JPS5858706A - Manufacture of mn-al-c family permanent magnet - Google Patents

Manufacture of mn-al-c family permanent magnet

Info

Publication number
JPS5858706A
JPS5858706A JP56157941A JP15794181A JPS5858706A JP S5858706 A JPS5858706 A JP S5858706A JP 56157941 A JP56157941 A JP 56157941A JP 15794181 A JP15794181 A JP 15794181A JP S5858706 A JPS5858706 A JP S5858706A
Authority
JP
Japan
Prior art keywords
sintering
powder
permanent magnet
partial pressure
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56157941A
Other languages
Japanese (ja)
Other versions
JPH0217921B2 (en
Inventor
Yoshinobu Takeda
義信 武田
Atsushi Kuroishi
黒石 農士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP56157941A priority Critical patent/JPS5858706A/en
Publication of JPS5858706A publication Critical patent/JPS5858706A/en
Publication of JPH0217921B2 publication Critical patent/JPH0217921B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To have maximum energy product which is nearly twice an isotropic ferrite by a method wherein sintering is done under the atmosphere of CO gas partial pressure of 1-100Torr by using a low oxygen content Mn-Al alloy powder having good compressibility. CONSTITUTION:After adding and mixing a suitable amount of carbon for forming objective composition to low O2 content Mn-Al alloy powder O2 of 0.02- 0.001% by wt O2, the powder is formed and sintered. When CO partial pressure is maintained at 1-100Torr at the time of sintering, good sintering is experimentally becomes possible. Residual oxygen is abundant at the oxygen content of 0.02% by wt or over, therefore, a good sintering permanent magnet cannot be obtained. As to a powder of 0.001% O2 or less by wt, treatment on manufacture requires much time and high costs follow. As a result, a powerful permanent magnet having maximum energy product which is twice an isotropic ferrite can be obtained by a powder metallurgy method.

Description

【発明の詳細な説明】 Mn−AノーC系磁石は希少資源であるCoを全く使用
しない材料であるため経済性に優れ、かつ軽量であり、
重量あたりの磁気エネルギーが大きく、磁石応用機器の
高性能化、軽量化の薄型化等に好適であり積極的に実用
化開発が行われて来た。
[Detailed Description of the Invention] The Mn-A no-C magnet is a material that does not use Co, which is a rare resource, and is therefore highly economical and lightweight.
It has a large magnetic energy per unit weight and is suitable for improving the performance of magnet-applied equipment and making it lighter and thinner, and has been actively developed for practical use.

本材料は他の磁石材料であるアルニコ合金等と比較すれ
ば被削加工性は優れているが、硬度がHRo50〜55
と高いためやはり難削材であり、旋削加工や穴あけ加工
の効率が著しく劣っており実用上の障害となる問題があ
った。
This material has excellent machinability when compared to other magnet materials such as alnico alloys, but its hardness is HRo50-55.
Because of its high surface area, it is also a difficult material to cut, and the efficiency of turning and drilling is extremely poor, which poses a problem in practical use.

このような難削材である磁石部品を製造する方法の一つ
として粉末冶金法の利用が考えられる。
Powder metallurgy may be used as one of the methods for manufacturing magnetic components that are difficult to cut.

しかし乍ら、従来の粉末冶金法でM n −AノーC系
材料を製造するのは極めて困難なことであった。
However, it has been extremely difficult to produce M n -A no-C materials using conventional powder metallurgy methods.

何故ならMn−Ai−C系材料は前述の通り硬くて脆い
ため型押成型が難しく、また酸素との結合力の極めて高
いMn JPfiJを主成分としているため加熱中にζ
容易に酸化するため焼結が殆んど進まないからである。
This is because, as mentioned above, Mn-Ai-C materials are hard and brittle, making it difficult to mold them, and since the main component is Mn JPfiJ, which has extremely high bonding strength with oxygen, ζ
This is because sintering hardly progresses because it is easily oxidized.

このため例えば焼結雰囲気を高純度の水素にする方法が
提案されたが顕著な効果はなく充分な密度を有する焼結
体が得られないため磁石としての使用に耐えなかった。
For this reason, for example, a method was proposed in which the sintering atmosphere was made of high-purity hydrogen, but this method had no significant effect and could not be used as a magnet because a sintered body with sufficient density could not be obtained.

