JP2643329B2 - Rare earth-cobalt sintered magnet with excellent magnetic properties and mechanical strength - Google Patents

Rare earth-cobalt sintered magnet with excellent magnetic properties and mechanical strength

Info

Publication number
JP2643329B2
JP2643329B2 JP63182976A JP18297688A JP2643329B2 JP 2643329 B2 JP2643329 B2 JP 2643329B2 JP 63182976 A JP63182976 A JP 63182976A JP 18297688 A JP18297688 A JP 18297688A JP 2643329 B2 JP2643329 B2 JP 2643329B2
Authority
JP
Japan
Prior art keywords
magnet
rare earth
sintered magnet
magnetic properties
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63182976A
Other languages
Japanese (ja)
Other versions
JPH0232503A (en
Inventor
耕一郎 森本
拓夫 武下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP63182976A priority Critical patent/JP2643329B2/en
Publication of JPH0232503A publication Critical patent/JPH0232503A/en
Application granted granted Critical
Publication of JP2643329B2 publication Critical patent/JP2643329B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、磁気特性だけでなく機械的強度にも優れ
た、Yを含む希土類元素のうち1種または2種以上を組
合せたもの(以下、Rで示す)とコバルトを主成分とす
る焼結磁石に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a combination of one or two or more rare earth elements containing Y, which is excellent not only in magnetic properties but also in mechanical strength (hereinafter, referred to as "Y"). , R) and a sintered magnet containing cobalt as a main component.

〔従来の技術〕[Conventional technology]

一般に、高い磁気特性を有するR−Co系焼結磁石とし
て、R2Co17系焼結磁石があることは知られており、この
R2Co17系焼結磁石は、電気および電子機器の部品として
広く用いられている。
Generally, it is known that there is an R 2 Co 17 sintered magnet as an R-Co based sintered magnet having high magnetic properties.
R 2 Co 17 sintered magnets are widely used as components of electric and electronic devices.

上記R2Co17系焼結磁石の成分組成は、重量%で、 R :20〜30%、 Fe:5〜30%、 Cu:2〜15%、 Ni:0.05〜1.5%、 Ti,Zr,Hf,V,Nb,Taのうち1種または2種以上:1.0〜5.5
%、 残部:Coおよび不可避不純物、 からなるものである。
The component composition of the above R 2 Co 17 based sintered magnet is as follows: R: 20 to 30%, Fe: 5 to 30%, Cu: 2 to 15%, Ni: 0.05 to 1.5%, Ti, Zr, One or more of Hf, V, Nb, and Ta: 1.0 to 5.5
%, Balance: Co and inevitable impurities.

さらに最近、上記R2Co17系焼結磁石にCを0.005〜1.0
%添加して保磁力を向上させたものも提供されている。
More recently, C was added to the above R 2 Co 17 sintered magnet in an amount of 0.005 to 1.0.
There is also provided one in which the coercive force is improved by adding%.

これらR2Co17系焼結磁石は、次のようにして製造され
ている。
These R 2 Co 17- based sintered magnets are manufactured as follows.

まず、所定の成分組成を有する溶製合金インゴットを
粉砕して微粉末にし、これを磁界中プレスにより磁気異
方性を有する圧粉体とした後、この圧粉体に液相が発生
する温度域で焼結を施し、その後、溶体化処理および時
効処理の熱処理を行って製造される。
First, a melted alloy ingot having a predetermined component composition is pulverized into a fine powder, which is pressed into a green compact having magnetic anisotropy by pressing in a magnetic field, and then heated to a temperature at which a liquid phase is generated in the green compact. Sintering is performed in the region, and then heat treatment of a solution treatment and an aging treatment is performed.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

