JPH0711301A - Production of permanent magnet powder material - Google Patents

Production of permanent magnet powder material

Info

Publication number
JPH0711301A
JPH0711301A JP5176172A JP17617293A JPH0711301A JP H0711301 A JPH0711301 A JP H0711301A JP 5176172 A JP5176172 A JP 5176172A JP 17617293 A JP17617293 A JP 17617293A JP H0711301 A JPH0711301 A JP H0711301A
Authority
JP
Japan
Prior art keywords
powder
ferromagnetic
pure
alloy
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5176172A
Other languages
Japanese (ja)
Other versions
JP2905043B2 (en
Inventor
Akihiko Yanagiya
彰彦 柳谷
Atsushi Okawa
淳 大川
Yoshikazu Tanaka
義和 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP5176172A priority Critical patent/JP2905043B2/en
Publication of JPH0711301A publication Critical patent/JPH0711301A/en
Application granted granted Critical
Publication of JP2905043B2 publication Critical patent/JP2905043B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To form the alloy powder of a ferromagnetic phase by executing mechanical ironing to induce a solid phase reaction in place of the process for production of MnAlC magnet powder by the conventional casting-solution treatment-hot extrusion process or gas atomizing-hot extrusion process requiring a melting stage which requires a large quantity of heat energy or a casting stage which generates segregation. CONSTITUTION:The ferromagnetic powder consisting of the MnAlC alloy is produced by realizing alloying by the mechanical ironing to induce the solid reaction by executing the milling using various kinds of ball mills, such as planetary gear ball mills, rolling mills or attrition mills, with a powder mixture composed of constituting unit elements of the MnAlC alloy consisting of pure Al, pure Mn, pure carbon, pure Ni, etc. The ferromagnetic powder is further executed to a heat treatment after the mechanical ironing described above in order to enhance the content of the ferromagnetic phase, by which the diffusion of the elements is activated and the formation of the quasi-stable ferromagnetic tau phase is executed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、MnAlC系合金磁石
の製造に使用する永久磁石粉末材料の製造方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a permanent magnet powder material used for producing an MnAlC alloy magnet.

【0002】[0002]

【従来の技術】MnAlC系合金において、強磁性を示
すのは準安定相であり、この強磁性相を生成させるため
には通常溶解凝固後の冷却時に制御冷却するかあるいは
冷却後に等温焼鈍するかのいずれかの方法が行われる。
2. Description of the Related Art In MnAlC alloys, it is the metastable phase that exhibits ferromagnetism. In order to produce this ferromagnetic phase, it is usually controlled by cooling during melting after solidification or by isothermal annealing after cooling. Either method is performed.

【0003】この磁石の永久磁石としての工業的な製造
方法としては、古くは1500℃以上の高温にて母合金
を溶解後、鋳造−溶体化−温間押出というプロセスで行
われ、また最近では粉末プロセスとして主として母合金
のガスアトマイズ粉末−温間押出というプロセスにより
上記のプロセスと同じく1500℃に溶解後急冷粉末を
製造するというプロセスで行われてきた。しかし、これ
らのいずれのプロセスにおいても、大量の熱エネルギー
を必要とする溶解工程が不可避である。さらに前者にお
いては、溶解後の鋳造過程で原理的に構成成分の偏析を
避けることができないという工業的改善を必要とする点
があった。
As an industrial manufacturing method of this magnet as a permanent magnet, a process of casting-solution-warm extrusion after melting the mother alloy at a high temperature of 1500 ° C. or more is used in recent years, and recently, As a powder process, a process of gas atomizing powder of mother alloy-warm extrusion is mainly used to produce a rapidly cooled powder after melting at 1500 ° C. as in the above process. However, in any of these processes, a melting step that requires a large amount of heat energy is inevitable. Further, in the former case, there is a point that industrial improvement is necessary in principle in which segregation of constituent components cannot be avoided in the casting process after melting.