又、低融点元素を添加して焼結する方法(特開昭55−
100944号)が提案されているが磁気特性が充分′
でなかった。
In addition, a method of adding a low melting point element and sintering (Japanese Patent Application Laid-open No. 1986-
No. 100944) has been proposed, but the magnetic properties are insufficient.
It wasn't.

このように従来の粉末冶金法+くよ高性能焼結Mn−A
J2− C系磁石の製造は困難であった。
In this way, conventional powder metallurgy method + high performance sintered Mn-A
Manufacturing J2-C magnets was difficult.

本発明は圧縮性の良い低酸素濃度のMn−A1合金粉末
を用いてCOガス分圧が1〜100Torrの減圧雰囲
気中で焼結することによって従来の水素やアンモニア分
解ガス(AXガス)或いは真空雰囲気による焼結よりも
高性能な磁石の焼結ができることを見出したものである
The present invention uses Mn-A1 alloy powder with good compressibility and low oxygen concentration to sinter in a reduced pressure atmosphere with a CO gas partial pressure of 1 to 100 Torr. It was discovered that magnets can be sintered with higher performance than sintering in an atmosphere.

Mn−AノーC合金粉末は硬くて脆いため容易に粉末化
ができたが、圧縮性が悪く成型が困難であった。本発明
では、0.02〜0.001wt%02の低酸素M n
−A1合金粉をアトマイズ法によって得た。このM n
 −A1合金粉は粉砕法によるMn−AノーC粉に比較
するとはるかに軟質であり圧縮性に優れているので、目
的組成にすべく適量の炭素を添加混合した後、成型し焼
結できる。
Although the Mn-A-no-C alloy powder was hard and brittle and could be easily powdered, it had poor compressibility and was difficult to mold. In the present invention, a low oxygen M n of 0.02 to 0.001 wt%02
-A1 alloy powder was obtained by an atomization method. This M n
-A1 alloy powder is much softer and has better compressibility than Mn-A no-C powder produced by pulverization, so it can be molded and sintered after adding and mixing an appropriate amount of carbon to achieve the desired composition.

M n −Aノー〇系合金はMnやMの酸化物が粉末表
面に形成されるために従来の雰囲気では焼結中にこれら
の酸化物を還元除去することができず、残留した酸化物
が磁気特性を損うことが避けられなかった。
In Mn-A No. 0 series alloys, Mn and M oxides are formed on the powder surface, so these oxides cannot be reduced and removed during sintering in a conventional atmosphere, and the remaining oxides are Impairment of magnetic properties was inevitable.

しかし、Mn−A1合金粉末に低酸素のものを使用する
ことによって残留酸化物の悪影響は著しく改善されるこ
とがわかった。
However, it has been found that by using a low oxygen Mn-A1 alloy powder, the adverse effects of residual oxides are significantly improved.

Mnの酸化物は主としてMnOであり、この酸化物の解
離圧は、 MnOwMn +−02 の式において ΔG0= 919り0−17.47であ
ることから最高加熱温度1200°Cのときには、10
−10以上にもなり、通常の真空によっては分解が不可
能であった。
The oxide of Mn is mainly MnO, and the dissociation pressure of this oxide is ΔG0 = 919 ri 0-17.47 in the formula MnOwMn +-02, so when the maximum heating temperature is 1200 °C, the dissociation pressure of this oxide is 10
-10 or more, and decomposition was impossible under normal vacuum.

一方、炭素によってMnOを還元する方法は、MnO+
 C= Mn:  + CO ΔG0=  65,250=1.35Tであることから
加熱温度が1428°C以上でなければMnOを還元す
ることが出来ず、この温度ではMn−Aノーc合金は融
液となってしまい焼結することが不可能であった。しか
し本発明の方法においては、上記反応のCOガスを例え
ば1〜40Torrにすることによって、即ちPco 
= 0.0018〜0.05とすることにより自由エネ
ルギー変化ΔG1ΔG = 65250−38.85T
+RTノnpc。
On the other hand, the method of reducing MnO with carbon is MnO+
C = Mn: + CO ΔG0 = 65,250 = 1.35T, so MnO cannot be reduced unless the heating temperature is 1428°C or higher, and at this temperature the Mn-A Noc alloy turns into a melt. This made it impossible to sinter. However, in the method of the present invention, by controlling the CO gas in the above reaction to, for example, 1 to 40 Torr, that is, Pco
By setting = 0.0018 to 0.05, free energy change ΔG1ΔG = 65250-38.85T
+RT no npc.