ところが、上記C含有のR2Co17系焼結磁石を上記従来
の製造方法で製造すると、焼結過程の初期に、上記Cは
合金成分のうちでも主としてIV aおよびV a族金属と反
応して炭化物を形成するが、この炭化物は金属融液との
ぬれ性が悪いために液相焼結過程で凝集粗大化し、この
ぬれ性の悪い粗大化炭化物が液相焼結による磁石焼結体
の高密度化を阻害する。そのため上記C含有R2Co17系焼
結磁石マトリックスの結晶粒も著しく成長する。
However, when the above-described C-containing R 2 Co 17- based sintered magnet is manufactured by the above-described conventional manufacturing method, at the beginning of the sintering process, the above-mentioned C mainly reacts with the IVa and Va group metals among the alloy components. However, the carbides are poorly wettable with the metal melt, so that they are agglomerated and coarsened during the liquid phase sintering process. Inhibits high density. Therefore, the crystal grains of the C-containing R 2 Co 17 based sintered magnet matrix also grow remarkably.

このように、結晶粒が著しく成長した粗密な焼結体の
組成を均一化するために溶体化処理を行うと、結晶粒が
大きく粒界密度が小さいために、粒界成分が結晶粒内部
に拡散するに要する時間、すなわち溶体化時間が長くな
る。
As described above, when the solution treatment is performed to homogenize the composition of the dense and dense sintered body in which the crystal grains are remarkably grown, the grain boundary components are located inside the crystal grains because the crystal grains are large and the grain boundary density is small. The time required for diffusion, that is, the solution heat-up time becomes longer.

長時間の溶体化処理(例えば、8時間以上)を行え
ば、粗大化した結晶粒を有する焼結体であっても、組成
の溶体化は可能であるけれども、生産効率を落すことは
勿論のこと、酸素との親和力が強く蒸気圧の高い希土類
元素の酸化および蒸発を招き、かえって磁気特性を低下
させる結果となっていた。
If the solution treatment is carried out for a long time (for example, 8 hours or more), even if the sintered body has coarse crystal grains, the composition can be solution-solutioned, but the production efficiency is of course reduced. That is, oxidation and evaporation of a rare earth element having a high affinity for oxygen and a high vapor pressure are caused, and the magnetic properties are rather deteriorated.

また、上記磁石焼結体の低密度化および結晶粒の粗大
化は、磁石を脆化し、加工性の低下、最終製品の欠けま
たは割れの原因となっており、さらに残留磁束密度の低
下、ひいては最大エネルギー積の低下をもたらすという
問題点も生じていた。
In addition, the low density and coarse crystal grains of the magnet sintered body embrittle the magnet, lowering the workability, causing chipping or cracking of the final product, and further lowering the residual magnetic flux density. There has also been a problem that the maximum energy product is reduced.

〔課題を解決するための手段〕[Means for solving the problem]

そこで本発明者等は、このような問題点を解決すべく
研究を行なった結果、 C含有R2Co17系焼結磁石に、さらにNを添加すると、 (1) 焼結初期に成分元素のIV aおよびV a族金属と
反応して、これら金属の成分数に応じて単元炭窒化物な
いし多元複合炭窒化物を形成し、このような炭窒化物
は、従来のC単独添加による磁石中で形成される炭化物
に比べて液相とのぬれ性が良好なために、磁石圧粉体の
液相焼結を阻害することなく、高密度で残留磁石密度の
高いR2Co17系焼結体が得られ、また、ぬれ性の良い炭窒
化物は焼結工程で凝集粗大化することなく微細に保たれ
る。
The present inventors have conducted research to solve such problems. As a result, when N is further added to the C-containing R 2 Co 17 based sintered magnet, (1) Reacts with IVa and Va group metals to form unitary carbonitrides or multiple compound carbonitrides depending on the number of components of these metals. R 2 Co 17 based sintering with high density and high residual magnet density without hindering the liquid phase sintering of magnet compacts due to better wettability with the liquid phase compared to carbide formed by A carbonitride is obtained, and the carbonitride with good wettability is kept fine without agglomeration and coarsening in the sintering step.

