JPS5858241A - Manufacture of isotropic mn-al-c magnet - Google Patents

Manufacture of isotropic mn-al-c magnet

Info

Publication number
JPS5858241A
JPS5858241A JP15713281A JP15713281A JPS5858241A JP S5858241 A JPS5858241 A JP S5858241A JP 15713281 A JP15713281 A JP 15713281A JP 15713281 A JP15713281 A JP 15713281A JP S5858241 A JPS5858241 A JP S5858241A
Authority
JP
Japan
Prior art keywords
magnet
isotropic
atmosphere
sintering
alloy powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15713281A
Other languages
Japanese (ja)
Inventor
Yoshinobu Takeda
義信 武田
Atsushi Kuroishi
黒石 農士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP15713281A priority Critical patent/JPS5858241A/en
Publication of JPS5858241A publication Critical patent/JPS5858241A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture a lightweight isotropic Mn-Al-C magnet with superior magnetic characteristics without using expensive starting materials such as Co by sintering Mn-Al alloy powder with low oxygen concn. and superior compressibility in an evacuated CO atmosphere. CONSTITUTION:An Mn-Al alloy contg. 30wt% Al and 0.02-0.001wt% oxygen is pulverized by an atomizing method, and this alloy powder is mixed with about 0.3-1.5wt% powdered carbon material. The powdered mixture is cold-molded to a prescribed shape and sintered in an evacuated gaseous CO atmosphere u nder 1-100Torr partial pressure of gaseous CO. The sintered body is made dense and subjected to soln. heat treatment by hot hydrostatic press molding at 1,000- 1,100 deg.C. Thus, a lightweight isotropic Mn-Al-C magnet with higi magnetic energy per unit weight is obtd. at a low cost. The magnet is suitable for improving the performance of a magnet apparatus and for reducing the weight and thickness.

Description

【発明の詳細な説明】 Mn−AノーC系磁石は希少資源であるCOを全く使用
しない材料であるため経済性に優れ、かつ軽量であり重
量あたりの磁気エネルギーが大きく、磁石応用機器の高
性能化、軽量化、薄型化等に好適であり積極的に実用化
開発が行われて来た。
[Detailed Description of the Invention] The Mn-A C-free magnet is a material that does not use CO, which is a rare resource, and is therefore highly economical. It is also lightweight and has a large magnetic energy per weight, making it suitable for high-performance magnet-applied equipment. It is suitable for improving performance, reducing weight, and reducing thickness, and has been actively developed for practical use.

本材料は他の磁石材料であるアルニコ合金等と比較すれ
ば被削加工性は優れているが、硬度がHRc50〜55
と高いためやはり難削材であり、原剤加工や穴あけ加工
の効率が著しく劣っており実用上の障害となる問題があ
った。
This material has excellent machinability when compared to other magnet materials such as alnico alloys, but its hardness is HRc50-55.
Because of its high surface strength, it is also a difficult material to cut, and the efficiency of processing the raw material and drilling is extremely poor, which poses a problem in practical use.

このような難削材である磁石部品を製造する方法の一つ
として粉末冶金法の利用が考えられる。
Powder metallurgy may be used as one of the methods for manufacturing magnetic components that are difficult to cut.

しかし乍ら、従来の粉末冶金法でMn−Al、−C系材
料を製造するのは極めて困、難なことであった。
However, it has been extremely difficult to produce Mn-Al, -C based materials using conventional powder metallurgy methods.

何故ならMn−AノーC系材料は前述の通り硬くて脆い
ため型押成型が難しく、また酸素との結合力の極めて高
いMnやAJを主成分としているため加熱中に容易に酸
化する゛ため焼結が殆んど進まないからである。このた
め例えば焼結雰囲気を高純度の水素にする方法が提案さ
れたが顕著な効果はなく充分な密度を有する焼゛結体が
得られないため磁石としての使用に耐えなかった。又、
低融点元素を添加して焼結する方法(特開昭55−10
0944号)が提案されているが磁気特性が充分でなか
った。
This is because, as mentioned above, Mn-A-C-based materials are hard and brittle, making it difficult to press and mold them, and because the main components are Mn and AJ, which have extremely high bonding strength with oxygen, they easily oxidize during heating. This is because sintering hardly progresses. For this reason, for example, a method was proposed in which the sintering atmosphere was made of high-purity hydrogen, but this method had no significant effect and could not be used as a magnet because a sintered body with sufficient density could not be obtained. or,
Method of sintering by adding low melting point elements (Japanese Unexamined Patent Publication No. 55-10
No. 0944) has been proposed, but its magnetic properties were not sufficient.

