JPH0426104A - Rare earth magnet and manufacture thereof - Google Patents

Rare earth magnet and manufacture thereof

Info

Publication number
JPH0426104A
JPH0426104A JP2130714A JP13071490A JPH0426104A JP H0426104 A JPH0426104 A JP H0426104A JP 2130714 A JP2130714 A JP 2130714A JP 13071490 A JP13071490 A JP 13071490A JP H0426104 A JPH0426104 A JP H0426104A
Authority
JP
Japan
Prior art keywords
rare earth
earth magnet
cobalt
alloy powder
nitrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2130714A
Other languages
Japanese (ja)
Inventor
Shogo Suzuki
鈴木 省伍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Ceramics Research Institute Co Ltd
Original Assignee
Isuzu Ceramics Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Ceramics Research Institute Co Ltd filed Critical Isuzu Ceramics Research Institute Co Ltd
Priority to JP2130714A priority Critical patent/JPH0426104A/en
Publication of JPH0426104A publication Critical patent/JPH0426104A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0551Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0552Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 in the form of particles, e.g. rapid quenched powders or ribbon flakes with a protective layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a rare earth magnet which is superior in mechanical strength by sintering an alloy powder including rare earth elements through a particle boundary phase consisting of a metallic material. CONSTITUTION:To samarium and cobalt, if necessary, preceodium, iron, copper, zinc and etc. are added and this is fused to make an ingot. A ground alloy powder is put in a water solution of cobalt nitrate and it is stirred while mixing sodium borohydride, thereby coating the surface of the powder particle with metallic cobalt. The coated powder is water-washed and dried, after which it is molded in a magnetic field and the molded product is sintered by heating in an inert atmosphere. Also, neodium nitrate, nickel nitrate and molybdenum chloride are available instead of cobalt nitrate.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、通常の希土類磁石より機械的強度に優れた希
土類磁石とその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a rare earth magnet that has better mechanical strength than ordinary rare earth magnets, and a method for manufacturing the same.

(従来の技術) 従来の希土類磁石、例えばサマリウム−コバルト系希土
類磁石の場合には、原料であるサマリウム及びコバルト
に、その他必要に応じてプラセオジム、鉄、銅、亜鉛等
を添加し溶解してインゴットを作成する。そして、該イ
ンゴットを粉砕し数μの粒径の粉末にする。該粉末を磁
界内にて成形し、アルゴン等の不活性気体雰囲気中にて
加熱焼結する。最後に、該焼結体を同じく不活性気体雰
囲気中にて数百度に加熱する熱処理を施し、保磁力を増
加させて希土類磁石が製造される。
(Prior art) In the case of conventional rare earth magnets, such as samarium-cobalt rare earth magnets, raw materials such as samarium and cobalt are added with praseodymium, iron, copper, zinc, etc. as necessary, and then melted and made into an ingot. Create. Then, the ingot is crushed into powder with a particle size of several microns. The powder is shaped in a magnetic field and heated and sintered in an inert gas atmosphere such as argon. Finally, the sintered body is heat-treated to several hundred degrees in an inert gas atmosphere to increase the coercive force, thereby producing a rare earth magnet.

上記工程にて製造される希土類磁石は最大エネルギー積
及び保磁力ともに大であるため、小型で高効率な機器の
設計が可能となり、各分野に近年法(使用されつつある
Rare earth magnets manufactured by the above process have a large maximum energy product and a large coercive force, so it is possible to design small and highly efficient equipment, and this method has been used in various fields in recent years.

(発明が解決しようとする課題) このような従来の希土類磁石は上記のごとく最大エネル
ギー積及び保磁力ともに大ではあるが、機械的強度に劣
り、例えば引張り強度は5 Kg/mm”程度しかない
(Problems to be Solved by the Invention) Although such conventional rare earth magnets have large maximum energy product and coercive force as described above, they are inferior in mechanical strength, for example, the tensile strength is only about 5 Kg/mm". .

よって、電動機や発電機の回転子のように、高速度にて
回転するものには、遠心力にて破壊するおそれがあるた
め適用できないという問題がある。
Therefore, there is a problem in that it cannot be applied to items that rotate at high speeds, such as rotors of electric motors and generators, because they may be destroyed by centrifugal force.