(2) 上記微細炭窒化物は、磁石マトリックスの結晶
粒界をピンニングし、結晶粒の成長を抑制することか
ら、成分元素の拡散行程の減少および粒界拡散の寄与の
増大により、溶体化工程での組成の均一化が短時間に効
率よく完全に行なわれ、もって磁壁に対するピンニング
力がより均一であるために角型性の改善された磁石が得
られる。
(2) Since the fine carbonitrides pin the crystal grain boundaries of the magnet matrix and suppress the growth of crystal grains, the solution process is performed by decreasing the diffusion process of the component elements and increasing the contribution of the grain boundary diffusion. In this case, the homogenization of the composition can be performed efficiently and completely in a short time, and a magnet having improved squareness can be obtained because the pinning force on the domain wall is more uniform.

(3) 磁石マトリックスの結晶粒が微細であるため
に、機械的特性の面においても、靭性の顕著な向上が見
られる。
(3) Since the crystal grains of the magnet matrix are fine, remarkable improvement in toughness is also observed in terms of mechanical properties.

という知見を得たのである。That's the finding.

この発明は、かかる知見にもとづいてなされたもので
あって、 重量%で R :20〜30%、 Fe:5〜30%、 Cu:2〜15%、 Ni:0.05〜1.5%、 Ti,Zr,Hf,V,Nb,Taのうち1種または2種以上:1.0〜5.5
%、 を含有し、さらに C:0.008〜0.5%、 N:0.002〜0.2%、 を含有し、残部:Coおよび不可避不純物からなる組成
(以上、重量%)を有し、さらに好ましくは、 C≧Nなる関係を有する磁気特性および機械的強度に
優れた希土類−コバルト系焼結磁石に特徴を有するもの
である。
The present invention has been made on the basis of the above findings, and is as follows: R: 20 to 30%, Fe: 5 to 30%, Cu: 2 to 15%, Ni: 0.05 to 1.5%, Ti, Zr , Hf, V, Nb, Ta, one or two or more: 1.0 to 5.5
%, And further contains C: 0.008 to 0.5%, N: 0.002 to 0.2%, and the balance: has a composition of Co and unavoidable impurities (more than weight%), and more preferably, C ≧ The present invention is characterized by a rare earth-cobalt based sintered magnet excellent in magnetic properties and mechanical strength having a relationship of N.

つぎに、この発明において、R2Co17系焼結磁石の成分
組成を上記の如く限定した理由について述べる。
Next, the reason for limiting the component composition of the R 2 Co 17 sintered magnet in the present invention as described above will be described.

(1) R成分、 R成分が20%未満では保磁力が低下し一方30%を越え
含有させると残留磁束密度が低下することからその含有
量を20〜30%と定めた。
(1) When the R component and the R component are less than 20%, the coercive force decreases, and when the R component exceeds 30%, the residual magnetic flux density decreases. Therefore, the content is set to 20 to 30%.

(2) Fe成分、 Fe成分には、残留磁束密度を改善する作用があるがそ
の含有量が5%未満では所望の効果が得られず、一方30
%を越えて含有させると保磁力が低下するようになるこ
とからその含有量を5〜30%と定めた。
(2) The Fe component and the Fe component have an effect of improving the residual magnetic flux density, but if the content is less than 5%, the desired effect cannot be obtained.
%, The coercive force decreases, so the content is set to 5 to 30%.

(3) Cu成分、 Cu成分には保磁力を向上させる作用があるがその含有
量が2%未満では所望の高保磁力を確保することができ
ず、一方15%を越えて含有させると残留磁束密度が低下
するようになることからその含有量を2〜15%と定め
た。
(3) The Cu component and the Cu component have the effect of improving the coercive force, but if the content is less than 2%, the desired high coercive force cannot be secured. The content was determined to be 2 to 15% because the density was lowered.

