JPS61214504A - Manufacture of sm-co magnet - Google Patents

Manufacture of sm-co magnet

Info

Publication number
JPS61214504A
JPS61214504A JP60054656A JP5465685A JPS61214504A JP S61214504 A JPS61214504 A JP S61214504A JP 60054656 A JP60054656 A JP 60054656A JP 5465685 A JP5465685 A JP 5465685A JP S61214504 A JPS61214504 A JP S61214504A
Authority
JP
Japan
Prior art keywords
powder
magnet
retort
grains
sm2o3
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60054656A
Other languages
Japanese (ja)
Inventor
Hiroyuki Yamada
博之 山田
Tokio Kato
加藤 時夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP60054656A priority Critical patent/JPS61214504A/en
Publication of JPS61214504A publication Critical patent/JPS61214504A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0553Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 obtained by reduction or by hydrogen decrepitation or embrittlement
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • C22C1/0441Alloys based on intermetallic compounds of the type rare earth - Co, Ni

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To enable to cut down the cost of production of the titled magnet by a method wherein Sm2O3 powder and Co powder are placed in a retort together with the Ca of specific grain diameter, and they are reduced by heating under the specific conditions. CONSTITUTION:Sm2O3 powder is used for the Sm which is a component of the Sm-Co magnet, Co powder is used for the Co of the magnet, and Ca grains of 0.5-10mm in diameter are used as the reducing agent of the Sm2O3. If the grain diameter of Ca is less than 0.5mm, the rate at which the Ca is formed into CaO before placing it into the retort is increased, and if the grain diameter of the Ca exceeds 10mm, the reaction efficiency is lowered. The Sm2O3 powder, the Co powder and the Ca grains of the prescribed quantity are mixed, placed into the retort, and reduced by heating. At this time, inside the retort is heated up to 1,000 deg.C or above in an Ar atmosphere. The period of processing of the fine Ca grains is to be made longer when the temperature is less than 1,000 deg.C. After the reducing process is finished, the powder is washed with water and dried up as occasion demands, and the CaO is removed. As low-priced Sm2O3 is used and the reducing efficiency is improved using the Ca grains of specific grain diameter, the magnet can be manufactured at low cost.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は5IIl−Co磁石の製造に係り、より詳細に
は、Sm源として酸化物SmtO,を用いて加熱還元に
より低源にS m −G o磁石を製造する方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to the production of 5IIIl-Co magnets, and more specifically, the present invention relates to the production of 5IIIl-Co magnets, and more specifically, it uses an oxide SmtO as an Sm source to produce a low source of Sm − by thermal reduction. The present invention relates to a method of manufacturing a Go magnet.

(従来の技術及び問題点) 希土類−〇〇系磁石を代表例とする希土類磁石は、永久
磁石材料としての特性、特に最大エネルギー積(BH)
o+axがアルニコ系磁石材料等に比べて著しく高いも
のがあり、家庭電気製品、音響製品、時計部品、自動車
部品、精密機器などの小型軽量化及び高性能化に大きく
貢献している。
(Prior art and problems) Rare earth magnets, of which rare earth magnets are a typical example, have poor characteristics as permanent magnet materials, especially maximum energy product (BH).
There are some materials whose o+ax is significantly higher than that of alnico magnet materials, etc., and they greatly contribute to the miniaturization, weight reduction, and high performance of home appliances, audio products, watch parts, automobile parts, precision instruments, etc.

就中、希土類元素を5I11とするS m −Co系磁
石としては、Sn+M、系、Sm2J7系(M:Co又
はC。
In particular, examples of S m -Co based magnets in which the rare earth element is 5I11 include Sn+M, Sm2J7 based (M: Co or C).

の一部をFe、Cu、Zr等々で置換した金属元素)な
どがあり、磁気特性が格段に優れているが、高価なCo
を多量に含む上に資源的に余り多くないSmを利用する
ため、コストが高いという問題がある。
Some metal elements such as Fe, Cu, Zr, etc. have been substituted for a portion of Co, and have extremely excellent magnetic properties, but they are expensive.
Since it contains a large amount of Sm and uses Sm, which is not very abundant in terms of resources, there is a problem of high cost.