尚、希土類磁石にて回転子を形成し、該回転子の外周面
を高張力材料からなるスリーブにて被覆し、回転子が遠
心力により破壊されることを防止するものが、特開昭6
0−197144号公報に記載されているが、スリーブ
の厚み分だけ固定子と回転子との間隔が拡張されるので
、希土類磁石の性能を十分に発揮させることができない
In addition, a rotor is formed from rare earth magnets, and the outer circumferential surface of the rotor is covered with a sleeve made of a high-tensile material to prevent the rotor from being destroyed by centrifugal force, as disclosed in Japanese Patent Laid-Open No. 6.
Although it is described in Japanese Patent No. 0-197144, the distance between the stator and rotor is increased by the thickness of the sleeve, so the performance of the rare earth magnet cannot be fully demonstrated.

(課題を解決するための手段) 本発明は、上記の点に迄みてなされたもので、機械的強
度に優れた希土類磁石とその製造方法を提供しようとす
るものである。
(Means for Solving the Problems) The present invention has been made in view of the above points, and aims to provide a rare earth magnet with excellent mechanical strength and a method for manufacturing the same.

本発明による希土類磁石の製造方法を、図を用いて説明
する。
A method for manufacturing a rare earth magnet according to the present invention will be explained with reference to the drawings.

図は、本発明による希土類磁石の製造方法のステップを
示すフロー図である。
The figure is a flow diagram showing the steps of a method for manufacturing a rare earth magnet according to the present invention.

ステップ1にて、例えばサマリウム−コバルト系希土類
磁石の場合には、原料であるサマリウム及びコバルトに
、その他必要に応じてプラセオジム、鉄、銅、亜鉛等を
添加し溶解してインゴットを作成する。
In step 1, for example, in the case of a samarium-cobalt rare earth magnet, praseodymium, iron, copper, zinc, etc. are added and melted to raw materials samarium and cobalt as necessary to create an ingot.

次にステップ2にて、該インゴットを粉砕し数μの粒径
の粉末にする。
Next, in step 2, the ingot is crushed into powder with a particle size of several microns.

次にステップ3にて、該希土類元素を含む合金粉末を、
硝酸コバルト、硝酸ネオジウム、硝酸ニッケルあるいは
塩化モリブデン等の金属塩の水溶液中に投入する。
Next, in step 3, the alloy powder containing the rare earth element is
Pour into an aqueous solution of a metal salt such as cobalt nitrate, neodymium nitrate, nickel nitrate or molybdenum chloride.

次にステップ4にて、該水溶液中に水素化硼素ナトリウ
ム等の還元剤を添加し、上記金属塩を還元して生成され
る金属材料にて、上記粉末粒子表面を被覆する。
Next, in step 4, a reducing agent such as sodium borohydride is added to the aqueous solution, and the surfaces of the powder particles are coated with a metal material produced by reducing the metal salt.

次にステップ5にて、該粒子表面が金属にて被覆されて
いる粉末を水洗した後乾燥する。
Next, in step 5, the powder whose particle surface is coated with metal is washed with water and then dried.

次にステップ6にて、該乾燥された粉末を磁場中にて成
形する。
Next, in step 6, the dried powder is shaped in a magnetic field.

次にステップ7にて、該成形物を不活性雰囲気中にて加
熱し焼結する。
Next, in step 7, the molded product is heated and sintered in an inert atmosphere.

次にステップ8にて、同じく不活性雰囲気中にて、焼結
温度より低温度の所定温度まで加熱する熱処理を施し、
保磁力を強化する。
Next, in step 8, heat treatment is performed in the same inert atmosphere to a predetermined temperature lower than the sintering temperature.
Strengthen coercive force.

次にステップ9にて、所望の形状に加工し、着mする。Next, in step 9, it is processed into a desired shape and worn.

尚、上記各ステップのうち、ステップ】・2・6・7・
8・9は従来の希土類磁石の製造工程と同じものである
In addition, among the above steps, step】・2・6・7・
8 and 9 are the same as the manufacturing process of conventional rare earth magnets.