(4) Ni成分、 Ni成分には磁石の角型性を改善し、最大エネルギー積
を向上させる作用があるが、その含有量が0.05未満では
所望の効果が得られず一方1.5%を越えて含有させると
保磁力が低下するようになることから、その含有量を0.
05〜1.5%と定めた。
(4) Ni component and Ni component have the effect of improving the squareness of the magnet and increasing the maximum energy product. However, if the content is less than 0.05, the desired effect cannot be obtained, while the content exceeds 1.5%. Since the coercive force will decrease when it is contained, its content is set to 0.
It was set at 05-1.5%.

(5) Ti,Zr,Hf,V,Ta,Nbのうち1種または2種以上、 これら成分は、炭窒化物を形成し結晶粒成長を抑制す
る効果があるがその含有量が1.0%未満では炭窒化物の
析出量が不十分であり所望の結果が得られず、一方5.5
%を越えて含有させると炭窒化物の析出量が過剰になり
残留磁束密度を低下させることからその含有量を1.0〜
5.5%と定めた。
(5) One or more of Ti, Zr, Hf, V, Ta, and Nb. These components have an effect of forming carbonitrides and suppressing crystal grain growth, but the content is less than 1.0%. In this case, the amount of carbonitride deposited is insufficient and the desired result cannot be obtained.
%, The amount of carbonitride precipitates excessively and lowers the residual magnetic flux density.
5.5%.

(6) C成分、 C成分は炭窒化物を形成し、粒成長抑制の効果がある
が、その含有量が0.008%未満では炭窒化物の析出量が
不十分であり、所望の効果が得られず、一方0.5%を越
えて含有させると炭窒化物の析出量が過剰になり残留磁
束密度が低下するようになることからその含有量を0.00
8〜0.5%と定めた。Cは、ボールミル、振動ミル、アト
ライターミル等による合金インゴットの粉砕の工程で粉
末の酸化を防止するために用いられる有機溶媒あるい
は、微粉末のプレス成形性を改善するために添加される
各種助剤(潤滑剤、結合剤)の形で製品中に添加される
が、さらに磁石粉末にC粉末を添加するなどの方法によ
り含有C量を前記範囲内に調整することができる。
(6) The C component and the C component form carbonitrides and have an effect of suppressing grain growth, but if the content is less than 0.008%, the amount of carbonitrides precipitated is insufficient, and the desired effect is obtained. On the other hand, if the content exceeds 0.5%, the precipitation amount of carbonitride becomes excessive and the residual magnetic flux density decreases, so that the content is 0.00%.
It was determined to be 8 to 0.5%. C is an organic solvent used to prevent the oxidation of the powder in the step of pulverizing the alloy ingot by a ball mill, a vibration mill, an attritor mill, or the like, or various kinds of additives added to improve the press formability of the fine powder. The C content is added to the product in the form of an agent (lubricant, binder), and the C content can be adjusted within the above range by, for example, adding C powder to the magnet powder.

(7) N成分、 N成分は炭窒化物を形成し、焼結性を改善しまた結晶
粒成長を抑制する効果があるが、その含有量が0.002%
未満では、所望の効果が得られず、一方0.5%を越えて
含有させると、炭窒化物の析出量が過剰となり、残留磁
束密度が低下するようになることから、その含有量を0.
002〜0.2%と定めた。
(7) N component, N component forms carbonitrides, has an effect of improving sinterability and suppressing crystal grain growth, but its content is 0.002%
If the content is less than 0.5%, the desired effect cannot be obtained.On the other hand, if the content exceeds 0.5%, the amount of carbonitride precipitated becomes excessive and the residual magnetic flux density decreases.
002-0.2%.