【0004】[0004]

【発明が解決しようとする課題】上記したように大量の
熱エネルギーを要する溶解工程あるいは偏析を生じる鋳
造工程を必要とする従来の鋳造−溶体化−温間押出プロ
セスあるいはガスアトマイズ−温間押出プロセスによる
MnAlC系磁石粉末の製造方法にかえて、このような
問題点のない固相反応により強磁性相の合金粉末を生成
させようとするものである。
As described above, according to the conventional casting-solution-warm extrusion process or gas atomization-warm extrusion process that requires a melting process requiring a large amount of heat energy or a casting process that causes segregation. Instead of the manufacturing method of the MnAlC-based magnet powder, the alloy powder of the ferromagnetic phase is to be generated by the solid-phase reaction without such a problem.

【0005】[0005]

【課題を解決するための手段】純Al金属、純Mn金
属、純炭素等からなるMnAlC系合金の構成単体元素
を当該磁石合金組成比に混合した混合粉末を出発原料に
し、遊星ボールミル、転動ミルあるいはアトリッション
ミルなどの各種ボールミルなどを用いてミリングを行
い、固相反応を生起せしめるメカニカルアロイングを行
って合金化を実現し、MnAlC系合金における強磁性
粉末を製造する。さらに強磁性相の含有率をより高くす
るために、上記メカニカルアロイング後にさらに熱処理
を行い、当該元素の拡散を活発にし、準安定強磁性相の
生成を行う。
[Means for Solving the Problems] A mixed powder obtained by mixing elemental constituent elements of an MnAlC-based alloy composed of pure Al metal, pure Mn metal, pure carbon, etc. to the magnet alloy composition ratio is used as a starting material, and a planetary ball mill and rolling mill are used. Milling is performed by using various ball mills such as a mill or an attrition mill, and mechanical alloying that causes a solid-phase reaction is performed to realize alloying, thereby producing a ferromagnetic powder in an MnAlC alloy. Further, in order to further increase the content rate of the ferromagnetic phase, heat treatment is further performed after the mechanical alloying to activate diffusion of the element and generate a metastable ferromagnetic phase.

【0006】[0006]

【作用】本発明の永久磁石材料の製造方法においては、
ボールミルなどを用いたメカニカルアロイングつまり固
相反応により目的の強磁性を含む粉末を生成させるた
め、すなわち基本的に溶解凝固過程をとらないため、凝
固時の偏析、つまり初晶および残液凝固部からなる主要
成分の組成差が原理上起こり得ず、本発明の方法により
製造した永久磁石は単一組成からなるものである。ま
た、本発明は溶解工程がないので大量の熱エネルギーを
要しない。
In the method for producing a permanent magnet material of the present invention,
Segregation during solidification, that is, primary crystal and residual liquid coagulation part, because mechanical alloying using a ball mill, that is, solid-phase reaction, produces the target powder containing ferromagnetism In principle, the compositional difference of the main components cannot be caused, and the permanent magnet manufactured by the method of the present invention has a single composition. Also, the present invention does not require a large amount of heat energy because it has no melting step.

【0007】[0007]

【実施例】本発明の下記に記載する実施例1ないし実施
例5における永久合金磁石材料粉末の構成単体元素の組
成割合、メカニカルアロイング条件および熱処理条件等
の各種実施条件をまとめて表1に示す。
EXAMPLES Table 1 summarizes various implementation conditions such as the composition ratio of the constituent elemental elements of the permanent alloy magnet material powder, mechanical alloying conditions and heat treatment conditions in Examples 1 to 5 described below of the present invention. Show.

【0008】[0008]

【表1】 [Table 1]