を0とする温度が993〜1200°Cに低下させるこ
とが出来る。一方、COガス分圧を著しく低下させるこ
とがこの熱力学的計算では更に還元反応を生じ易くする
かの如く思われるが、実際にはM n−AノーC中のC
が消費され、最適組成範囲からずれる等好ましくない。
It is possible to lower the temperature to 993-1200°C. On the other hand, in this thermodynamic calculation, it seems that significantly lowering the CO gas partial pressure makes the reduction reaction more likely to occur, but in reality, the reduction reaction
is consumed and the composition deviates from the optimum composition range, which is undesirable.

又、00分圧(Pco)が理論分圧より高くても焼結が
良好に進行する場合があるのは、雰囲気ガス中の酸素分
圧が低(Mn−AノーC合金の酸化が抑制される為であ
ると思われる。
In addition, sintering may proceed well even if the 00 partial pressure (Pco) is higher than the theoretical partial pressure because the oxygen partial pressure in the atmospheric gas is low (oxidation of the Mn-A-C alloy is suppressed). This seems to be for the purpose of

実験の結果PCOが1〜100 Torrの場合が良好
な焼結が可能であった。
As a result of experiments, good sintering was possible when the PCO was 1 to 100 Torr.

焼結温度が包晶温度以上であれば、液相を伴った急速な
焼結が可能であり、残留空孔の少い焼結体が得られる。
When the sintering temperature is equal to or higher than the peritectic temperature, rapid sintering with a liquid phase is possible, and a sintered body with few residual pores can be obtained.

しかし包晶温度と溶融温度との差が小さい為、温度精度
の良い焼結炉を使用する必要がある。
However, since the difference between the peritectic temperature and the melting temperature is small, it is necessary to use a sintering furnace with good temperature accuracy.

一方、包晶温度以下の固相焼結を行う場合には焼結時間
が長い欠点があるが、焼結温度の多少のバラツキに対し
ても安定した焼結挙動を示すため温度精度の劣った焼結
炉を用いても形崩れや溶融などのない焼結体が得られる
特徴がある。
On the other hand, when performing solid-phase sintering below the peritectic temperature, the sintering time is long, but the sintering behavior is stable even with slight variations in the sintering temperature, so the temperature accuracy is poor. It has the characteristic that even when using a sintering furnace, a sintered body that does not lose its shape or melt can be obtained.

更に、焼結後冷却時に同じ炉内で連続的にε相領域で溶
体化熱処理を行うことも本発明の特徴であり、これによ
って従来の鋳造方法等の製法の場合に必要だった長時間
の溶体化熱処理時間と手間を不要とすることが出来る。
Furthermore, another feature of the present invention is that solution heat treatment is continuously performed in the ε phase region in the same furnace during cooling after sintering, which eliminates the long time required in conventional manufacturing methods such as casting. Solution heat treatment time and effort can be eliminated.

焼結温度をε相領域で行うために均一溶体化が殆んど同
時に進行し、焼結後の冷却速度を制御することによって
溶体化処理を容易に行うことができる。
Since the sintering temperature is set in the ε phase region, homogeneous solution treatment proceeds almost simultaneously, and the solution treatment can be easily performed by controlling the cooling rate after sintering.

本発明はMn−A)−C系磁石の粉末冶金法による新し
い製造方法を提供するものそあり、この方法はMn70
重量%、Aノ29.5重量%、C095重量姑の合金に
適用して有効であるが、その組成比は通□常の製法で変
化し得る範囲で変動しても有効である。
The present invention provides a new method for manufacturing Mn-A)-C magnets by powder metallurgy, and this method
It is effective when applied to an alloy having a weight percent of A of 29.5 weight percent and a weight of C095, but it is also effective even if the composition ratio is varied within a range that can be changed by a normal manufacturing method.