(8) C≧N、 C量とN量の関係については、N量がC量を上回る
と、IV a,V a族金属と反応しない遊離Nを一部生じ、こ
の遊離Nがマトリックスに固溶し、その結晶磁気異方性
を低下させ、もって磁石の保磁力を低下させるため、C
量≧N量と定めた。
(8) C ≧ N, with respect to the relationship between the amount of C and the amount of N, if the amount of N exceeds the amount of C, some free N that does not react with the Group IVa, Va metal is generated, and this free N solidifies in the matrix. To reduce the crystal magnetic anisotropy and thereby reduce the coercive force of the magnet,
The amount was determined to be ≧ N amount.

Nは、成分元素の窒化物として添加してもよいが、焼
結雰囲気にN2ガスを加えることにより磁石中に添加する
こともでき、雰囲気中のN2ガスの体積分率を適切に選定
することにより磁石の含有N量を上記範囲内に調整する
こともできる。
N may be added as a nitride of a component element, but can also be added to the magnet by adding N 2 gas to the sintering atmosphere, and appropriately selecting the volume fraction of N 2 gas in the atmosphere. By doing so, the N content of the magnet can be adjusted within the above range.

〔実 施 例〕〔Example〕

つぎに、この発明を実施例にもとづいて具体的に説明
する。
Next, the present invention will be specifically described based on embodiments.

(1) 実施例1〜9および比較例1〜5、 高周波溶解炉を用い、Ar雰囲気中にて、 Sm:25.3%、 Fe:15.0%、 Cu: 8.0%、 Ni: 1.4%、 Zr: 2.3%、 Hf: 0.2%、 残部:Coおよび不可避不純物からなる組成(以上、重量
%)を有する合金を溶製し、インゴットに鋳造した。
(1) Examples 1 to 9 and Comparative Examples 1 to 5, Sm: 25.3%, Fe: 15.0%, Cu: 8.0%, Ni: 1.4%, Zr: 2.3 in an Ar atmosphere using a high-frequency melting furnace. %, Hf: 0.2%, balance: An alloy having a composition (the above, weight%) consisting of Co and inevitable impurities was cast into an ingot.

このインゴットをスタンプミルにてArガス雰囲気中で
粉砕し、さらに振動ミルを用いてダイフロン中で粉砕し
て平均粒径:約4μmの合金粉末を得た。
The ingot was pulverized in a stamp mill in an Ar gas atmosphere, and further pulverized in a diflon using a vibration mill to obtain an alloy powder having an average particle size of about 4 μm.

この合金粉末にプレス成形性を改善する目的で潤滑剤
としてステアリン酸を0.05%添加し、さらに磁石のC含
有量を変化させるために第1表の実施例1〜9、比較例
1〜5および従来例1に示される量のC粉末を添加して
原料粉末とした。
To this alloy powder, stearic acid was added as a lubricant in an amount of 0.05% for the purpose of improving press formability, and in order to further change the C content of the magnet, Examples 1 to 9 in Table 1 and Comparative Examples 1 to 5 and The amount of C powder shown in Conventional Example 1 was added to obtain a raw material powder.

このようにして得られたC含有量の異なる原料粉末を
12KOeの磁界中で配向させた状態で配向方向と直角方向
に1.5ton/cm2の圧力で圧縮し、たて:10mm×横:10mm×高
さ:10mmの圧粉体を作製した。
The thus obtained raw material powders having different C contents are
While being oriented in a magnetic field of 12 KOe, it was compressed at a pressure of 1.5 ton / cm 2 in a direction perpendicular to the orientation direction to produce a green compact having a length of 10 mm, a width of 10 mm and a height of 10 mm.

これら圧粉体を、第1表の実施例1〜9および比較例
1〜5に示されるN2ガス含有Arガス雰囲気中、温度:121
0℃、1時間保持の条件で焼結した。さらに比較のため
に、純Arガス雰囲気中で上記条件と同一条件にて焼結
し、従来例1として第1表に示した。
These green compacts were placed in an N 2 gas-containing Ar gas atmosphere shown in Examples 1 to 9 and Comparative Examples 1 to 5 in Table 1 at a temperature of 121.
Sintering was carried out at 0 ° C. for 1 hour. For comparison, sintering was performed in a pure Ar gas atmosphere under the same conditions as above, and Table 1 shows the results as Conventional Example 1.