一方、Sm−Go系磁石の製造に当っては、従来、Go
などの金属Mを溶解して金属粉を製造し、他方、5II
l源も金属Smを用いて、これらを誘導炉で溶解して塊
状となし、粉砕してSm−Go系合金粉を得て磁場中成
形、焼結等々の所望の熱処理により製品としていた。し
かし、この方法では、原材料として高価な金属SII+
粉を使用するため、上記の問題に加えて製造コストも高
くなるという欠点があった。
On the other hand, in the production of Sm-Go magnets, Go
Metal powder is produced by melting metal M such as 5II.
The metal Sm was also used as a source, melted in an induction furnace to form a lump, crushed to obtain Sm-Go alloy powder, and processed into a product by desired heat treatment such as compaction in a magnetic field, sintering, etc. However, this method uses expensive metal SII+ as a raw material.
Since powder is used, in addition to the above-mentioned problems, the manufacturing cost is also high.

(発明の目的) 本発明は、前述のSm−Co系磁石の製造に関する欠点
を解消し、Sm−Co磁石を低源、かつ、効率的に製造
することができる方法を提供することを目的とするもの
である。
(Objective of the Invention) An object of the present invention is to eliminate the above-mentioned drawbacks regarding the production of Sm-Co magnets, and to provide a method that can produce Sm-Co magnets efficiently and with low cost. It is something to do.

(発明の構成) 上記目的を達成するため、本発明では、5IIl源とし
て高価な金属Sm粉に代えて安価な酸化物Sm、○、粉
を使用し、これに金属Go粉と特定粒径のCa粒とを加
えてレトルト内で特定条件下で加熱還元して5ea−G
o合金粉を得ることを骨子とするものである。
(Structure of the Invention) In order to achieve the above object, in the present invention, an inexpensive oxide Sm powder with a specific particle size is used as a 5IIl source in place of an expensive metal Sm powder, and a metal Go powder with a specific particle size is used. Add Ca grains and reduce by heating under specific conditions in a retort to obtain 5ea-G.
The main point is to obtain o-alloy powder.

以下に本発明を実施例に基づいて詳細に説明する。The present invention will be explained in detail below based on examples.

本発明における原材料としては、Sm−Co磁石を構成
する一成分であるSmについては、安価な酸化物S+o
20.粉を用い、GoについてはCo金属粉を用い、更
に5L1120.粉の還元剤として0.5〜10+om
粒径のCa粒を用いる。
As raw materials in the present invention, Sm, which is one of the components constituting the Sm-Co magnet, is an inexpensive oxide S+o
20. Co powder was used for Go, and Co metal powder was used for Go, and 5L1120. 0.5-10+om as a powder reducing agent
Ca grains with the same particle size are used.

Sm、O,粉としては市販のものでよく、またGo粉は
、遠心噴霧法、アトマイズ法などで粉末化したもの、或
いは溶解凝固後にボールミルやジェットミルなどで機械
的に破砕して粉末化したものを用いることができる。
Commercially available Sm, O, and powders may be used, and the Go powder may be powdered by centrifugal spraying, atomization, etc., or powdered by mechanically crushing with a ball mill, jet mill, etc. after melting and solidification. can be used.

Ca粒は還先剤として用いるが、還元効率の向上を期す
るために粒径0.5〜10mmのものを使用する必要が
あるSCaは非常に活性であるので。
Ca particles are used as a reducing agent, but in order to improve the reduction efficiency, it is necessary to use particles with a particle size of 0.5 to 10 mm because SCa is very active.

粒径が0.5mm未満の細粒であると、第1図に示すよ
うに、混合処理してレトルト内に装入するまでのハンド
リング期間中に酸化してCaOになる割合が多くなり、
添加量に比べて還元効率が悪化し、還元後の後処理(水
洗、乾燥等)が煩雑になる。
If the particle size is less than 0.5 mm, as shown in Figure 1, the proportion of oxidation to CaO increases during the handling period from mixing to charging into the retort.
Reduction efficiency deteriorates compared to the amount added, and post-treatment after reduction (washing, drying, etc.) becomes complicated.