【0009】実施例1.図1に示す純Mn、純Ni、純
Alおよび純炭素の各粉末をMn:68wt%、C:
0.4wt%、Ni:0.8wt%、Al:bal.の
割合になるように総量50gを秤量し、遊星ボールミル
にセットし、200rpmで最長50時間までミリング
を行った。使用したボール、ポットはいずれもメノウ製
で、ボールは10mm径100個、ポットの容量は250
ccであった。ミリングの途中、適宜ボールミルを止めて
試料粉末をサンプリングし、外観形状および磁気特性の
温度による変化を測定した。外観形状を図2に示す。磁
気特性のアロイング時間による変化を図3に示す。図3
からアロイング時間によりキュリー点は変化せず、生成
する強磁性τ相は同一であることが判る。上記実施例1
でメカニカルアロイングした粉末をさらに熱処理した粉
末のX線回折結果を図4に示す。図4において出発物質
であるα−Mn、生成物質である安定相のβ−Mn、お
よび析出相である炭化物(Mn3AlC)と共に、強磁
性である準安定相のτ相がX−ray的に確認された。
Embodiment 1. The powders of pure Mn, pure Ni, pure Al and pure carbon shown in FIG. 1 were Mn: 68 wt%, C:
0.4 wt%, Ni: 0.8 wt%, Al: bal. The total amount of 50 g was weighed so that the ratio became, and set in a planetary ball mill, and milled at 200 rpm for up to 50 hours. All the balls and pots used were made of agate, 100 balls were 10 mm in diameter, and the pot capacity was 250.
It was cc. During the milling, the ball mill was appropriately stopped and the sample powder was sampled to measure changes in the external shape and magnetic characteristics with temperature. The external shape is shown in FIG. Fig. 3 shows the change in magnetic properties depending on the alloying time. Figure 3
It can be seen from the results that the Curie point does not change depending on the alloying time, and the generated ferromagnetic τ phase is the same. Example 1 above
FIG. 4 shows the X-ray diffraction result of the powder obtained by further heat-treating the powder mechanically alloyed with. In FIG. 4, together with α-Mn that is a starting material, β-Mn of a stable phase that is a generated material, and carbide (Mn 3 AlC) that is a precipitated phase, the τ phase of a metastable phase that is ferromagnetic is X-ray-like. Confirmed.

【0010】実施例2.純Mn、純Ni、純Alおよび
純炭素の各粉末をMn:70wt%、C:0.4wt
%、Ni:0.8wt%、Al:bal.の割合になる
ように総量75gを秤量し、遊星ボールミルにセットし
250rpmで10時間ミリングを行った。使用したボ
ール、ポットはいずれもメノウ製で、ボールは10mm径
100個、ポットの容量は250ccであった。ミリング
後粉末を容器からとりだし、Arガス雰囲気中1000
℃10分の熱処理の後水冷し、さらに昇温し650℃3
0分の熱処理を行った。磁気特性および熱磁気特性は図
5および図6に示す。
Embodiment 2. Powders of pure Mn, pure Ni, pure Al and pure carbon are Mn: 70 wt% and C: 0.4 wt.
%, Ni: 0.8 wt%, Al: bal. The total amount of 75 g was weighed so that the ratio became, and set on a planetary ball mill, and milled at 250 rpm for 10 hours. All the balls and pots used were made of agate, 100 balls were 10 mm in diameter, and the pot capacity was 250 cc. After milling, take out the powder from the container and 1000 in Ar gas atmosphere.
After heat treatment at ℃ 10 minutes, water-cooled, further heated to 650 ℃ 3
Heat treatment was performed for 0 minutes. The magnetic properties and thermomagnetic properties are shown in FIGS. 5 and 6.

【0011】ボールミリングした粉末はX線回折ではA
lとMnの回折ピークのみ認められ、ε相、τ相回折ピ
ークは認められなかった。しかし、図6に見るとおり、
ボールミリング後1030℃×30min の熱処理を行う
とε相が生成した。さらに、650℃の熱処理を行うと
強磁性τ相が生成した。図5に見るとおり、生成したτ
相のキュリー点は315℃であった。
The ball-milled powder is A by X-ray diffraction.
Only the diffraction peaks of 1 and Mn were observed, and the ε phase and τ phase diffraction peaks were not observed. However, as you can see in Figure 6,
After the ball milling, a heat treatment at 1030 ° C. for 30 minutes was performed, and an ε phase was formed. Further, a heat treatment at 650 ° C. generated a ferromagnetic τ phase. As shown in Fig. 5, the generated τ
The Curie point of the phase was 315 ° C.