このように従来の粉末冶金法では高性能焼結Mn−Aノ
ー〇系磁石の製造は困難であった。
As described above, it has been difficult to manufacture high-performance sintered Mn-A No. 0 magnets using conventional powder metallurgy methods.

本発明は圧縮性に優れた低酸素濃度のMn−A、12合
金粉末を用いてCOガス分圧が1〜100Torrの減
圧雰囲気中で焼結することによって従来の水素やアンモ
ニア分解ガス(AXガス)、或いは簀空雰囲気による焼
結よりも高性能な磁石の焼結ができることを見出したも
のであり、更にこの焼結体を熱間静水圧成形によ・つて
等方的に緻密化し、空孔を殆んど無くすことによってほ
ぼ溶製材に四速する性能を有する磁石材料を得る方法を
見出したものである。
The present invention uses Mn-A, 12 alloy powder with low oxygen concentration and excellent compressibility to sinter in a reduced pressure atmosphere with a CO gas partial pressure of 1 to 100 Torr. ), or the sintering of magnets with higher performance than sintering in a closed air atmosphere, and furthermore, this sintered body was isotropically densified by hot isostatic pressing, and the sintered body was We have discovered a method of obtaining a magnetic material that has almost the same performance as molten material by eliminating most of the holes.

焼結体を熱間静水圧成型(以下HIPと略称する)する
ことによって、空孔や巣のない緻密な成型体を得る方法
はすでに広汎に実用化されている。
A method of obtaining a dense molded body without voids or voids by hot isostatic pressing (hereinafter abbreviated as HIP) a sintered body has already been widely put into practical use.

しかし、Mn −1’J−C系材料においてはこのHI
Pを施して緻密化することは従来不可能であった。
However, in Mn-1'JC materials, this HI
Conventionally, it was impossible to densify by applying P.

何故なら従来の粉末冶金法による焼結体は空孔率が高く
、しかも独立空孔よりも連続空孔が多数存在していた為
、ガスを圧力媒体とする)(IPでは空孔内に圧力媒体
が容易に浸入してしまい、空孔を何んら塑性変形による
体積変化をきたさないからである。勿論、このような焼
結体でも気密容器内に封入してHIPする方法もあるが
、本材料に対しては経済性が著し°く損うため意味がな
い。
This is because sintered bodies produced by conventional powder metallurgy have a high porosity and more continuous pores than independent pores, so gas is used as the pressure medium. This is because the medium easily penetrates and the pores do not undergo any volume change due to plastic deformation.Of course, there is also a method of sealing such a sintered body in an airtight container and HIPing it. There is no point in using this material because the economical efficiency is significantly impaired.

しかし乍ら、本発明の方法によれば、高密度の型押成型
体が得られ、かつ連続空孔の殆んどない空孔率の低い、
しかも酸化物の少い良好な焼結体が得られるために容易
にHIP処理を施すことが可能となったのである。
However, according to the method of the present invention, a high-density embossing molded body can be obtained, and the porosity is low and has almost no continuous pores.
Furthermore, since a good sintered body containing less oxides can be obtained, it has become possible to easily perform HIP treatment.

本発明では0.02〜0.001 wt%0□の低酸素
Mn −1’J合金粉末をアトマイズ法によって得た。
In the present invention, low-oxygen Mn-1'J alloy powder of 0.02 to 0.001 wt% 0□ was obtained by an atomization method.

このMn −M合金粉は粉砕法によるMn−A)−〇に
比較するとはるかに軟質モ圧縮性に優れているので、目
的組成にすべく適量の炭素を添加混合したのち成型し焼
結するものである。
This Mn-M alloy powder is much softer and has better compressibility than Mn-A)-〇 produced by pulverization, so it is molded and sintered after adding and mixing an appropriate amount of carbon to achieve the desired composition. It is.