また粒径がioamを超えて大きすぎると、第2図に示
すように、処理時間の延長を余儀なくされ、反応効率が
低下する。なお、還元に必要なCa量は理論値の約1.
2〜1.5倍とするのが好ましい。
Moreover, if the particle size is too large, exceeding ioam, as shown in FIG. 2, the treatment time will have to be extended and the reaction efficiency will decrease. Note that the amount of Ca required for reduction is approximately 1.0% of the theoretical value.
It is preferable to set it as 2 to 1.5 times.

上記のS+o20.粉、Go粉及びCa粒を所定量混合
したものをレトルト内で加熱還元する。その除用いる反
応装置の一例を第3図に示す、同図中、1がステンレス
鋼製のレトルトでシリコユニット炉2中に載置されてい
る。レトルト1内には上記混合粉粒を収容する鉄製容器
βを置き、この鉄製容器3の底部には焼付防止用のCa
O粉末4を充填しておく。レトルト1の上端鍔部には上
蓋5との間に水冷用ジャケット6を設け、上蓋4にはA
rガス通気用及びロータリー真空ポンプ接続用配管が設
けられている。なお、7は熱電対である。
S+o20 above. A mixture of a predetermined amount of powder, Go powder, and Ca particles is heated and reduced in a retort. An example of a reaction apparatus used for this purpose is shown in FIG. 3, in which numeral 1 is a stainless steel retort placed in a silico unit furnace 2. Inside the retort 1, there is placed an iron container β containing the mixed powder particles, and at the bottom of this iron container 3 there is a Ca
Fill with O powder 4. A water cooling jacket 6 is provided between the upper end flange of the retort 1 and the upper lid 5.
Piping for gas ventilation and connection to a rotary vacuum pump is provided. Note that 7 is a thermocouple.

レトルト内での反応条件は、Arガス雰囲気下にて還元
温度を1000”C以上とする。還元温度は使用するC
a粒の粒径と処理時間とから還元効率を考慮して決める
が、1000’C未満では処理時間を長くし、しかも還
元効率の悪いより細粒のCa粒を使用しなければならな
くなる。1200’CX2hrの還元温度1時間を一応
の目安とすることが好ましい。
The reaction conditions in the retort are an Ar gas atmosphere and a reduction temperature of 1000"C or higher.The reduction temperature is the C used.
It is determined by considering the reduction efficiency based on the particle size of the a grains and the treatment time, but if it is less than 1000'C, the treatment time will be longer and finer Ca grains with poor reduction efficiency will have to be used. It is preferable to use a reduction temperature of 1 hour at 1200'CX2hr as a tentative guideline.

還元後は、必要に応じて水洗、乾燥の後処理を行い、C
aOを除去しSm−Go粉を回収する。その際、水洗後
、酢酸を添加して中和し、再び水洗してアルコール洗浄
を行った後、真空乾燥するのが望ましい。
After reduction, perform post-treatments such as washing with water and drying as necessary.
Remove aO and collect Sm-Go powder. At that time, it is desirable to wash with water, neutralize by adding acetic acid, wash with water again, wash with alcohol, and then vacuum dry.

得られたSm−Go粉は、常法により磁場中成形、焼結
・溶体化処理1時効処理等を行い、Sm−C。
The obtained Sm-Go powder is subjected to molding in a magnetic field, sintering/solution treatment, 1 aging treatment, etc. in a conventional manner to form Sm-C.

磁石にする。Make it a magnet.