上記条件で焼結して得られた実施例1〜9、比較例1
〜5および従来例1の焼結体を、純Arガス雰囲気中、温
度:1180℃、2時間保持の条件で溶体化処理を施した
後、Arガス吹付けによる急冷を行い、ついで純Arガス雰
囲気中、温度:800℃、2時間保持の条件で加熱後、冷却
速度:30℃/時間で温度:400℃まで連続冷却を行うとい
う時効処理を施した。
Examples 1 to 9 and Comparative Example 1 obtained by sintering under the above conditions
To 5 and Conventional Example 1 were subjected to a solution treatment in a pure Ar gas atmosphere at a temperature of 1180 ° C. for 2 hours and then quenched by Ar gas spraying, followed by pure Ar gas. After heating in an atmosphere at a temperature of 800 ° C. for 2 hours, aging treatment was performed in which cooling was performed continuously at a cooling rate of 30 ° C./hour to a temperature of 400 ° C.

このようにして製造された磁石に含まれるCおよびN
を分析し、さらに上記製造された磁石の密度、抗折強度
および磁気特性を測定し、それらの結果を第1表に示し
た。
C and N contained in the magnet thus manufactured
Was analyzed, and the density, flexural strength and magnetic properties of the manufactured magnet were measured. The results are shown in Table 1.

なお、磁気特性における角型比とは、減磁曲線におけ
るひざ磁場HK(磁化の強さが残留磁束密度の90%になる
逆磁場の強さ)と保磁力iHcの比で示される値である。
The squareness ratio in the magnetic properties is a value indicated by the ratio of the knee magnetic field H K (the strength of the reverse magnetic field at which the magnetization strength becomes 90% of the residual magnetic flux density) to the coercive force iHc in the demagnetization curve. is there.

(2) 実施例10〜18および比較例6〜10、 高周波溶解炉を用い、Arガス雰囲気中にて、 Sm:17.9%、 Ce:7.6%、 Fe:20.0%、 Cu:6.0%、 Ni: 0.5%、 Ti:1.9%、 V : 0.3%、 残部:Coおよび不可避不純物からなる組成(以上、重量
%)を有する合金を溶解し、インゴットに鋳造した。
(2) Examples 10 to 18 and Comparative Examples 6 to 10, Sm: 17.9%, Ce: 7.6%, Fe: 20.0%, Cu: 6.0%, Ni: An alloy having a composition of 0.5%, Ti: 1.9%, V: 0.3%, and balance: Co and unavoidable impurities (above, by weight) was melted and cast into an ingot.

このインゴットをスタンプミルにてArガス雰囲気中で
粉砕し、さらに振動ミルを用いてダイフロン中で粉砕し
て平均粒径:約4μmの合金粉末を得た。
The ingot was pulverized in a stamp mill in an Ar gas atmosphere, and further pulverized in a diflon using a vibration mill to obtain an alloy powder having an average particle size of about 4 μm.

この合金粉末に、プレス成形性を改善する目的で潤滑
剤としてステアリン酸を0.05%添加し、さらに磁石の含
有C量を変化させるために、C粉末を第2表の実施例10
〜18、比較例6〜10および従来例2の割合で添加し原料
粉末を得た。
To this alloy powder, 0.05% of stearic acid was added as a lubricant for the purpose of improving the press formability, and further, in order to change the C content of the magnet, the C powder was used in Example 10 shown in Table 2.
To 18, Comparative Examples 6 to 10 and Conventional Example 2 to obtain raw material powders.