又、本合金系には更に磁気的性質や加工性を改善するた
めにNi、Ti、B或いはGe′$を添加することも行
われるが、これらのいずれの合金系に対”しても本発明
による製造法は有用であった。
Additionally, Ni, Ti, B, or Ge'$ may be added to this alloy system in order to further improve its magnetic properties and workability; The manufacturing method according to the invention was useful.

なお粉末の酸素含有量が0.02wt%以上では残留す
る酸化物が多いため良好な焼結磁石が得られず0.00
1wt%以下の粉末は製造上の取扱いが却って手間がか
かり高価となってしまうので0.001〜0.02wt
% の範囲が好ましい。
Note that if the oxygen content of the powder is 0.02 wt% or more, a good sintered magnet cannot be obtained because there are many oxides remaining.
Powders with a weight of 1 wt% or less are rather time-consuming and expensive to handle during production, so 0.001 to 0.02 wt.
% range is preferred.

次に実施例によって説明する。Next, an example will be explained.

実施例1゜ 70 wt 、 % Mn−29,5wt、%AJ−0
,005wt、%0組成のアトマイズ粉末を得た。この
粉末に1 wt%の炭素を添加混合後5 t/lイの圧
力で10 X 10 X 55 JLIILに成型した
。この成型体をCOガス分圧30 Torrの減圧雰囲
気中で、1210°C115分間焼結後、いったん10
50°Cで30分保持した後、10’C/分以上の強制
冷却を行った。あと550°Cで焼戻して得られた焼結
体の比重は467g/cc  であり、最大エネルギー
積(BH)max、は2.4MG・Oeであった。
Example 1 70wt, %Mn-29.5wt, %AJ-0
,005wt, an atomized powder having a composition of %0 was obtained. After adding and mixing 1 wt% of carbon to this powder, it was molded into a 10 x 10 x 55 JLIIL at a pressure of 5 t/l. This molded body was sintered at 1210°C for 115 minutes in a reduced pressure atmosphere with a CO gas partial pressure of 30 Torr.
After holding at 50°C for 30 minutes, forced cooling was performed at 10'C/min or more. The specific gravity of the sintered body obtained by further tempering at 550°C was 467 g/cc, and the maximum energy product (BH) max was 2.4 MG·Oe.

実施例2゜ 実施例1と同様にして得られた成型体をCOガス分圧1
0 Torrの減圧雰囲気中で1160°C14時間で
焼結後制御冷却を行った。得られた焼結体は比重+51
g/ccで最大エネルギー積(′B’H) max、は
1.9I・Oeであった。
Example 2゜A molded body obtained in the same manner as in Example 1 was heated to a CO gas partial pressure of 1
Controlled cooling was performed after sintering at 1160° C. for 14 hours in a reduced pressure atmosphere of 0 Torr. The obtained sintered body has a specific gravity of +51
The maximum energy product ('B'H) max in g/cc was 1.9 I·Oe.

以上の結果から明らかな如く、本発明の方法によって、
等方性フェライトの2倍近い最大エネルギー積を有する
強力な磁石が粉末冶金法によって得られたものであり、
これにより、凹凸のある円柱や中空パイプ等の複雑形状
の磁石部品を高い材料歩留りで安価に製造することが出
来て工業的価値が高いものである。
As is clear from the above results, by the method of the present invention,
A powerful magnet with a maximum energy product nearly twice that of isotropic ferrite was obtained by powder metallurgy.
This makes it possible to manufacture complex-shaped magnetic parts such as uneven cylinders and hollow pipes at low cost with a high material yield, which has high industrial value.

Claims (1)