先、ず減圧COガス中焼結について説明する。First, sintering in reduced pressure CO gas will be explained.

Mn −AU−C系合金はMnやAIの酸化物が粉末表
面に形成されるために従来の雰囲気では焼結中にこれら
の酸化物を還元除去することができず、残留した酸化物
が磁気特性を損うことが避けられなかった。
In Mn-AU-C alloys, Mn and AI oxides are formed on the powder surface, so these oxides cannot be reduced and removed during sintering in a conventional atmosphere, and the remaining oxides become magnetic. It was inevitable that the characteristics would be damaged.

しかし、Mn −A1合金粉末に低酸素のものを使用す
ることによって残留酸化物の悪影響は著しく改善される
ことがわかった。
However, it was found that by using a low oxygen Mn-A1 alloy powder, the adverse effects of residual oxides were significantly improved.

Mnの酸化物は主としてM n Oであり、この酸化物
の解離圧は、 MnOw Mn + −02 の式においてΔG’=91950−17、ITであるこ
とから最高加熱温度1200°Cのときには、IQ−I
n以上にもなり、通常の真空によっては分解が”不可能
であった。
The oxide of Mn is mainly MnO, and the dissociation pressure of this oxide is ΔG'=91950-17, IT in the formula MnOw Mn + -02, so when the maximum heating temperature is 1200°C, IQ -I
n or more, and it was impossible to decompose it under normal vacuum.

一方、炭素によってMnOを還元する方法は、MnO+
 C= Mn + CO ΔG0= 65250−38.35T であることから加熱温度が1428°C以上でなければ
MnOを還元することが出来ず、この温度ではMn −
Al1−C合金は融液となってしまい焼結することが不
可能であった。しかし本発明の方法においては、上記反
応のCOガスを減圧にすることによって、即ちpco−
iτ〜]7とすることにより、′P衡反応温度を融点以
下まで低下させることが良好な焼結体が得られることを
見出したのである。COガスの分圧はI Torr以下
にすると高真空雰囲気と類似の雰囲気となり、単純には
熱力学的計算では更に還元反応を生じ易くするかの如く
思われるが実際にはMn−AノーC中のCが消費され、
最適組成範囲からずれる等好ましくない。即ち雰囲気か
ら適度なCが供給されることが良好な焼結体を得る為の
条件であることが判明した。一方、PCOは必ずしもM
nOがその温度で還元可能な理論分圧よりも高くても、
低酸素粉末を用いれば十分焼結ができることも見出した
。この理由は、雰囲気ガス中の酸素分圧が低(Mn−A
I−C合金の酸化が抑制される為であると思われる。
On the other hand, the method of reducing MnO with carbon is MnO+
Since C = Mn + CO ΔG0 = 65250-38.35T, MnO cannot be reduced unless the heating temperature is 1428°C or higher, and at this temperature Mn -
The Al1-C alloy turned into a melt and could not be sintered. However, in the method of the present invention, by reducing the pressure of the CO gas in the above reaction, that is, pco-
It has been found that by setting iτ to ]7, a good sintered body can be obtained by lowering the 'P equilibrium reaction temperature to below the melting point. If the partial pressure of CO gas is lower than I Torr, the atmosphere will be similar to a high vacuum atmosphere, and although based on simple thermodynamic calculations it seems that the reduction reaction will occur even more easily, in reality it is of C is consumed,
This is undesirable as it deviates from the optimum composition range. That is, it has been found that supplying an appropriate amount of C from the atmosphere is a condition for obtaining a good sintered body. On the other hand, PCO is not necessarily M
Even if nO is higher than the theoretical partial pressure that can be reduced at that temperature,
We also discovered that sufficient sintering can be achieved using low-oxygen powder. The reason for this is that the oxygen partial pressure in the atmospheric gas is low (Mn-A
This seems to be because oxidation of the I-C alloy is suppressed.

実験の結果Pcoが1〜]00Torrの場合が良好な
焼結が可能であった。
As a result of the experiment, good sintering was possible when Pco was 1 to ]00 Torr.

このようにして得られた焼結体をHIPによって緻密化
することによって高性能のM n −Aノー〇系磁石焼
結体を製造するのが本発明の要件である。
A requirement of the present invention is to manufacture a high-performance M n -A No. 0 series magnet sintered body by densifying the thus obtained sintered body by HIP.