このようにして得られた原料粉末を実施例1と同一条
件で圧縮し、たて:10mm×横:10mm×高さ:10mmの圧粉体
を作製し、これら圧粉体を第2表の実施例10〜18、比較
例6〜10および従来例2に示されるN2ガス含有量の異っ
たArガスおよび純Arガス雰囲気中、温度:1185℃、1時
間保持の条件で焼結を行った。
The raw material powder thus obtained was compressed under the same conditions as in Example 1 to produce green compacts having a length of 10 mm, a width of 10 mm, and a height of 10 mm. The sintering was carried out in an atmosphere of Ar gas having a different N 2 gas content and a pure Ar gas atmosphere shown in Examples 10 to 18, Comparative Examples 6 to 10 and Conventional Example 2 at a temperature of 1185 ° C. for 1 hour. went.

これら焼結体を純Arガス雰囲気中、温度:1120℃、2
時間保持の条件で溶体化処理を施した後、Arガス吹付け
による急冷を行い、ついでArガス雰囲気中、温度:830
℃、2時間保持の条件で加熱後、冷却速度:30℃/時間
で400℃まで連続冷却を行う時効処理を施した。
These sintered bodies were placed in a pure Ar gas atmosphere at a temperature of 1120 ° C., 2
After performing the solution treatment under the condition of holding time, quenching is performed by spraying Ar gas, and then in an Ar gas atmosphere, at a temperature of 830.
After heating at a temperature of 2 ° C. for 2 hours, an aging treatment was carried out to continuously cool to 400 ° C. at a cooling rate of 30 ° C./hour.

このようにして製造された磁石に含まれるCおよびN
を分析し、さらに密度、抗折強度、 残留磁束密度、保磁力、最大エネルギー積および角型比
を測定し、それらの結果を第1表に示した。
C and N contained in the magnet thus manufactured
And analyze the density, flexural strength, The residual magnetic flux density, coercive force, maximum energy product and squareness ratio were measured, and the results are shown in Table 1.

第1表および第2表の結果から、比較例および従来例
よりも、この発明の実施例の方が機械的特性および磁気
的特性が優れていることから、重量%で C:0.008〜0.5%、 N:0.002〜0.2%、 を同時に含有することが必要であることがわかり、さら
に第1表の実施例8〜9よりも実施例1〜7の方が機械
的特性および磁気的特性が優れており、さらに第1表の
実施例17〜18よりも実施例10〜16の方が同様に優れてい
ることから、 C≧N なる関係を満足すると一層優れた結果が得られることが
わかる。
From the results shown in Tables 1 and 2, the mechanical properties and magnetic properties of the examples of the present invention are superior to those of the comparative examples and the conventional examples. Therefore, C: 0.008 to 0.5% by weight. , N: 0.002 to 0.2%, and it is necessary to simultaneously contain the following. Examples 1 to 7 are more excellent in mechanical and magnetic properties than Examples 8 to 9 in Table 1. Further, since Examples 10 to 16 are similarly superior to Examples 17 to 18 in Table 1, it can be seen that more excellent results can be obtained if the relationship of C ≧ N is satisfied.