上記工程にて製造される希土類磁石は、希土類元素を含
む合金粉末が金属材料からなる粒界相を介して焼結され
た焼結体となる。
The rare earth magnet manufactured in the above process becomes a sintered body in which alloy powder containing a rare earth element is sintered through a grain boundary phase made of a metal material.

(作用) 本発明の希土類磁石は、金属材料からなる粒界相を介し
て焼結されているので、強固に焼結され、よって焼結体
としての機械的強度が増強される。
(Function) Since the rare earth magnet of the present invention is sintered through the grain boundary phase made of a metal material, it is strongly sintered, thereby increasing the mechanical strength of the sintered body.

また、本発明による希土類磁石の製造方法は、希土類元
素を含む合金粉末粒子表面を金属塩の還元により生成さ
れる金属材料にて被覆するので、均一な被覆層を形成す
ることができ、よって焼結体の強度が安定する。
In addition, in the method for manufacturing a rare earth magnet according to the present invention, the surface of alloy powder particles containing rare earth elements is coated with a metal material produced by reduction of metal salts, so a uniform coating layer can be formed, and therefore a uniform coating layer can be formed. The strength of the structure becomes stable.

(実施例) 以下、本発明の実施例を詳細に説明する。(Example) Examples of the present invention will be described in detail below.

実施例1 上記図のステップ2にて生成されたサマリウム−コバル
ト系希土類磁石の原料となる合金粉末を、10wt%硝
酸コバルト水溶液中に投入し、撹拌すると共に、水素可
硼素ナトリウムを添加し、粉末粒子表面を金属コバルト
で被覆した。
Example 1 The alloy powder, which is the raw material for the samarium-cobalt rare earth magnet produced in step 2 of the above figure, is poured into a 10 wt% cobalt nitrate aqueous solution, stirred, and sodium borohydride is added to form a powder. The particle surface was coated with metallic cobalt.

該被覆後の粉末を水洗乾燥した後、上記ステップ6以後
の工程により、本発明による高強度磁石である資料Aを
作成した。
After the coated powder was washed with water and dried, Material A, which is a high-strength magnet according to the present invention, was produced by the steps after step 6 described above.

実施例2 上記実施例1における硝酸コバルトの代わりに硝酸ネオ
ジウムを用いて、粉末粒子表面を金属ネオジウムにて被
覆した粉末を作成し、該粉末にて希土類磁石である資!
4Bを作成した。
Example 2 Using neodymium nitrate instead of cobalt nitrate in Example 1 above, a powder was prepared in which the powder particle surface was coated with neodymium metal.
4B was created.

実施例3 上記実施例1における硝酸コバルトの代わりに、希土類
元素を含む合金粉末に対して、wt%でニッケル2%、
モリブデン1%となるように、硝酸ニッケル及び塩化モ
リブデンを用いて、粉末粒子表面を金属ニッケル及び金
属モリブデンの混合物にて被覆した粉末を作成し、該粉
末にて希土類磁石である資料Cを作成した。
Example 3 Instead of cobalt nitrate in Example 1, 2% nickel (wt%),
A powder was prepared using nickel nitrate and molybdenum chloride so that the molybdenum content was 1%, and the surface of the powder particles was coated with a mixture of metal nickel and metal molybdenum, and Material C, which is a rare earth magnet, was created using the powder. .

上記各資料と比較するため、従来の製造方法にて希土類
磁石を作成した。
In order to compare with the above materials, rare earth magnets were created using conventional manufacturing methods.

上記各資料と従来の希土類磁石との比較結果を次の表に
示す。
The following table shows the comparison results between each of the above materials and conventional rare earth magnets.

上記表より明らかなごとく、本発明による希土類磁石は
従来の希土類磁石と同等の最大エネルギー積を有してい
ると共に、機械的強度が大幅に増強されている。
As is clear from the above table, the rare earth magnet according to the present invention has the same maximum energy product as the conventional rare earth magnet, and has significantly increased mechanical strength.