(実施例) SmCo、磁石を製造するために、原材料として50%
平均粒径1μmのSm、O,粉350g、−200メツ
シュ(−74μm)のCO粉590g(いずれも目標値
に対して100%歩留配合)、還元剤として5IIII
11粒径の金属Ca粒x51g(還元に必要な理論量の
1.25倍)を混合し、第3図に示した反応装置のレト
ルト内に装填した0次いでガス置換後、Arガスを5f
fi/winで通気しつ>1200”CX2hrの加熱
還元を行った。
(Example) SmCo, 50% as raw material to produce magnets
350 g of Sm, O, powder with an average particle size of 1 μm, 590 g of CO powder with -200 mesh (-74 μm) (all with a yield of 100% relative to the target value), 5III as a reducing agent
51 g of metallic Ca particles (1.25 times the theoretical amount required for reduction) of 11 particle size were mixed and loaded into the retort of the reactor shown in Fig. 3. After gas replacement, 5 f of Ar gas was added.
Thermal reduction was carried out for >1200"CX2hr while aerating with fi/win.

反応処理後、レトルトから取り出して水洗(4Ω×10
回)→酢酸による中和(pH=2.5.2回)→水洗(
4Q X 2回)→アルコール洗浄(2回)→真空乾燥
を経てS va −G o粉を回収した。
After reaction treatment, remove from retort and wash with water (4Ω x 10
times) → Neutralization with acetic acid (pH = 2.5.2 times) → Washing with water (
S va -G o powder was collected through 4Q x 2 times) → alcohol washing (2 times) → vacuum drying.

このSm−Go粉を微粉砕機磁場中成形し、焼結・溶体
化処理、時効処理等を施して5IIICO7磁石を得た
。SmCo、磁石の分析値及び磁気特性を第1表に示す
This Sm-Go powder was molded in a magnetic field using a pulverizer, and subjected to sintering, solution treatment, aging treatment, etc. to obtain a 5IIICO7 magnet. Table 1 shows the analytical values and magnetic properties of SmCo and the magnet.

同表より、還元時の部位により化学成分が若干異なるが
、歩留及び磁気特性とも良好であった。
From the same table, although the chemical components differed slightly depending on the site at the time of reduction, both the yield and magnetic properties were good.

(発明の効果) 以上説明したように1本発明によれば、S+o −Go
磁石の製造に際し、5IIl源として安価な酸化物Sm
、O,粉を使用するので製造コストを低コスト化でき、
また還元剤として特定粒径サイズのCa粒を用いるので
還元効率を向上することができ、良好な歩留の下でS 
m −G o磁石を低置に製造することができる。した
がって、Sm−Go系磁石を利用する各種分野での小型
軽量化及び高性能化に加えて低コスト化にも貢献する等
、その実用上の効果は顕著である。
(Effect of the invention) As explained above, according to the present invention, S+o -Go
When manufacturing magnets, inexpensive oxide Sm is used as a 5IIIl source.
By using , O, powder, manufacturing costs can be reduced,
In addition, since Ca grains with a specific particle size are used as the reducing agent, the reduction efficiency can be improved, and S
m-G o magnets can be manufactured at low elevations. Therefore, its practical effects are significant, such as contributing to reductions in size, weight, performance, and cost reduction in various fields that use Sm-Go magnets.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は還元剤Caの粒径と還元に必要なC
a量或いは処理時間との関係を示す図。 第3図は本発明の実施に用いる反応装置の一例を示す図
である。 1・・・レトルト、   2・・・シリコユニット炉、
3・・・鉄製容器、  4・・・Ca量粉、5・・・上
蓋、    6・・・水冷ジャケット。 7・・・熱電対。 特許出願人     大同特殊鋼株式会社代理人弁理士
    中 村   尚 第1図 Cafl様(^− Cユ律1tイ(辷(訓電−1ン 第3図 r
Figures 1 and 2 show the particle size of the reducing agent Ca and the amount of C required for reduction.
FIG. 3 is a diagram showing the relationship between the amount of a and the processing time. FIG. 3 is a diagram showing an example of a reaction apparatus used for carrying out the present invention. 1... Retort, 2... Silico unit furnace,
3... Iron container, 4... Ca amount powder, 5... Upper lid, 6... Water cooling jacket. 7...Thermocouple. Patent Applicant Daido Steel Co., Ltd. Representative Patent Attorney Takashi Nakamura

Claims (1)