【0012】実施例3.純Mn、純Ni、純Alおよび
純炭素の各粉末をMn:73wt%、C:0.4wt
%、Ni:1.0wt%、Al:bal.の割合になる
ように総量100gを秤量し、遊星ボールミルにセット
し250rpmで10時間ミリングを行った。使用した
ボール、ポットはいずれもメノウ製で、ボールは10mm
径100個、ポットの容量は250ccであった。ミリン
グ後粉末を容器からとりだし、Arガス雰囲気中100
0℃10分の熱処理の後水冷し、さらに昇温し650℃
30分の熱処理を行い、強磁性相を得た。
Embodiment 3. Pure Mn, pure Ni, pure Al, and pure carbon powders were Mn: 73 wt% and C: 0.4 wt.
%, Ni: 1.0 wt%, Al: bal. The total amount of 100 g was weighed so that the ratio became, and set in a planetary ball mill and milled at 250 rpm for 10 hours. The balls and pots used are made of agate, and the balls are 10 mm.
The diameter of 100 pieces and the capacity of the pot were 250 cc. After milling, take out the powder from the container and put it in an Ar gas atmosphere at 100
After heat treatment at 0 ° C for 10 minutes, cool with water, and further raise the temperature to 650 ° C.
Heat treatment was performed for 30 minutes to obtain a ferromagnetic phase.

【0013】実施例4.純Mn、純Ni、純Alおよび
純炭素の各粉末をMn:66wt%、C:0.4wt
%、Ni:0.6wt%、Al:bal.の割合になる
ように総量50gを秤量し、遊星ボールミルにセットし
200rpmで15時間ミリングを行った。使用したボ
ール、ポットはいずれもメノウ製で、ボールは10mm径
100個、ポットの容量は250ccであった。ミリング
後、取り出した粉末は強磁性相を有していた。
Embodiment 4. Powders of pure Mn, pure Ni, pure Al and pure carbon were Mn: 66 wt% and C: 0.4 wt.
%, Ni: 0.6 wt%, Al: bal. The total amount of 50 g was weighed so as to be the above ratio, set in a planetary ball mill, and milled at 200 rpm for 15 hours. All the balls and pots used were made of agate, 100 balls were 10 mm in diameter, and the pot capacity was 250 cc. The powder taken out after milling had a ferromagnetic phase.

【0014】実施例5.純Mn、純Ni、純Alおよび
純炭素の各粉末をMn:70wt%、C:0.4wt
%、Ni:0.8wt%、Al:bal.の割合になる
ように総量30gを秤量し、遊星ボールミルにセットし
150rpmで10時間ミリングを行った。使用したボ
ール、ポットはいずれもメノウ製で、ボールは10mm径
50個、ポットの容量は250ccであった。ミリング
後、取り出した粉末は強磁性相を有していた。
Example 5. Powders of pure Mn, pure Ni, pure Al and pure carbon are Mn: 70 wt% and C: 0.4 wt.
%, Ni: 0.8 wt%, Al: bal. The total amount of 30 g was weighed so that the ratio became, and set in a planetary ball mill, and milled at 150 rpm for 10 hours. Both the balls and pots used were made of agate, the diameter of the 10 balls was 50, and the pot capacity was 250 cc. The powder taken out after milling had a ferromagnetic phase.

【0015】[0015]

【発明の効果】以上、本発明の製造方法によれば、溶解
鋳造など熱間工程をとることなくMnAlC系合金磁石
における強磁性相を生成でき、かつ、粉末の外内部にわ
たり構成成分にバラツキのない均一な永久磁石用粉末を
製造することができる。さらに、大規模生産が容易であ
り、工業的価値は大なるものである。
As described above, according to the manufacturing method of the present invention, the ferromagnetic phase in the MnAlC alloy magnet can be generated without taking a hot step such as melting and casting, and the constituent components are dispersed in the inside and outside of the powder. It is possible to produce a uniform powder for permanent magnets. Moreover, large-scale production is easy and the industrial value is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における原料粉末の外観形状を示す顕微
鏡写真である。
FIG. 1 is a micrograph showing the appearance of raw material powder in the present invention.

【図2】本発明により製造した永久磁石粉末の外観形状
を示す顕微鏡写真である。
FIG. 2 is a photomicrograph showing the appearance of permanent magnet powder produced according to the present invention.

【図3】本発明により製造した永久磁石粉末の熱磁気曲
線である。
FIG. 3 is a thermomagnetic curve of a permanent magnet powder manufactured according to the present invention.

【図4】本発明により製造した永久磁石粉末の強磁性相
のX線回折図形である。
FIG. 4 is an X-ray diffraction pattern of a ferromagnetic phase of a permanent magnet powder manufactured according to the present invention.