上記において、本発明の実施例について詳細に説明した
が、本発明の精神から逸れないかぎりで、種々の異なる
実施例は容易に構成できるから、本発明は上記特許請求
の範囲において記載した限定以外、特定の実施例に制約
されるのものではない。
Although the embodiments of the present invention have been described in detail above, various different embodiments can be easily constructed without departing from the spirit of the invention, and therefore, the present invention is not limited to any limitations other than those set forth in the claims. , and is not limited to any particular implementation.

(発明の効果) 以上説明したように、本発明によれば、従来の希土類磁
石と同等の最大エネルギー積を有していると共に、機械
的強度が大幅に増強されている希土類磁石が提供される
ので、電動機や発電機の回転子のように、高速度にて回
転するものにも、強化スリーブを用いることなく適用す
ることができ、小型で高性能の機器の製造を可能にする
ことができる。
(Effects of the Invention) As explained above, according to the present invention, a rare earth magnet is provided which has a maximum energy product equivalent to that of conventional rare earth magnets and has significantly increased mechanical strength. Therefore, it can be applied to items that rotate at high speeds, such as the rotor of electric motors and generators, without using a reinforcing sleeve, making it possible to manufacture small, high-performance equipment. .

【図面の簡単な説明】[Brief explanation of the drawing]

図は、本発明による希土類磁石の製造方法のステップを
示すフロー図である。
The figure is a flow diagram showing the steps of a method for manufacturing a rare earth magnet according to the present invention.

Claims (8)

【特許請求の範囲】[Claims] (1)希土類元素を含む合金粉末の焼結体である希土類
磁石において、上記合金粉末粒子の相互間に金属材料か
らなる粒界相を介在せしめたことを特徴とする希土類磁
石。
(1) A rare earth magnet that is a sintered body of alloy powder containing a rare earth element, characterized in that a grain boundary phase made of a metal material is interposed between the alloy powder particles.
(2)上記金属材料は、コバルト、ネオジウム、ニッケ
ル及びモリブデンのうちの少なくとも1種類であること
を特徴とする請求項(1)記載の希土類磁石。
(2) The rare earth magnet according to claim (1), wherein the metal material is at least one of cobalt, neodymium, nickel, and molybdenum.
(3)上記希土類磁石はサマリウム−コバルト系希土類
磁石であることを特徴とする請求項(1)記載の希土類
磁石。
(3) The rare earth magnet according to claim (1), wherein the rare earth magnet is a samarium-cobalt-based rare earth magnet.
(4)希土類元素を含む合金粉末を焼結して希土類磁石
を製造する希土類磁石の製造方法において、上記希土類
元素を含む合金粉末を金属塩の水溶液中に投入するステ
ップと、該水溶液中に還元剤を添加撹拌し、上記合金粉
末粒子表面を上記金属塩の還元により生成された金属材
料にて被覆するステップと、該粉末粒子表面が金属材料
にて被覆された合金粉末を水洗乾燥後、磁場中にて成形
し焼結するステップとを有することを特徴とする希土類
磁石の製造方法。
(4) A method for producing a rare earth magnet, in which a rare earth magnet is produced by sintering an alloy powder containing a rare earth element, including the step of introducing the alloy powder containing the rare earth element into an aqueous solution of a metal salt, and reducing the aqueous solution into the aqueous solution. A step of adding and stirring an agent and coating the surfaces of the alloy powder particles with a metal material generated by reduction of the metal salt, and washing and drying the alloy powder whose surfaces are coated with the metal material with water, and then applying a magnetic field. 1. A method for producing a rare earth magnet, comprising the steps of forming and sintering the magnet.
(5)上記希土類磁石はサマリウム−コバルト系希土類
磁石であることを特徴とする請求項(4)記載の希土類
磁石の製造方法。
(5) The method for manufacturing a rare earth magnet according to claim (4), wherein the rare earth magnet is a samarium-cobalt rare earth magnet.
(6)上記金属塩は、硝酸塩、塩素化物、硝酸塩のうち
の少なくとも1種類であることを特徴とする請求項(4
)記載の希土類磁石の製造方法。
(6) Claim (4) characterized in that the metal salt is at least one of nitrates, chlorides, and nitrates.
) The method for producing a rare earth magnet described in
(7)上記金属塩は硝酸コバルト、硝酸ネオジウム、硝
酸ニッケル及び塩化モリブデンのうちの少なくとも1種
類であることを特徴とする請求項(4)記載の希土類磁
石の製造方法。
(7) The method for manufacturing a rare earth magnet according to claim (4), wherein the metal salt is at least one of cobalt nitrate, neodymium nitrate, nickel nitrate, and molybdenum chloride.
(8)上記還元剤は、水素化硼素ナトリウムであること
を特徴とする請求項(4)記載の希土類磁石の製造方法
(8) The method for manufacturing a rare earth magnet according to claim (4), wherein the reducing agent is sodium boron hydride.
JP2130714A 1990-05-21 1990-05-21 Rare earth magnet and manufacture thereof Pending JPH0426104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2130714A JPH0426104A (en) 1990-05-21 1990-05-21 Rare earth magnet and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2130714A JPH0426104A (en) 1990-05-21 1990-05-21 Rare earth magnet and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0426104A true JPH0426104A (en) 1992-01-29

