permanent magnet

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0372948A2 (en) * 1988-12-08 1990-06-13 Fuji Electrochemical Co.Ltd. Permanent magnet composition
US5383978A (en) * 1992-02-15 1995-01-24 Santoku Metal Industry Co., Ltd. Alloy ingot for permanent magnet, anisotropic powders for permanent magnet, method for producing same and permanent magnet
US5630885A (en) * 1992-02-15 1997-05-20 Santoku Metal Industry, Co., Ltd. Alloy ingot for permanent magnet, anisotropic powders for permanent magnet, method for producing same and permanent magnet
US5656100A (en) * 1992-02-15 1997-08-12 Santoku Metal Industry Co., Ltd. Alloy ingot for permanent magnet, anisotropic powders for permanent magnet, method for producing same and permanent magnet
US5674327A (en) * 1992-02-15 1997-10-07 Santoku Metal Industry Co., Ltd. Alloy ingot for permanent magnet, anisotropic powders for permanent magnet, method for producing same and permanent magnet
CN1035700C (en) * 1992-07-07 1997-08-20 上海跃龙有色金属有限公司 Rare-earth magnetic alloy powder and its processing method
RU2566090C1 (en) * 2014-10-06 2015-10-20 Открытое акционерное общество "Спецмагнит" METHOD OF MATERIAL MANUFACTURING FOR PERMANENT MAGNETS OUT OF CAST ALLOYS BASED ON SYSTEM Sm-Co-Fe-Cu-Zr

Also Published As

Publication number Publication date
JPH058562B2 (en) 1993-02-02

Similar Documents

Publication Publication Date Title
JPH0216368B2 (en)
JPH06340902A (en) Production of sintered rare earth base permanent magnet
JPH0621324B2 (en) Rare earth permanent magnet alloy composition
JPS6181606A (en) Preparation of rare earth magnet
JPH0685369B2 (en) Permanent magnet manufacturing method
JPH0551656B2 (en)
JPS6181603A (en) Preparation of rare earth magnet
JPS58186906A (en) Permanent magnet and preparation thereof
JPS6181607A (en) Preparation of rare earth magnet
JP3053187B2 (en) Manufacturing method of permanent magnet
KR900006533B1 (en) Anisotropic magnetic materials and magnets made with it and making method for it
JPH0582319A (en) Permanent magnet
JPS6181604A (en) Preparation of rare earth magnet
JPH0146574B2 (en)
JPS6373502A (en) Manufacture of rare earth magnet
JPS5853699B2 (en) Method for manufacturing rare earth intermetallic compound magnets
JPH0475303B2 (en)
JPH06151137A (en) Powder of rare earth magnet material with excellent anisotropy
JP2002083705A (en) Anisotropic rare earth sintered magnet and its manufacturing method
JPH0745412A (en) R-fe-b permanent magnet material
JPH0477066B2 (en)
JPH0796694B2 (en) Method of manufacturing permanent magnet material
JPH04240703A (en) Manufacture of permanent magnet
JPS58125804A (en) Powder as raw material for permanent magnet and its manufacture
JPH03222304A (en) Manufacture of permanent magnet