HIP処理の温度は高温変形抵抗の小さい1000〜]
100’Cにすることによって比較的短時間で緻密化の
効果が得られるだけでなく、溶体化処理も同時に行われ
、冷却速度を制御するだけで溶体化処理を終了させるこ
とができることを見出した。
The temperature of HIP treatment is 1000~ with low high temperature deformation resistance]
It was discovered that by heating to 100'C, not only the effect of densification can be obtained in a relatively short time, but also solution treatment is performed at the same time, and solution treatment can be completed simply by controlling the cooling rate. .

上記温度範囲でもHIP処理は可能であるが、例えば7
00°Cでは緻密化の効果を出すのに極めて長時間を要
し、又より高温では溶体化処理との関係で熱処理が複雑
となり好ましくない。上記温度範囲でHIPすることに
より短時間で製造することが可能である。
Although HIP treatment is possible even in the above temperature range, for example,
At 00°C, it takes an extremely long time to achieve the densification effect, and at higher temperatures, the heat treatment becomes complicated due to solution treatment, which is not preferred. By HIPing in the above temperature range, it is possible to manufacture in a short time.

なお、粉末の酸素含有量が0.02wt%以上では残留
する酸化物が多いため良好な磁石は得られず、0.00
1wt%以下の粉末では製造上の取扱いが面倒になり高
価となるため、0.001〜0.02wt%の範囲が望
ましい。
Note that if the oxygen content of the powder is 0.02 wt% or more, a good magnet cannot be obtained because there are many oxides remaining;
If the powder is less than 1 wt%, it will be difficult to handle during production and will be expensive, so a range of 0.001 to 0.02 wt% is desirable.

次に実施例によって説明する。Next, an example will be explained.

実施例1゜ 70wt%Mn−29,5wt%Aノー〇、005wt
 % 02組成のアトマイズ粉末を得た。この粉末を5
t/crn2ノ圧をCOガス分圧3 Q Torr の
減圧雰囲気中で1210″C30分間焼結後、1080
°Cで2時間、1600気圧のArガス中でHIP処理
を施した。
Example 1゜70wt%Mn-29,5wt%A No〇,005wt
An atomized powder having a composition of %02 was obtained. 5 times this powder
After sintering at 1210"C for 30 minutes in a reduced pressure atmosphere with a CO gas partial pressure of 3 Q Torr, the pressure was reduced to 1080
HIP treatment was performed in Ar gas at 1600 atm for 2 hours at °C.

得られた焼結体は比重4.96g/cc であり、磁力
と示す最大エネルギー積(BH) Maxは3.4MG
 Oeで2)つた。
The obtained sintered body has a specific gravity of 4.96 g/cc, and a maximum energy product (BH) of magnetic force of 3.4 MG.
2) Ivy in Oe.

実施例2゜ 実施例1と同様にして得られた焼結体を119σCで3
0分間、1600気圧のArガス中でHIP処理後10
50°Cまで急速冷却して更に1時間保持諸制御冷却を
行うことによって溶体化処理を連続して1Jセした。得
られた焼結体は比重4゜95g/ccであり、最大エネ
ルギー積は3.2MGOeであった。
Example 2 A sintered body obtained in the same manner as Example 1 was heated at 119σC for 3
10 minutes after HIP treatment in Ar gas at 1600 atm.
Solution treatment was carried out continuously for 1 J by rapid cooling to 50° C. and further controlled cooling for 1 hour. The obtained sintered body had a specific gravity of 4.95 g/cc and a maximum energy product of 3.2 MGOe.