Family

ID=15040870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2130714A Pending JPH0426104A (en) 1990-05-21 1990-05-21 Rare earth magnet and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0426104A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009128458A1 (en) * 2008-04-15 2009-10-22 日東電工株式会社 Permanent magnet and process for producing permanent magnet
WO2009128459A1 (en) * 2008-04-15 2009-10-22 日東電工株式会社 Permanent magnet and process for producing permanent magnet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009128458A1 (en) * 2008-04-15 2009-10-22 日東電工株式会社 Permanent magnet and process for producing permanent magnet
WO2009128459A1 (en) * 2008-04-15 2009-10-22 日東電工株式会社 Permanent magnet and process for producing permanent magnet
US8333848B2 (en) 2008-04-15 2012-12-18 Nitto Denko Corporation Permanent magnet and process for producing permanent magnet
US8500922B2 (en) 2008-04-15 2013-08-06 Nitto Denko Corporation Permanent magnet and process for producing permanent magnet

Similar Documents

Publication Publication Date Title
US3424578A (en) Method of producing permanent magnets of rare earth metals containing co,or mixtures of co,fe and mn
CN107275029B (en) A kind of high-performance Ne-Fe-B permanent magnet and manufacturing method with neodymium iron boron waste material production
US11721460B2 (en) Method for preparing metal powder, and metal powder
US4994109A (en) Method for producing permanent magnet alloy particles for use in producing bonded permanent magnets
JPH0426104A (en) Rare earth magnet and manufacture thereof
JPS6338216A (en) Manufacture of corrosion-resistant rare-earth magnetic powder and magnetic unit made of the powder
CN105632673A (en) Preparation method for permanent magnet material and permanent magnet material
CN112992522A (en) Preparation method of high-toughness high-performance samarium-cobalt magnet
KR102658773B1 (en) Manufacturing method of sintered magnet
US3558371A (en) Method of making permanent magnet material powders
KR102399418B1 (en) Manufacturing method of sintered magnetic and sintered magnetic manufactured by the same
CN107564648B (en) A kind of deposition method preparing high-performance Ne-Fe-B magnetic powder
JPH0354161B2 (en)
JPS61208808A (en) Manufacture of sintered magnet
JPS62282417A (en) Manufacture of rare earth magnet
JPH04350102A (en) Production of metal coated composite powder
JPH0465804A (en) Permanent magnet and its manufacture
JPH05326229A (en) Permanent magnet powder and production thereof
JPS61208809A (en) Manufacture of sintered magnet
KR100262675B1 (en) Method of manufacturing permalloy-type soft magnetic sintered cores
CN107240469A (en) One kind improves the coercitive preparation method of ndfeb magnet
CN106636832A (en) Preparation method for metal ceramic material containing intermetallic compound binding phase
JPS62102504A (en) Manufacture of resin bond permanent magnet
CN105448513B (en) A kind of preparation method of multi-phase compound permanent-magnet body
JP2003293003A (en) HYDRIDE-COATED Fe POWDER AND MANUFACTURING METHOD