JPS59179703A - Manufacture of rare earth cobalt alloy powder having two-phase separation type coercive force producing mechanism - Google Patents

Manufacture of rare earth cobalt alloy powder having two-phase separation type coercive force producing mechanism

Info

Publication number
JPS59179703A
JPS59179703A JP58052510A JP5251083A JPS59179703A JP S59179703 A JPS59179703 A JP S59179703A JP 58052510 A JP58052510 A JP 58052510A JP 5251083 A JP5251083 A JP 5251083A JP S59179703 A JPS59179703 A JP S59179703A
Authority
JP
Japan
Prior art keywords
rare earth
powder
coercive force
metallic
cobalt alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58052510A
Other languages
Japanese (ja)
Inventor
Akira Fukuno
亮 福野
Tetsuto Yoneyama
米山 哲人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP58052510A priority Critical patent/JPS59179703A/en
Publication of JPS59179703A publication Critical patent/JPS59179703A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain the titled alloy powder capable of forming a permanent magnet having large coercive force by reducing an oxide as a starting material with metallic Ca under heating to a specified temp. CONSTITUTION:Powder of the oxide of a rare earth metal and other starting material are mixed with metallic Ca, and the mixture is heated to >=1,050 deg.C in a nonoxidizing atmosphere. The oxide of a rare earth metal is reduced to the metal with the metallic Ca, and the constituent metallic elements of the titled alloy are uniformly diffused at once in the particles at >=1,050 deg.C. In this method, the heating temp. of said mixture is important. When reduction and diffusion are carried out at about 950 deg.C for a long time, a phase in which the constituent elements are uniformly dispersed like a molten state is not obtd.

Description

【発明の詳細な説明】 (1)技術分野 本発明は2相分離型保持力発生機構をもつ希土類コバル
ト合金粉末の製造方法に関するものである。希土類コバ
ルト合金は、永久磁石として唆れた性能をもつことが知
られており、その中で3m2C017のCOの1部をC
u及びFeなどで麿換した化合物を代表とする2相分離
型磁石がそのエネルギー積が高いことにより多くの研究
がなされている。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field The present invention relates to a method for producing rare earth cobalt alloy powder having a two-phase separation type holding force generation mechanism. Rare earth cobalt alloys are known to have promising properties as permanent magnets.
A large amount of research has been conducted on two-phase separation type magnets, typified by compounds replaced with u and Fe, because of their high energy product.

この磁石は熱処理によって2相分離反応がおこることが
保持力発生の原因と考えられている。以下この合金を2
相分離型希士偵コバルト合金と略称する。2相分離型希
土類コバルト合金(は、一般に所望の組成を有する溶湯
を調製し、合金坤として凝固させたのち、粗粉砕及び微
粉砕の工程を経て得られた粉末を焼結し、史に俗体化、
時効処理な。
It is thought that the coercive force of this magnet is caused by a two-phase separation reaction caused by heat treatment. Below this alloy is 2
It is abbreviated as phase-separated Kijisei cobalt alloy. Two-phase separation type rare earth cobalt alloy (generally, a molten metal with a desired composition is prepared, solidified as an alloy, and then the resulting powder is sintered through the steps of coarse pulverization and fine pulverization. embodiment,
It's a statute of limitations.

どの熱処理によって所望の永久磁石とする。近年、2相
分離型希土類コバルト合金の粉末を」二記溶湯調製−粉
砕の工程によらず直接)g、Hの還元により得る方法が
多く開発されている。
Which heat treatment is used to obtain the desired permanent magnet. In recent years, many methods have been developed to obtain a powder of a two-phase separated rare earth cobalt alloy by directly reducing G and H without using the molten metal preparation-pulverization process.