以上説明した如く本発明の方法により等方性Mn−Aノ
ー〇系焼結磁石が比較的簡単な工程で製造でき、その磁
気特性も溶製材に匹敵するものであり、しかも粉末の成
型によるため複雑形状のものを高い材料歩留で切削加工
なしに製造できるようになった。      代理人弁
理士 上゛代哲7 A>4を励7/シアー 15
As explained above, by the method of the present invention, an isotropic Mn-A No. It has become possible to manufacture products with complex shapes with a high material yield without cutting. Representative Patent Attorney Tetsu Shodai 7 A>4 encouraged 7/Sear 15

Claims (1)

【特許請求の範囲】 Mn−30wt%Aノー0.02〜0.001 wt 
9t:; 07るアトマイズ合金粉末に0.3〜1.5
wt%炭素を添加混合後回定形状に冷間成型した後、C
Oガス分圧1〜100Torrの減圧雰囲気中で焼結し
、更に熱間静水圧成型によって緻密化したのち溶体化熱
処理を施すことを特徴とする等方性Mn −AJ−C系
磁石の製造法。 (2、特許請求の範囲第(1)項において、1000〜
1100°Cで熱間静水圧成型を施すと同時に溶体化処
理を行うことを特徴とする等方性Mn −A4−C系磁
石の製造法。
[Claims] Mn-30wt% A no 0.02 to 0.001 wt
9t: ; 0.3 to 1.5 to 07 atomized alloy powder
After adding and mixing wt% carbon and cold forming into a fixed shape, C
A method for producing an isotropic Mn-AJ-C magnet, characterized by sintering in a reduced pressure atmosphere with an O gas partial pressure of 1 to 100 Torr, further densifying it by hot isostatic pressing, and then subjecting it to solution heat treatment. . (2. In claim (1), 1000 to
A method for producing an isotropic Mn-A4-C magnet, characterized by performing hot isostatic pressing at 1100°C and solution treatment at the same time.
JP15713281A 1981-10-01 1981-10-01 Manufacture of isotropic mn-al-c magnet Pending JPS5858241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15713281A JPS5858241A (en) 1981-10-01 1981-10-01 Manufacture of isotropic mn-al-c magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15713281A JPS5858241A (en) 1981-10-01 1981-10-01 Manufacture of isotropic mn-al-c magnet

Publications (1)

Publication Number Publication Date
JPS5858241A true JPS5858241A (en) 1983-04-06

Family

ID=15642897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15713281A Pending JPS5858241A (en) 1981-10-01 1981-10-01 Manufacture of isotropic mn-al-c magnet

Country Status (1)

Country Link
JP (1) JPS5858241A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6221U (en) * 1985-06-18 1987-01-06
JPH04103401A (en) * 1990-08-24 1992-04-06 Toyota Autom Loom Works Ltd Mounting device for double type wheel of vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6221U (en) * 1985-06-18 1987-01-06
JPH0428826Y2 (en) * 1985-06-18 1992-07-14
JPH04103401A (en) * 1990-08-24 1992-04-06 Toyota Autom Loom Works Ltd Mounting device for double type wheel of vehicle

Similar Documents

Publication Publication Date Title
JP2588272B2 (en) Method for producing Fe-Co based sintered magnetic material
JP5550013B2 (en) Magnetic nanocomposite and method for producing the same
JPH0260633B2 (en)
JPH04329847A (en) Manufacture of fe-ni alloy soft magnetic material
JPH0577632B2 (en)
JP2587872B2 (en) Method for producing soft magnetic sintered body of Fe-Si alloy
JP2967094B2 (en) Aluminum nitride sintered body and method for producing aluminum nitride powder
JPS5858241A (en) Manufacture of isotropic mn-al-c magnet
CN115557793B (en) High-entropy ceramic with fine grains, high hardness and high toughness, and preparation method and application thereof
JPS5819409A (en) Manufacture of isotropic mn-al-c magnet
JPS61295342A (en) Manufacture of permanent magnet alloy
JPS63236763A (en) Boron carbide sintered body and manufacture
JPH0350808B2 (en)
JPS61229314A (en) Target material and manufacture thereof
JPS5858706A (en) Manufacture of mn-al-c family permanent magnet
JPS63137136A (en) Manufacture of rare earth-iron group sintered permanent magnet material
JPS6358896B2 (en)
JPH03229832A (en) Manufacture of nb-al intermetallic compound
JP2016508673A (en) Method for producing soft magnetic ceramic material
JPH0146472B2 (en)
JPH01160870A (en) Silicon nitride sintered compact and production thereof
JPH0478699B2 (en)
JPS59207876A (en) Manufacture of high density silicon nitride reaction sintered body
RU2350676C2 (en) Method of non-retentive material receiving
JPS6358897B2 (en)