【特許請求の範囲】[Claims] Sm_2O_3粉とCo粉をCa粒と共にレトルト内に
入れ、加熱還元によりSm−Co合金粉を得て、Sm−
Co磁石を製造するに際し、前記Ca粒として0.5〜
10mm粒径のものを用い、かつ、アルゴンガス雰囲気
下で還元温度を1000℃以上とすることを特徴とする
Sm−Co磁石の製造方法。
Sm_2O_3 powder and Co powder are put into a retort together with Ca grains, and Sm-Co alloy powder is obtained by heat reduction.
When producing a Co magnet, the Ca grains are 0.5 to
A method for manufacturing an Sm-Co magnet, characterized in that a magnet having a particle size of 10 mm is used and the reduction temperature is set to 1000° C. or higher in an argon gas atmosphere.
JP60054656A 1985-03-20 1985-03-20 Manufacture of sm-co magnet Pending JPS61214504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60054656A JPS61214504A (en) 1985-03-20 1985-03-20 Manufacture of sm-co magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60054656A JPS61214504A (en) 1985-03-20 1985-03-20 Manufacture of sm-co magnet

Publications (1)

Publication Number Publication Date
JPS61214504A true JPS61214504A (en) 1986-09-24

Family

ID=12976825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60054656A Pending JPS61214504A (en) 1985-03-20 1985-03-20 Manufacture of sm-co magnet

Country Status (1)

Country Link
JP (1) JPS61214504A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010070777A (en) * 2008-09-16 2010-04-02 Sumitomo Metal Mining Co Ltd Method for producing rare-earth-iron-nitrogen based alloy powder

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS497297A (en) * 1972-04-07 1974-01-22
JPS59179703A (en) * 1983-03-30 1984-10-12 Tdk Corp Manufacture of rare earth cobalt alloy powder having two-phase separation type coercive force producing mechanism

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS497297A (en) * 1972-04-07 1974-01-22
JPS59179703A (en) * 1983-03-30 1984-10-12 Tdk Corp Manufacture of rare earth cobalt alloy powder having two-phase separation type coercive force producing mechanism

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010070777A (en) * 2008-09-16 2010-04-02 Sumitomo Metal Mining Co Ltd Method for producing rare-earth-iron-nitrogen based alloy powder

Similar Documents

Publication Publication Date Title
JPS61295308A (en) Production of alloy powder containing rare earth metal
CN100491023C (en) Reproduction and utilization method of powder generated in mechanically processing sintered Nd-Fe-B permanent magnet
US4806155A (en) Method for producing dysprosium-iron-boron alloy powder
CN108624782A (en) A method of preparing biological titanium alloy
JPS61214504A (en) Manufacture of sm-co magnet
JP3151959B2 (en) Method for producing raw material powder for R-TM-B permanent magnet
JPS5849631B2 (en) How to scrapp and recycle rare earth magnets
JP3969134B2 (en) Method for producing FeO powder
JPH08120310A (en) Production of copper-tungsten mixed powder
JPH04247813A (en) Production of alloy powder for magnet containing rare-earth metal by reduction/diffusion method
US3066022A (en) Process for the manufacture of pulverized iron
JPS63161101A (en) Production of low-oxygen metallic chromium power
JPH04231407A (en) Preparation of metal powder
JPS59179703A (en) Manufacture of rare earth cobalt alloy powder having two-phase separation type coercive force producing mechanism
JP2994684B2 (en) Production method of raw material for rare earth permanent magnet
JPH10280002A (en) Production of alloy powder for magnet
CN116479266A (en) Method for separating main product and by-product of calcium thermal reduction diffusion reaction
JPH03244167A (en) Manufacture of thermoelectric conversion element material
JPH052722B2 (en)
JP2544017B2 (en) Method for producing copper powder for powder metallurgy
JP2000063914A (en) Production of rare earth alloy powder by reduction diffusing method
JP3508419B2 (en) Method for producing alloy powder containing rare earth and transition metal by reduction diffusion method
JPH0426104A (en) Rare earth magnet and manufacture thereof
JP2020536172A (en) Manufacturing method of magnet powder and magnet powder
JPH11335701A (en) Low oxygen metal vanadium powder and its production