(2ン従来技術及びその問題点の説明 希土類コバルト合金粉末の製造において、原料6安化物
を金属カルシウムと混合し、100OC未満の温度にお
いて酸化物のカルンウム鑑元金行ない所望のm成を得る
方法が提、酪きれている。この方法は2相分離型布土知
コバルト合雀以外のRCo5型粉末の製造には有用なも
のであろうが、2相分離型希土類コバルト合金粉末の製
造には磁気特性の上で不満足彦ものであることが本発明
者の研究によシわかった。すなわち、2相分離型希土類
コバルト合金では合金粒子内にて2相が分mf#するよ
うに希土類元素、コバルト、鉄、銅、その他の添加元素
が均一相を呈している必要がある。しかしながら、10
00℃未満の温度は、液相カルシウムによる液相還元に
必要な840℃よシは高いが、粉末粒子内にて成分の均
一化をはかるには不十分な温度である。そしてこのよう
な1000℃未満の温度で得られた、2相分離型合金粉
末を、以降の工程の焼結、溶体化処理及び時効処理にお
いて加熱温度を高く及び/又は加熱時間を長くしても、
もはや十分な保持力を得ることが非常に困難となる。従
って希土類酸化物を原料として還元拡散法による希土類
コバルト合金永久磁石の製造において最初の粉末製造段
階がどのような温度で行なわれるかが重要であって、1
000℃未満の還元温度で得られた粉末を永久磁石に成
形しても従来の粉砕工程を経て得られた永久磁石に匹敵
する保持力を得ることができないか、戊いは可能である
としても焼結等の条件が極めて長時間或いは高温になっ
て現実的には採用できないこととなる。
(2) Explanation of the prior art and its problems In the production of rare earth cobalt alloy powder, a method in which raw material hexaanide is mixed with metallic calcium and the oxide is analyzed at a temperature of less than 100°C to obtain the desired composition. However, this method is useful for producing RCo5 type powders other than two-phase separated Fudochi Cobalt Ajaku, but it is not suitable for producing two-phase separated rare earth cobalt alloy powders. The inventor's research has revealed that the magnetic properties are unsatisfactory.In other words, in a two-phase separated rare earth cobalt alloy, the rare earth element, Cobalt, iron, copper, and other additive elements must form a homogeneous phase.However, 10
A temperature of less than 00°C is higher than 840°C, which is necessary for liquid-phase reduction with liquid-phase calcium, but is insufficient to homogenize the components within the powder particles. Even if the two-phase separated alloy powder obtained at a temperature of less than 1000°C is heated at a high temperature and/or for a long time in the subsequent steps of sintering, solution treatment, and aging treatment, ,
It is now extremely difficult to obtain sufficient holding force. Therefore, in the production of rare earth cobalt alloy permanent magnets using rare earth oxides as raw materials by the reduction diffusion method, it is important to know at what temperature the first powder production step is carried out.
Even if the powder obtained at a reduction temperature below 000°C is formed into a permanent magnet, it is not possible to obtain a holding force comparable to that of a permanent magnet obtained through a conventional grinding process, or even if it is possible, The conditions for sintering etc. are extremely long or at high temperatures, making it impossible to use in reality.

(3)発明の目的 本発明の目的は安価な酸化物を出発原料として製造され
た2相分離型希土伯コバルト合金’J’9j末が保磁力
の高い永久磁石をつくり出せるように、当該の製造方法
を改良することにある。
(3) Purpose of the Invention The purpose of the present invention is to develop a permanent magnet with a high coercive force using a two-phase separated rare earth cobalt alloy 'J'9j powder manufactured using an inexpensive oxide as a starting material. The objective is to improve the manufacturing method.

(4)発明の構成 本発明の目的は、2相分離型保磁力発生イ得構をもつ希
土類コバルト合金粉末の製造方法において希土類金属酸
化物粉末及びその他の原料粉末に金属カルシウムを混合
し、そして混合物を1050℃以上に非酸化性雰囲気で
加熱して、金属カルシウムによって少なくとも希土類金
@酸化物ケ金用状に還元し、更に直ちに1050℃以上
で前iU2合金の各構成金属元素を粉末粒子内で均一に
拡散させることを特徴とする製造方1人によって達J戎
される。
(4) Structure of the Invention The object of the present invention is to mix metallic calcium with rare earth metal oxide powder and other raw material powder in a method for producing rare earth cobalt alloy powder having a two-phase separation type coercive force generation structure, and The mixture is heated to 1050°C or higher in a non-oxidizing atmosphere to reduce at least the rare earth gold @ oxide metal with metallic calcium, and then immediately heated to 1050°C or higher in a non-oxidizing atmosphere to dissolve each constituent metal element of the iU2 alloy into powder particles. A manufacturing method characterized by uniform diffusion has been achieved by one person.

以下本発明の構成要件を詳しく説明する。本発明の方法
は原料としては安価な希土類金属酸化物粉末を使用する
ことが必要であり、その他の原料粉末は例えば金属鉄、
金喝コバルト等のように金属状態であってもよく更に酸
化コバルト等のように酸化物状態であってもよい。希土
類合唱としては、一般に使用されるSmの他に、’La
 + Ce + P r r Nd +をSmの一部又
は全部にかえて使用したもの、或いはミツシュメタル等
であってもよい。希土弁金妬酸化物の以外の原料として
は、鉄、マンがン、峠1、チタン、ジルコニウム、ニオ
ブ、等の2相分離型希土類コバルト合金の構成金属元素
とし7て使用可能な各種元素を含むものである。これら
の原料の粒度は特に制限がないが数μ〜数100μの範
囲が好ましい。
The constituent elements of the present invention will be explained in detail below. The method of the present invention requires the use of inexpensive rare earth metal oxide powder as a raw material, and other raw material powders include metal iron,
It may be in a metallic state, such as cobalt, or may be in an oxide state, such as cobalt oxide. In addition to the commonly used Sm, 'La' is used as a rare earth chorus.
+ Ce + P r r Nd + may be used in place of a part or all of Sm, or Mitsushi metal or the like may be used. Raw materials other than rare earth metal oxides include various elements that can be used as constituent metal elements of two-phase separated rare earth cobalt alloys, such as iron, manganese, touge, titanium, zirconium, and niobium. This includes: The particle size of these raw materials is not particularly limited, but is preferably in the range of several microns to several hundred microns.

上記原料粉末に粒状の金属カルシウムを十分に混合し、
そして1050℃以上の温度にて加熱を行なうことが重
要である。仮に950℃で長時間還元拡散反応を行なっ
ても状態図上の平衡状態が得られるだけであって溶融状
(4)のような各構成元素が均一に分散している相は得
られない。
Thoroughly mix granular metallic calcium with the above raw material powder,
It is important to perform heating at a temperature of 1050° C. or higher. Even if the reduction-diffusion reaction is carried out at 950° C. for a long time, only an equilibrium state on the phase diagram will be obtained, and a phase in which the constituent elements are uniformly dispersed, such as the molten state (4), will not be obtained.

一般に2相分離型希十箱コバルト合金では均一相でのス
ピノーダル分解によって2相分離が起こり磁壁のピンニ
ングサイトを生じ保磁力が発生するが、この場合初期の
均一相は充分に均一であることが必脚である。従って、
例えば950℃で長時間保持すれは還元がはじまり、さ
らに拡散が進行する。しかしここで得られる相の状態は
あく壕で状態図上の950℃での安定状態にしかすぎず
、微細な分析によって各構成元素の合金内での分布がス
ピノーダル分解を起こすに充分なほどの均一さを保持し
ていないことがわかる。従って、本発明による1050
℃以上の加熱温度が2相分蕗1型コバルト合金粉末の特
性を十分に発側させる上で非常に重要となる。しかもこ
の1050℃以上の加熱を還元拡散直後にすなわち還元
拡散のだめの処理装置内で同時に、行なうことによって
保磁力の顕著な向上がみられる。不発明において好まし
い加熱時間は1050℃以上にて0.5〜1時間である
。加熱温度は1100℃以上が特に好ましいが、130
0℃を越えると合金が溶解するために上限は1300℃
とする。更に加熱温度の意杵を本発明者が行なった実験
を示す第1図により説明する。第1図は、最終組成が約
25%Sms約50%CO%約15%Fe、約8%Cu
 %及び約1.6%Zrを含有し、更に不純物としての
酸素が約0.1%である2相分離型希土類コバルト合金
を製造した際の加熱温度と該合金の保磁力との関係を示
すグラフである。尚この合金製造において、合金粉末製
造の際の加熱温度における保持時間は30分であバその
後粉末を公知の処理によって永久磁石とした。すなわち
焼結を1200℃にて60分行ない、次に830℃40
分、700℃40分、600℃1時間、500℃2時間
、400℃10時間の多段階的に時効処理を行なって永
久磁石とした。
Generally, in a two-phase separation type dilute ten-box cobalt alloy, two-phase separation occurs due to spinodal decomposition in the homogeneous phase, creating a pinning site of the domain wall and generating coercive force, but in this case, the initial homogeneous phase must be sufficiently homogeneous. It is a must. Therefore,
For example, if the temperature is kept at 950° C. for a long time, reduction begins and further diffusion progresses. However, the phase state obtained here is only a stable state at 950°C on the phase diagram, and detailed analysis shows that the distribution of each constituent element in the alloy is sufficient to cause spinodal decomposition. It can be seen that uniformity is not maintained. Therefore, 1050 according to the present invention
A heating temperature of 0.degree. C. or higher is very important for sufficiently developing the characteristics of the two-phase Fuki type 1 cobalt alloy powder. Moreover, by performing this heating to 1050° C. or more immediately after the reduction and diffusion, that is, at the same time in the processing equipment where the reduction and diffusion is not carried out, a remarkable improvement in coercive force can be seen. In the present invention, the preferred heating time is 0.5 to 1 hour at 1050°C or higher. The heating temperature is particularly preferably 1100°C or higher, but 130°C
The upper limit is 1300℃ because the alloy will melt if it exceeds 0℃.
shall be. Furthermore, the determination of the heating temperature will be explained with reference to FIG. 1, which shows an experiment conducted by the present inventor. Figure 1 shows that the final composition is approximately 25% Sms, approximately 50% CO, approximately 15% Fe, approximately 8% Cu.
% and about 1.6% Zr, and further contains about 0.1% oxygen as an impurity. This shows the relationship between the heating temperature and the coercive force of the alloy. It is a graph. In the production of this alloy, the holding time at the heating temperature during production of the alloy powder was 30 minutes, after which the powder was made into a permanent magnet by a known process. That is, sintering was performed at 1200°C for 60 minutes, then sintered at 830°C for 40 minutes.
A permanent magnet was obtained by performing aging treatment in multiple stages: 40 minutes at 700°C, 1 hour at 600°C, 2 hours at 500°C, and 10 hours at 400°C.

第1図より、加熱温度が1000℃未満と1050℃以
上では約1.5 koeの保磁力に差が出ることがわか
る。この差は合金粉末粒子内で各構成金属元素がどの程
度均一に分布しているかによって決定される。従って加
熱温度が1000℃未満では2相分離型合金の本来の保
磁力が十分に発生できていないことがわかる。
From FIG. 1, it can be seen that there is a difference in coercive force of about 1.5 koe between heating temperatures of less than 1000°C and those of 1050°C or more. This difference is determined by how uniformly each constituent metal element is distributed within the alloy powder particles. Therefore, it can be seen that when the heating temperature is less than 1000° C., the original coercive force of the two-phase separation type alloy cannot be sufficiently generated.

次に上記実験において粉末製造時の加熱温度が1150
℃と950℃の2つの場合について、得られた合金粉末
を所定の粒度範囲内にぶんきゆうしてそれぞれの粒度の
粒子間において構成金属元素がどの程度均一に分散して
いるかを調べた。この結果を第1表及び第2表に示す。
Next, in the above experiment, the heating temperature during powder production was 1150
For two cases: ℃ and 950°C, the obtained alloy powder was blasted within a predetermined particle size range to examine how uniformly the constituent metal elements were dispersed between the particles of each particle size. The results are shown in Tables 1 and 2.

第1表 (1050℃×05時間) 第2表 (950℃×05時間) 第1表は加熱温度が1150℃の場合であり、各粒度の
粉末とも粒子間でCo+8m、Fe、Cu+Zrが均一
に分布している・ことがわかる。これに対して950℃
を示す第2表の場合には平均組成からのばらつきが極め
て大きいことがわかる。従って第2表のように組成がば
らついている合金粉末を、圧縮成形前に微粉砕しようと
すると、従来の方法では粉砕できない粉末が出て来る。
Table 1 (1050℃ x 05 hours) Table 2 (950℃ x 05 hours) Table 1 shows the case where the heating temperature is 1150℃, and Co + 8m, Fe, Cu + Zr are uniformly distributed between the particles of each particle size. You can see that it is distributed. On the other hand, 950℃
In the case of Table 2 which shows, it can be seen that the variation from the average composition is extremely large. Therefore, if an attempt is made to pulverize alloy powders whose compositions vary as shown in Table 2 before compression molding, some powder will come out that cannot be pulverized using conventional methods.

以上説明した本発明による方法はアルゴンガス、水素ガ
ス、或いはこれらの混合ガスなどにより不活性としだ芥
囲気内で通常の加熱炉により加熱処理するごとに実施さ
れる。そして得られた合金粉末を公知の水洗或い実施例
l Sm203130.!i’、Co218.9.Fe66
.9+Cu 35 g 、 Zr 8 、!i’の各々
200#以下の粉末と、粒状のCa67g、(これはS
 m 203を還元するのに要するCa化学量論量の5
0%増に相当する)を混合シ、ステンレスヒートに充填
する。コノヒートヲ、アルゴンガス雰囲気中で1100
℃2hr加熱した。反応生成物を水中で、解砕し、史に
酸性溶液中で攪拌してCaを除去し、真空乾燥する。
The method according to the present invention described above is carried out each time a heat treatment is carried out in an ordinary heating furnace in an inert atmosphere using argon gas, hydrogen gas, or a mixture thereof. Then, the obtained alloy powder was washed with water using a known method such as Example 1 Sm203130. ! i', Co218.9. Fe66
.. 9+Cu 35 g, Zr 8,! i' powder of 200 # or less, and 67 g of granular Ca (this is S
5 of the Ca stoichiometric amount required to reduce m203
0% increase) and fill it into the stainless steel heat. Konohitowo, 1100 in argon gas atmosphere
It was heated at ℃ for 2 hours. The reaction product is crushed in water, stirred in an acidic solution to remove Ca, and dried under vacuum.

得られた粉を磁場中成型し、1200”C,1,5hr
にて焼結後、冷却し850℃から400℃にかけての温
度で時効した。その時の試料の保磁力は70000eで
あった。
The obtained powder was molded in a magnetic field and heated at 1200"C for 1.5 hours.
After sintering, it was cooled and aged at a temperature ranging from 850°C to 400°C. The coercive force of the sample at that time was 70,000e.

実施例2〈比較例〉 実施例1と同様の粉末とCa粉末に900℃、6hrの
加熱を行ない、実施例1と同様の処理を施しだ。得られ
た試料の保磁力は35000eであった。
Example 2 (Comparative Example) The same powder as in Example 1 and Ca powder were heated at 900° C. for 6 hours and subjected to the same treatment as in Example 1. The coercive force of the obtained sample was 35000e.

実施例3 5m203130 g + Coo 277 g、 C
u2O40g 。
Example 3 5m203130g + Coo 277g, C
u2O40g.

Fe20393.5 g、 ZrO210,7Elの粉
と、Ca 423Iを混合し、実施例1と同様の加熱及
び処理を施した。得られた丈ングルの保磁力は6900
0eであった。
Powders of Fe20393.5 g, ZrO210,7El, and Ca423I were mixed and heated and treated in the same manner as in Example 1. The coercive force of the obtained long angle is 6900
It was 0e.

(6)効 果 本発明によれば、安価な酸化物を出発原料としかつ2相
分離型希土類コバルト合金の高い保磁力が完全に引出さ
れるために、産業上の効果は太きい。
(6) Effects According to the present invention, since an inexpensive oxide is used as a starting material and the high coercive force of the two-phase separated rare earth cobalt alloy is fully brought out, the industrial effects are significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は2相分離型希土角コバルト合金粉末製造の時の
加熱撫度と保磁力の関係を示すグラフである。 特許出願人 ティーディーケイ株式会社 特許出願代理人 弁理士 青 木   朗 弁理士西舘和之 弁理士 村 井 東 雄 弁理士 山 口 昭 之
FIG. 1 is a graph showing the relationship between heating degree and coercive force during the production of two-phase separation type rare earth angle cobalt alloy powder. Patent applicant TDC Co., Ltd. Patent application agent Akira Aoki Patent attorney Kazuyuki Nishidate Patent attorney Higashi Murai Patent attorney Akira Yamaguchi

Claims (1)

【特許請求の範囲】[Claims] °1.2相分離型採磁力発生機構をもつ希土類コバルト
合金粉末の製造方法において、希土類金属酸化物粉末及
びその他の原料粉末に金属カルシウムを混合し、そして
混合物を1050℃以上に非酸化性雰囲気で加熱して、
金属カルシウムによって少なくとも希土類金属酸化物を
金属状に還元し、更に直ちに1050℃以上で前記合金
の各構成金属元素を粉末粒子内で均一に拡散させること
を特徴とする製造方法。
°1. In a method for producing rare earth cobalt alloy powder with a two-phase separation magnetic force generation mechanism, metallic calcium is mixed with rare earth metal oxide powder and other raw material powder, and the mixture is heated to 1050°C or higher in a non-oxidizing atmosphere. Heat it with
A manufacturing method characterized by reducing at least a rare earth metal oxide to a metallic state with metallic calcium, and further immediately uniformly diffusing each constituent metal element of the alloy in powder particles at 1050° C. or higher.
JP58052510A 1983-03-30 1983-03-30 Manufacture of rare earth cobalt alloy powder having two-phase separation type coercive force producing mechanism Pending JPS59179703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58052510A JPS59179703A (en) 1983-03-30 1983-03-30 Manufacture of rare earth cobalt alloy powder having two-phase separation type coercive force producing mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58052510A JPS59179703A (en) 1983-03-30 1983-03-30 Manufacture of rare earth cobalt alloy powder having two-phase separation type coercive force producing mechanism

Publications (1)

Publication Number Publication Date
JPS59179703A true JPS59179703A (en) 1984-10-12

Family

ID=12916722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58052510A Pending JPS59179703A (en) 1983-03-30 1983-03-30 Manufacture of rare earth cobalt alloy powder having two-phase separation type coercive force producing mechanism

Country Status (1)

Country Link
JP (1) JPS59179703A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61114502A (en) * 1984-11-09 1986-06-02 Sumitomo Metal Mining Co Ltd Manufacture of samarium-cobalt magnet powder for resin magnet
JPS61214502A (en) * 1985-03-20 1986-09-24 Daido Steel Co Ltd Manufacture of sm-co magnet
JPS61214504A (en) * 1985-03-20 1986-09-24 Daido Steel Co Ltd Manufacture of sm-co magnet
US4767450A (en) * 1984-11-27 1988-08-30 Sumitomo Special Metals Co., Ltd. Process for producing the rare earth alloy powders
US4769063A (en) * 1986-03-06 1988-09-06 Sumitomo Special Metals Co., Ltd. Method for producing rare earth alloy

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61114502A (en) * 1984-11-09 1986-06-02 Sumitomo Metal Mining Co Ltd Manufacture of samarium-cobalt magnet powder for resin magnet
US4767450A (en) * 1984-11-27 1988-08-30 Sumitomo Special Metals Co., Ltd. Process for producing the rare earth alloy powders
JPS61214502A (en) * 1985-03-20 1986-09-24 Daido Steel Co Ltd Manufacture of sm-co magnet
JPS61214504A (en) * 1985-03-20 1986-09-24 Daido Steel Co Ltd Manufacture of sm-co magnet
US4769063A (en) * 1986-03-06 1988-09-06 Sumitomo Special Metals Co., Ltd. Method for producing rare earth alloy

Similar Documents

Publication Publication Date Title
US4082582A (en) As - cast permanent magnet sm-co-cu material, with iron, produced by annealing and rapid quenching
JPS59179703A (en) Manufacture of rare earth cobalt alloy powder having two-phase separation type coercive force producing mechanism
JPS60204862A (en) Rare earth element-iron type permanent magnet alloy
JPH08181009A (en) Permanent magnet and its manufacturing method
US4116726A (en) As-cast permanent magnet Sm-Co-Cu material with iron, produced by annealing and rapid quenching
JP2905043B2 (en) Manufacturing method of permanent magnet powder material
JP2019044265A (en) MANUFACTURING METHOD OF MnAl ALLOY
JPS6320411A (en) Production of material for permanent magnet
JPH06151127A (en) Manufacture of r-fe mother alloy powder for rare earth magnet
JPS59118827A (en) Production of rare earth cobalt permanent magnet
JPS61114506A (en) Manufacture of rare-earth permanent magnet
JPS62122106A (en) Sintered permanent magnet
JP3813543B2 (en) Method for processing magnet powder
JPH05148517A (en) Production of rare earth-transition metal-nitrogen alloy powder
JPS5866305A (en) Permanent magnet
JPS59154004A (en) Manufacture of permanent magnet
JPS61177360A (en) Manufacture of bidirectional shape memory alloy
JPS6353203A (en) Production of rare earth element-iron type plastic magnetic material
JP3222919B2 (en) Method for producing nitride-based magnetic material
JPH01125907A (en) High intensity rare earth based cobalt magnet and manufacture thereof
JPS62128504A (en) R-b-fe group sintered magnet and manufacture thereof
JPS60246603A (en) Manufacture of rare earth-cobalt magnet powder for resin magnet
JPS58147537A (en) Permanent magnet alloy and its manufacture
JPH05251221A (en) Manufacture of powder for rare earth sintered magnet
JPS61198704A (en) Manufacture of rare earth element-cobalt group magnet powder for resin magnet