【図5】本発明において、メカニカルアロイング後に熱
処理を行い製造した永久磁石粉末の熱磁気曲線である。
FIG. 5 is a thermomagnetic curve of a permanent magnet powder produced by performing heat treatment after mechanical alloying in the present invention.

【図6】本発明において、メカニカルアロイング後に熱
処理を行い製造した強磁性相のX線回折図形である。
FIG. 6 is an X-ray diffraction pattern of a ferromagnetic phase produced by performing heat treatment after mechanical alloying in the present invention.

【符号の説明】[Explanation of symbols]

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年1月14日[Submission date] January 14, 1994

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における原料粉末の粒子構造の顕微鏡写
真である。
FIG. 1 is a micrograph of a particle structure of a raw material powder according to the present invention.

【図2】本発明により製造した永久磁石粉末の粒子構造
の顕微鏡写真である。
FIG. 2 is a micrograph of a particle structure of a permanent magnet powder manufactured according to the present invention.

【図3】本発明により製造した永久磁石粉末の熱磁気曲
線のグラフを示す図である。
FIG. 3 is a diagram showing a graph of a thermomagnetic curve of a permanent magnet powder manufactured according to the present invention.

【図4】本発明により製造した永久磁石粉末の強磁性相
のX線回折図形のグラフを示す図である。
FIG. 4 is a view showing a graph of an X-ray diffraction pattern of a ferromagnetic phase of a permanent magnet powder manufactured according to the present invention.

【図5】本発明において、メカニカルアロイング後に熱
処理を行い製造した永久磁石粉末の熱磁気曲線のグラフ
を示す図である。
FIG. 5 is a graph showing a thermomagnetic curve of a permanent magnet powder produced by performing heat treatment after mechanical alloying in the present invention.

【図6】本発明において、メカニカルアロイング後に熱
処理を行い製造した強磁性相のX線回折図形のグラフを
示す図である。
FIG. 6 is a diagram showing a graph of an X-ray diffraction pattern of a ferromagnetic phase produced by performing heat treatment after mechanical alloying in the present invention.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 MnAlC系合金永久磁石粉末材料の製
造において、当該合金の各構成単体元素粉末を当該磁石
合金組成比に混合した後、固相反応を生起せしめるメカ
ニカルアイロングを行い、強磁性磁石粉末を生成させる
ことを特徴とする永久磁石粉末材料の製造方法。
1. In the manufacture of a MnAlC-based alloy permanent magnet powder material, after mixing each constituent element powder of the alloy to the magnet alloy composition ratio, a mechanical ironing for causing a solid phase reaction is performed to obtain a ferromagnetic magnet. A method for producing a permanent magnet powder material, which comprises producing a powder.
【請求項2】 MnAlC系合金磁石粉末材料の製造に
おいて、当該合金の各構成単体元素粉末を当該磁石合金
組成比に混合した後、固相反応を生起せしめるメカニカ
ルアイロングを行い、さらに該合金粉末を熱処理して強
磁性磁石粉末を生成させることを特徴とする永久磁石粉
末材料の製造方法。
2. In the manufacture of a MnAlC-based alloy magnet powder material, after mixing each constituent element powder of the alloy to the magnet alloy composition ratio, mechanical ironing for causing a solid phase reaction is performed, and the alloy powder is further added. A method for producing a permanent magnet powder material, which comprises heat-treating to produce a ferromagnetic magnet powder.
【請求項3】 固相反応を生起せしめるメカニカルアイ
ロングが遊星ボールミル、転動ミルまたはアトリッショ
ンミルなどの各種ボールミルなどによるミリング作用で
あることを特徴とする請求項1または請求項2記載の永
久磁石粉末材料の製造方法。
3. The mechanical ironing for causing a solid-phase reaction is a milling action by various ball mills such as a planetary ball mill, a rolling mill or an attrition mill, and the like. Manufacturing method of permanent magnet powder material.
JP5176172A 1993-06-23 1993-06-23 Manufacturing method of permanent magnet powder material Expired - Lifetime JP2905043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5176172A JP2905043B2 (en) 1993-06-23 1993-06-23 Manufacturing method of permanent magnet powder material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5176172A JP2905043B2 (en) 1993-06-23 1993-06-23 Manufacturing method of permanent magnet powder material

Publications (2)

Publication Number Publication Date
JPH0711301A true JPH0711301A (en) 1995-01-13
JP2905043B2 JP2905043B2 (en) 1999-06-14

Family

ID=16008926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5176172A Expired - Lifetime JP2905043B2 (en) 1993-06-23 1993-06-23 Manufacturing method of permanent magnet powder material

Country Status (1)

Country Link
JP (1) JP2905043B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008048277A2 (en) * 2005-10-27 2008-04-24 The Trustees Of Dartmouth College Nanostructured mn-al permanent magnets and methods of producing same
US8999233B2 (en) 2005-10-27 2015-04-07 The Trustees Of Dartmouth College Nanostructured Mn-Al permanent magnets and methods of producing same
JP2019147994A (en) * 2018-02-28 2019-09-05 国立大学法人 鹿児島大学 MANUFACTURING METHOD OF Mn-Al-C-BASED MAGNET, AND Mn-Al-C-BASED MAGNETIC SINTERED BODY
WO2023234206A1 (en) * 2022-06-03 2023-12-07 Agc株式会社 Method for manufacturing magnetic particles, magnetic particles, and permanent magnet using same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008048277A2 (en) * 2005-10-27 2008-04-24 The Trustees Of Dartmouth College Nanostructured mn-al permanent magnets and methods of producing same
WO2008048277A3 (en) * 2005-10-27 2008-08-21 Dartmouth College Nanostructured mn-al permanent magnets and methods of producing same
US8999233B2 (en) 2005-10-27 2015-04-07 The Trustees Of Dartmouth College Nanostructured Mn-Al permanent magnets and methods of producing same
JP2019147994A (en) * 2018-02-28 2019-09-05 国立大学法人 鹿児島大学 MANUFACTURING METHOD OF Mn-Al-C-BASED MAGNET, AND Mn-Al-C-BASED MAGNETIC SINTERED BODY
WO2023234206A1 (en) * 2022-06-03 2023-12-07 Agc株式会社 Method for manufacturing magnetic particles, magnetic particles, and permanent magnet using same

Also Published As

Publication number Publication date
JP2905043B2 (en) 1999-06-14

Similar Documents

Publication Publication Date Title
CN108103381B (en) High-strength FeCoNiCrMn high-entropy alloy and preparation method thereof
JP2011523676A (en) Method for producing metal-based material for magnetic cooling or heat pump
TW200936782A (en) Fe-Si-La alloy having excellent magnetocaloric properties
CN113265627B (en) Preparation method of nickel-iron-copper-molybdenum alloy target material
JPH0322457B2 (en)
US6454994B1 (en) Solids comprising tantalum, strontium and silicon
JPH0711301A (en) Production of permanent magnet powder material
JPH02197535A (en) Manufacture of intermetallic compound
US20120282130A1 (en) Method for producing permanent magnet materials and resulting materials
US4396441A (en) Permanent magnet having ultra-high coercive force and large maximum energy product and method of producing the same
JPH03219037A (en) Ni base shape memory alloy and its manufacture
JPS62282635A (en) Production of mixture of ultra-fine aluminum nitride powder and ultra-fine oxidation-resistant aluminum powder
US4481045A (en) High-coercive-force permanent magnet with a large maximum energy product and a method of producing the same
JPS6027105A (en) Rare earth, iron, boron alloy powder for permanent magnet
JPH03193623A (en) Production of conjugated boride powder in as mo2feb2-base
JP2019044265A (en) MANUFACTURING METHOD OF MnAl ALLOY
JP2665014B2 (en) Manufacturing method of thermoelectric conversion element material
JPS59179703A (en) Manufacture of rare earth cobalt alloy powder having two-phase separation type coercive force producing mechanism
JPS60155646A (en) Material for manufacturing axially magnetized permanent magnet
JPS61177360A (en) Manufacture of bidirectional shape memory alloy
JPS6358802A (en) Manufacture of rare earth magnet
US3595641A (en) Process for preparing intermetallic beryllides
JPS63227740A (en) Production of alloy for permanent magnet
JPH05202437A (en) Production of inter-high-melting-metallic compound-base alloy
JPH01215903A (en) Manufacture of intermetallic compound powder