【特許請求の範囲】 (1)Mn−3Qwt% Affl−0,02〜0.0
01wt%o2なるアトマイズ合金粉末に0.8〜1.
5wt%炭素を添加、混合後所定の形状に冷間成型し、
これをCOガス分圧1〜I Q OTorrの減圧雰囲
気中で焼結し、引き続き冷却時に溶体化熱処理を行うこ
とを特徴とするMn−AノーC系磁石の製造法。 (2、特許請求の範囲第(1)項において、焼結温度が
包晶反応温度以上であることを特徴とするMn −Aノ
ー〇系磁石の製造法。 (8)特許請求の範囲第(1)項において、焼結温度が
包晶反応温度以下であることを特徴とするMn −Aノ
ーC系磁石の製造法。
[Claims] (1) Mn-3Qwt% Affl-0.02 to 0.0
0.8 to 1.01 wt% O2 atomized alloy powder.
Add 5wt% carbon, mix and cold-form into a predetermined shape.
A method for producing a Mn-A no-C magnet, which comprises sintering the magnet in a reduced pressure atmosphere with a CO gas partial pressure of 1 to IQ O Torr, and subsequently subjecting it to solution heat treatment during cooling. (2. A method for manufacturing a Mn-A No. 0-based magnet as set forth in claim (1), characterized in that the sintering temperature is higher than the peritectic reaction temperature. (8) Claim (1) In item 1), the method for producing a Mn-A no-C magnet, characterized in that the sintering temperature is lower than the peritectic reaction temperature.
JP56157941A 1981-10-02 1981-10-02 Manufacture of mn-al-c family permanent magnet Granted JPS5858706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56157941A JPS5858706A (en) 1981-10-02 1981-10-02 Manufacture of mn-al-c family permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56157941A JPS5858706A (en) 1981-10-02 1981-10-02 Manufacture of mn-al-c family permanent magnet

Publications (2)

Publication Number Publication Date
JPS5858706A true JPS5858706A (en) 1983-04-07
JPH0217921B2 JPH0217921B2 (en) 1990-04-24

Family

ID=15660808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56157941A Granted JPS5858706A (en) 1981-10-02 1981-10-02 Manufacture of mn-al-c family permanent magnet

Country Status (1)

Country Link
JP (1) JPS5858706A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019147994A (en) * 2018-02-28 2019-09-05 国立大学法人 鹿児島大学 MANUFACTURING METHOD OF Mn-Al-C-BASED MAGNET, AND Mn-Al-C-BASED MAGNETIC SINTERED BODY

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019147994A (en) * 2018-02-28 2019-09-05 国立大学法人 鹿児島大学 MANUFACTURING METHOD OF Mn-Al-C-BASED MAGNET, AND Mn-Al-C-BASED MAGNETIC SINTERED BODY

Also Published As

Publication number Publication date
JPH0217921B2 (en) 1990-04-24

Similar Documents

Publication Publication Date Title
TWI433173B (en) Manufacture of rare earth permanent magnets
JP4010296B2 (en) Method for producing soft magnetic powder material
JP2588272B2 (en) Method for producing Fe-Co based sintered magnetic material
WO2007102391A1 (en) R-Fe-B RARE EARTH SINTERED MAGNET AND METHOD FOR PRODUCING SAME
JP2009194262A (en) Method for manufacturing rare earth magnet
JPH04242902A (en) Permanent magnet having improved corrosion resistance and manufacture thereof
JP2011086830A (en) R-Fe-B-BASED RARE EARTH SINTERED MAGNET AND METHOD OF PRODUCING THE SAME
JPWO2016133067A1 (en) Method for producing RTB-based sintered magnet
JPWO2016121790A1 (en) Method for producing RTB-based sintered magnet
JPH04329847A (en) Manufacture of fe-ni alloy soft magnetic material
JPS5858706A (en) Manufacture of mn-al-c family permanent magnet
JPH0475304B2 (en)
JPS5819405A (en) Manufacture of mn-al-c magnet
JPS5819409A (en) Manufacture of isotropic mn-al-c magnet
JPS5858241A (en) Manufacture of isotropic mn-al-c magnet
JPS5867801A (en) Preparation of rare earth/cobalt permanent magnet
JPS61229314A (en) Target material and manufacture thereof
JPH0711301A (en) Production of permanent magnet powder material
JPS59190338A (en) Manufacture of alnico type permanent magnet alloy
JP3120546B2 (en) Manufacturing method of permanent magnet material
JPS6249345B2 (en)
JP2643329B2 (en) Rare earth-cobalt sintered magnet with excellent magnetic properties and mechanical strength
JP2766427B2 (en) Method for producing iron-chromium sintered soft magnetic material
CN117904509A (en) Fe-Co-based soft magnetic composite material with in-situ self-generated TiC and Ni added and controlled synergistically and preparation method thereof
JPS5823451B2 (en) Manufacturing method of rare earth cobalt magnet