〔発明の効果〕〔The invention's effect〕

従来公知のC含有R2Co17系磁石に、さらにNを適量含
有せしめることにより一層優れたR2Co17系磁石を提供す
ることができ、産業上優れた効果をもたらすものであ
る。
By further adding an appropriate amount of N to a conventionally known C-containing R 2 Co 17 -based magnet, a more excellent R 2 Co 17 -based magnet can be provided, and an industrially superior effect can be obtained.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Yを含む希土類元素のうち1種または2種
以上を組合せたもの:20〜30%、 Fe:5〜30%、 Cu:2〜15%、 Ni:0.05〜1.5%、 Ti,Zr,Hf,V,Nb,Taのうち1種または2種以上:1.0〜5.5
%、 を含有し、さらに C:0.008〜0.5%、 N:0.002〜0.2%、 を含有し、残部:Coおよび不可避不純物からなる組成
(以上、重量%)を有することを特徴とする磁気特性お
よび機械的強度に優れた希土類−コバルト系焼結磁石。
1. A rare earth element containing one or more kinds of rare earth elements containing Y: 20 to 30%, Fe: 5 to 30%, Cu: 2 to 15%, Ni: 0.05 to 1.5%, Ti: , Zr, Hf, V, Nb, Ta, one or two or more: 1.0 to 5.5
And C: 0.008 to 0.5%, N: 0.002 to 0.2%, and the balance: Co and unavoidable impurities (the above, by weight%). Rare earth-cobalt sintered magnet with excellent mechanical strength.
【請求項2】上記CおよびNは、C≧Nなる関係を有す
ることを特徴とする請求項1記載の磁気特性および機械
的強度に優れた希土類−コバルト系焼結磁石。
2. The rare earth-cobalt sintered magnet according to claim 1, wherein C and N have a relationship of C ≧ N.
JP63182976A 1988-07-22 1988-07-22 Rare earth-cobalt sintered magnet with excellent magnetic properties and mechanical strength Expired - Fee Related JP2643329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63182976A JP2643329B2 (en) 1988-07-22 1988-07-22 Rare earth-cobalt sintered magnet with excellent magnetic properties and mechanical strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63182976A JP2643329B2 (en) 1988-07-22 1988-07-22 Rare earth-cobalt sintered magnet with excellent magnetic properties and mechanical strength

Publications (2)

Publication Number Publication Date
JPH0232503A JPH0232503A (en) 1990-02-02
JP2643329B2 true JP2643329B2 (en) 1997-08-20

Family

ID=16127596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63182976A Expired - Fee Related JP2643329B2 (en) 1988-07-22 1988-07-22 Rare earth-cobalt sintered magnet with excellent magnetic properties and mechanical strength

Country Status (1)

Country Link
JP (1) JP2643329B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5264119A (en) * 1992-07-09 1993-11-23 Rollins Stephen M Filter container for positioning, installation and maintenance within limited space

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58197249A (en) * 1982-05-11 1983-11-16 Sumitomo Special Metals Co Ltd Permanent magnet alloy having 2-phase fine structure

Also Published As

Publication number Publication date
JPH0232503A (en) 1990-02-02

Similar Documents

Publication Publication Date Title
JP3891307B2 (en) Nd-Fe-B rare earth permanent sintered magnet material
KR101227273B1 (en) Nd-Fe-B based Rare-Earth Permanent Magnet Material
JP5477282B2 (en) R-T-B system sintered magnet and manufacturing method thereof
US6080245A (en) Rare earth permanent magnet and method for producing the same
JP6089535B2 (en) R-T-B sintered magnet
US7175718B2 (en) Rare earth element permanent magnet material
EP1712652A1 (en) R-fe-b-based rare earth permanent magnet material
JPH0521218A (en) Production of rare-earth permanent magnet
US20040094237A1 (en) R-Fe-B sintered magnet
Ormerod The physical metallurgy and processing of sintered rare earth permanent magnets
KR20100037030A (en) R-fe-b rare earth sintered magnet
JPH04245403A (en) Rare earth-fe-co-b-based anisotropic magnet
JP2000234151A (en) Rare earth-iron-boron system rare earth permanent magnet material
JP2643329B2 (en) Rare earth-cobalt sintered magnet with excellent magnetic properties and mechanical strength
CN111524675B (en) R-T-B series permanent magnetic material and preparation method and application thereof
JPH0475304B2 (en)
JPH0146574B2 (en)
JP3126199B2 (en) Manufacturing method of rare earth permanent magnet
JPS61295342A (en) Manufacture of permanent magnet alloy
JPH05182813A (en) Manufacture of rare earth permanent magnet
JPH0521219A (en) Production of rare-earth permanent magnet
JPH0475303B2 (en)
JPS6077961A (en) Permanent magnet material and its manufacture
JP3053344B2 (en) Rare earth magnet manufacturing method
CN115862987A (en) Neodymium-iron-boron magnetic material and production method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees