JP2003293003A - HYDRIDE-COATED Fe POWDER AND MANUFACTURING METHOD - Google Patents

HYDRIDE-COATED Fe POWDER AND MANUFACTURING METHOD

Info

Publication number
JP2003293003A
JP2003293003A JP2002101368A JP2002101368A JP2003293003A JP 2003293003 A JP2003293003 A JP 2003293003A JP 2002101368 A JP2002101368 A JP 2002101368A JP 2002101368 A JP2002101368 A JP 2002101368A JP 2003293003 A JP2003293003 A JP 2003293003A
Authority
JP
Japan
Prior art keywords
powder
hydride
coated
soft magnetic
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2002101368A
Other languages
Japanese (ja)
Inventor
Muneaki Watanabe
宗明 渡辺
Ryoji Nakayama
亮治 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2002101368A priority Critical patent/JP2003293003A/en
Publication of JP2003293003A publication Critical patent/JP2003293003A/en
Abandoned legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide hydride-coated Fe powder and its manufacturing method. <P>SOLUTION: In the hydride-coated Fe powder, the surface of Fe powder is coated with hydride of rare-earth elements including Y, Zr hydride, Ti hydride, Hf hydride, V hydride, Ta hydride or Pd hydride (hereinafter referred to as metal hydride). In the method for manufacturing the hydride-coated Fe powder, the surface of the Fe powder is coated with the metal hydride by a high-speed impact method or a binder method by using the Fe powder having 10 to 150 μm average particle size and powder of the metal hydride having 1 to 10 μm average particle size. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、水素化物被覆Fe粉
末およびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydride-coated Fe powder and a method for producing the same.

【0002】[0002]

【従来の技術】一般に、Fe粉末を燒結して得られた軟
磁性燒結材料は、直流リレー、スピーカ、電磁石、電磁
クラッチだけでなく、モータまたはアクチュエータなど
の低ロスヨーク、トランス、チョークコイルなどの磁心
に用いられることは知られている。しかし、この軟磁性
燒結材料は固有抵抗が低く、これを磁心として用いる
と、渦電流損失が発生して実効透磁率が低下するため
に、高周波用としては使用できない。これを避けるため
に、Fe粉末の表面にシリカ、酸化チタン、アルミナ、
酸化ホウ素、鉄酸化物、スピネル構造を有するフェライ
ト等の金属酸化物、窒化物、フッ化物、塩化物、臭化
物、ヨウ化物などの固有抵抗の大きい物質を被覆した高
抵抗層被覆軟磁性粉末を作製し、この高抵抗層被覆軟磁
性粉末を燒結してFe粉末の粒界に固有抵抗の大きいシ
リカ、酸化チタン、アルミナ、酸化ホウ素、鉄酸化物、ス
ピネル構造を有するフェライト等の金属酸化物、窒化
物、フッ化物、塩化物、臭化物、ヨウ化物などを介在さ
せた組織を有する複合軟磁性焼結材がすでに知られてお
り、この複合軟磁性焼結材はFe粉末の間に固有抵抗の
大きな物質が介在しているために、抵抗値が大きくな
り、渦電流損失の発生は大幅に低下するところから高周
波用として使用できるようになった。
2. Description of the Related Art Generally, a soft magnetic sintered material obtained by sintering Fe powder is used for not only DC relays, speakers, electromagnets, electromagnetic clutches, but also low-loss yokes for motors or actuators, magnetic cores for transformers, choke coils, etc. It is known to be used for. However, this soft magnetic sintered material has a low specific resistance, and when it is used as a magnetic core, eddy current loss occurs and the effective magnetic permeability is reduced, so that it cannot be used for high frequencies. In order to avoid this, silica, titanium oxide, alumina,
Manufacture of high resistance layer-coated soft magnetic powder coated with substances with large specific resistance such as boron oxide, iron oxide, metal oxide such as ferrite having spinel structure, nitride, fluoride, chloride, bromide, iodide, etc. The high resistance layer-coated soft magnetic powder is sintered to obtain a large specific resistance at the grain boundary of the Fe powder such as silica, titanium oxide, alumina, boron oxide, iron oxide, metal oxide such as ferrite having a spinel structure, and nitriding. A composite soft magnetic sintered material having a structure in which a substance, a fluoride, a chloride, a bromide, an iodide and the like are interposed is already known, and this composite soft magnetic sintered material has a large specific resistance between Fe powders. Since the substance is interposed, the resistance value becomes large, and the occurrence of eddy current loss is greatly reduced, so that it can be used for high frequency.

【0003】このFe粉末の間に固有抵抗の大きい物質
が介在している組織を有する複合軟磁性焼結材は、Fe
粉末にシリカ、酸化チタン、アルミナ、酸化ホウ素、鉄酸
化物、フェライト等の金属酸化物、窒化物、フッ化物、
塩化物、臭化物、ヨウ化物からなるコロイドを混合して
高抵抗層被覆軟磁性粉末を作製し、この高抵抗層被覆軟
磁性粉末を焼結することにより作られる。これら高抵抗
層被覆軟磁性粉末を焼結することにより得られた複合軟
磁性焼結材料のうちでも、Fe粉末の表面にスピネル構
造を有するフェライト層を被覆してなる高抵抗層被覆軟
磁性粉末を焼結して得られたFe粉末同士をフェライト
層により隔離した組織を有する複合軟磁性焼結材は高周
波特性が特に優れており最も注目されている。
A composite soft magnetic sintered material having a structure in which a substance having a large specific resistance is present between the Fe powder is Fe.
Silica, titanium oxide, alumina, boron oxide, iron oxide, metal oxides such as ferrite, nitride, fluoride, etc.
It is prepared by mixing a colloid consisting of chloride, bromide and iodide to prepare a high resistance layer-coated soft magnetic powder, and sintering the high resistance layer-coated soft magnetic powder. Among the composite soft magnetic sintered materials obtained by sintering these high resistance layer-coated soft magnetic powders, high resistance layer-coated soft magnetic powders obtained by coating the surface of Fe powder with a ferrite layer having a spinel structure The composite soft magnetic sintered material having a structure in which Fe powders obtained by sintering are isolated from each other by a ferrite layer has particularly excellent high frequency characteristics, and thus has attracted the most attention.

【0004】[0004]

【発明が解決しようとする課題】しかし、Fe粉末の表
面にスピネル構造を有するフェライト層を被覆してなる
従来の高抵抗層被覆軟磁性粉末を高温で燒結して密度を
上げようとすると、フェライト層は分解または破壊され
るために十分な抵抗値が得られなくなり、実際の燒結は
900℃未満で行なわなければならず、かかる低温で燒
結すると、Fe粉末の表面に形成されているフェライト
の層は分解または破壊が極めて少なくなる反面、焼結温
度が低いために得られた複合軟磁性燒結材の密度が低下
し、したがって機械的強度、特に抗折力が低下するとい
う欠点があった。一方、シリカ、酸化チタン、アルミ
ナ、酸化ホウ素、窒化物、フッ化物、塩化物、臭化物、
ヨウ化物などの耐熱性に優れ高抵抗物質からなる層をF
e粉末の粒間に形成してFe粉末同士を隔離した組織を
有する複合軟磁性燒結材は、シリカ、酸化チタン、アルミ
ナ、酸化ホウ素、窒化物、フッ化物、塩化物、臭化物、
ヨウ化物などの高抵抗物質は熱に対して安定していると
ころから高温で燒結しても燒結時に高抵抗物質粉末は分
解または破壊されることが無いが、Fe粉末とシリカ、
酸化チタン、アルミナ、酸化ホウ素、窒化物、フッ化
物、塩化物、臭化物、ヨウ化物などの高抵抗物質粉末と
は燒結時に拡散し固溶することが少なく、したがって、
これら高抵抗物質粉末はFe粉末同士の接合を妨げるた
めに、十分な機械的強度を有する複合軟磁性焼結材は得
られないという欠点がある。ところが、近年、これら複合
軟磁性燒結材は、電磁弁、プランジャーなどの振動また
は衝撃を受ける部品にも使用されようとしており、前記
従来の複合軟磁性燒結材では機械的強度が不十分であっ
て、かかる振動または衝撃を受ける部品に使用すること
のできる高強度で磁気特性に優れた複合軟磁性燒結材が
求められている。
However, if the conventional high resistance layer-coated soft magnetic powder obtained by coating the surface of Fe powder with a ferrite layer having a spinel structure is sintered at high temperature to increase the density, the ferrite Since the layer is decomposed or destroyed, a sufficient resistance value cannot be obtained, and the actual sintering must be performed at less than 900 ° C. When the sintering is performed at such a low temperature, the layer of ferrite formed on the surface of the Fe powder is formed. On the other hand, although decomposition or destruction is extremely small, there is a drawback that the density of the obtained composite soft magnetic sintered material is lowered because of the low sintering temperature, and therefore the mechanical strength, especially the transverse rupture strength is reduced. On the other hand, silica, titanium oxide, alumina, boron oxide, nitride, fluoride, chloride, bromide,
A layer made of a highly resistant material such as iodide having excellent heat resistance is F
The composite soft magnetic sinter having a structure formed between the grains of the e powder and separating the Fe powders from each other is silica, titanium oxide, alumina, boron oxide, nitride, fluoride, chloride, bromide,
Since a high resistance substance such as iodide is stable against heat, even if it is sintered at a high temperature, the high resistance substance powder is not decomposed or destroyed at the time of sintering, but Fe powder and silica,
Titanium oxide, alumina, boron oxide, nitride, fluoride, chloride, bromide, iodide and other high-resistance substance powder is less likely to diffuse and solid solution during sintering, therefore,
These high-resistance substance powders have a drawback in that a composite soft magnetic sintered material having sufficient mechanical strength cannot be obtained because they interfere with the joining of Fe powders. However, in recent years, these composite soft magnetic sinter materials are about to be used for parts such as solenoid valves and plungers that are subject to vibration or impact, and the conventional composite soft magnetic sinter material is insufficient in mechanical strength. Therefore, there is a demand for a composite soft magnetic sinter that has high strength and is excellent in magnetic properties and that can be used for parts subject to such vibration or impact.

【0005】[0005]

【課題を解決するための手段】そこで、本発明者らは、
高強度、高密度を有しかつ高抵抗を有する複合軟磁性焼
結材を得るべく研究を行った。その結果、 (イ)Fe粉末の表面に、Yを含む希土類元素(以下、
Rで示す)の水素化物、Zrの水素化物、Tiの水素化
物、Hfの水素化物、Vの水素化物、Taの水素化物ま
たはPdの水素化物(以下、これらを金属水素化物とい
う)が被覆されている水素化物被覆Fe粉末を圧粉成形
し、非酸化性雰囲気中、温度:900〜1300℃で焼
結したのち、水素雰囲気中、温度:150〜800℃で
加熱することにより水素化処理することにより得られた
複合軟磁性焼結材は、Fe粉末の粒界に前記金属水素化
物が介在した組織を有する複合軟磁性焼結材が得られ、
この金属水素化物被膜は固有抵抗値が高いところから、
高抵抗を有する複合軟磁性焼結材が得られ、この複合軟
磁性焼結材は高温で燒結されるところから鉄酸化物また
はフェライト層を有する複合軟磁性焼結材と比較して高
密度および高強度を有し、一方、シリカ、酸化チタン、
アルミナ、酸化ホウ素、窒化物、フッ化物、塩化物、臭
化物、ヨウ化物などの耐熱性に優れ高抵抗物質からなる
層をFe粉末の粒界に形成した従来の複合軟磁性燒結材
に比べて機械的強度が向上する、(ロ)前記燒結終了
後、水素雰囲気中で熱処理する熱処理工程において、水
素雰囲気に含まれる水素量を調節することにより金属水
素化物の水素化の程度を調節することができ、それによ
って、Fe粉末の粒界に介在する金属水素化物における
水素化量を調節することができ、それによって複合軟磁
性焼結材の抵抗値を調節することができるので低周波か
ら高周波にわたる広範囲な周波数帯域において使用可能
な複合軟磁性燒結材が得られる、などの研究結果が得ら
れたのである。
Therefore, the present inventors have
Research was conducted to obtain a composite soft magnetic sintered material having high strength, high density, and high resistance. As a result, (a) a rare earth element containing Y (hereinafter,
R), Zr hydride, Ti hydride, Hf hydride, V hydride, Ta hydride or Pd hydride (hereinafter referred to as metal hydride). The Fe powder coated with hydride is compacted, sintered in a non-oxidizing atmosphere at a temperature of 900 to 1300 ° C., and then heated at a temperature of 150 to 800 ° C. in a hydrogen atmosphere to be hydrogenated. The composite soft magnetic sintered material thus obtained is a composite soft magnetic sintered material having a structure in which the metal hydride is present in the grain boundary of Fe powder,
Since this metal hydride coating has a high specific resistance value,
A composite soft magnetic sintered material having high resistance is obtained, and since this composite soft magnetic sintered material is sintered at high temperature, the composite soft magnetic sintered material has high density and high density as compared with the composite soft magnetic sintered material having an iron oxide or ferrite layer. It has high strength, while silica, titanium oxide,
Compared with the conventional composite soft magnetic sinter that has a layer made of a highly resistant material such as alumina, boron oxide, nitride, fluoride, chloride, bromide, and iodide at the grain boundary of Fe powder (B) In the heat treatment step of performing heat treatment in a hydrogen atmosphere after the completion of the sintering, the degree of hydrogenation of the metal hydride can be adjusted by adjusting the amount of hydrogen contained in the hydrogen atmosphere. As a result, the amount of hydrogenation in the metal hydride present at the grain boundaries of the Fe powder can be adjusted, and thereby the resistance value of the composite soft magnetic sintered material can be adjusted, so that it can cover a wide range from low frequencies to high frequencies. Research results have been obtained, such as obtaining a composite soft magnetic sintered material that can be used in various frequency bands.

【0006】この発明は、かかる研究結果に基づいてな
されたものであって、 (1)Fe粉末の表面に金属水素化物が被覆されている
水素化物被覆Fe粉末、に特徴を有するものである。
The present invention has been made based on the results of such research, and is characterized by (1) a hydride-coated Fe powder in which the surface of the Fe powder is coated with a metal hydride.

【0007】前記Fe粉末は平均粒径:10〜100μ
mを有し、このFe粉末の表面に金属水素化物が被覆さ
れていることが好ましい。平均粒径:10〜100μm
を有するFe粉末は一般に使用されているFe粉末であ
り、特に新規なものではない。したがって、この発明
は、(2)平均粒径:10〜100μmのFe粉末の表
面に金属水素化物が被覆されている水素化物被覆Fe粉
末、に特徴を有するものである。
The Fe powder has an average particle size of 10 to 100 μm.
m, and the surface of this Fe powder is preferably coated with a metal hydride. Average particle size: 10 to 100 μm
The Fe powder containing is a commonly used Fe powder and is not particularly novel. Therefore, the present invention is characterized by (2) a hydride-coated Fe powder in which the surface of an Fe powder having an average particle diameter of 10 to 100 μm is coated with a metal hydride.

【0008】この発明の水素化物被覆Fe粉末は、Fe
粉末と金属水素化物を機械的に混合撹拌し、Fe粉末と
金属水素化物粉末の間に機械的エネルギーを加えてメカ
ノケミカル的な反応によりFe粉末の表面に金属水素化
物を被覆する方法(以下、この方法を高速衝撃法とい
う)により作製することができる。
The hydride-coated Fe powder of the present invention is Fe
A method in which the powder and the metal hydride are mechanically mixed and stirred, and mechanical energy is applied between the Fe powder and the metal hydride powder to coat the surface of the Fe powder with the metal hydride by a mechanochemical reaction (hereinafter, This method is referred to as a high speed impact method).

【0009】この高速衝撃法により水素化物被覆Fe粉
末を製造する方法で使用する金属水素化物は、粉末であ
っても良いが、特に粉末に限定されるものではなく、塊
状であっても良い。その理由は金属水素化物はFe粉末
よりも粉砕しやすいので、Fe粉末に金属水素化物を添
加して高速衝撃法を施すと、金属水素化物は先に粉砕さ
れて一層微細な粉末となり、一方、硬いFe粉末の平均
粒径は殆ど変化することがないから、高速衝撃法の実施
中に金属水素化物はFe粉末よりも先に粉砕されて一層
微細な粉末となり、Fe粉末の表面を金属水素化物で被
覆するようになるからである。しかし、金属水素化物は
Fe粉末よりも微細である方が高速衝撃法による水素化
物被覆Fe粉末の製造は早くなる。したがって、この高
速衝撃法により水素化物被覆Fe粉末を製造に使用する
Fe粉末は平均粒径:10〜100μmのFe粉末を用
い、一方、金属水素化物粉末はFe粉末よりも相対的に
微細な平均粒径:1〜10μmを有するを有する金属水
素化物粉末を用いることが一層好ましい。したがって、
この発明は、(3)Fe粉末および金属水素化物の混合
物に高速衝撃法を施すことによりFe粉末の表面に金属
水素化物を被覆する前記(1)または(2)記載の水素
化物被覆Fe粉末の製造方法、に特徴を有するものであ
る。
The metal hydride used in the method for producing the hydride-coated Fe powder by the high-speed impact method may be a powder, but is not particularly limited to the powder and may be a lump. The reason is that metal hydrides are easier to grind than Fe powders, so when metal hydrides are added to Fe powders and subjected to a high-speed impact method, the metal hydrides are ground earlier into finer powders, while Since the average particle size of the hard Fe powder hardly changes, the metal hydride is crushed into finer powder before the Fe powder during the implementation of the high-speed impact method, and the surface of the Fe powder is covered with the metal hydride. This is because it will be covered with. However, if the metal hydride is finer than the Fe powder, the production of the hydride-coated Fe powder by the high-speed impact method becomes faster. Therefore, the Fe powder used for manufacturing the hydride-coated Fe powder by this high-speed impact method uses the Fe powder having an average particle size of 10 to 100 μm, while the metal hydride powder has a relatively finer average than the Fe powder. More preferably, a metal hydride powder having a particle size of 1 to 10 μm is used. Therefore,
(3) The hydride-coated Fe powder according to (1) or (2) above, wherein the surface of the Fe powder is coated with the metal hydride by subjecting the mixture of the (3) Fe powder and the metal hydride to a high-speed impact method. It is characterized by a manufacturing method.

【0010】さらに、Fe粉末にバインダーおよび金属
水素化物粉末を添加し、撹拌したのち乾燥してFe粉末
の表面に金属水素化物粉末をバインダーにより被覆し固
化する方法(以下、バインダー法という)によりFe粉
末の表面に金属水素化物を被覆することができる。した
がって、この発明は、(4)Fe粉末にバインダーおよ
び金属水素化物粉末を添加し、撹拌したのち乾燥固化す
るバインダー法によりFe粉末の表面に金属水素化物を
被覆する前記(1)または(2)記載の水素化物被覆F
e粉末の製造方法、に特徴を有するものである。
Further, a binder and a metal hydride powder are added to the Fe powder, and the mixture is stirred and dried to coat the metal hydride powder on the surface of the Fe powder with the binder to solidify the Fe (hereinafter referred to as the binder method). The surface of the powder can be coated with a metal hydride. Therefore, the present invention provides (4) a method of adding a binder and a metal hydride powder to Fe powder, coating the surface of the Fe powder with metal hydride by a binder method in which the binder is stirred and then dried and solidified. Described hydride coating F
The method is characterized by a method for producing e powder.

【0011】このバインダー法により水素化物被覆Fe
粉末を製造するには、平均粒径:10〜100μmのF
e粉末にFe粉末より相対的に微細な平均粒径:1〜1
0μmの金属水素化物粉末を使用することが好ましい。
その理由は、バインダー法ではバインダーとともに混練
するために金属水素化物を塊状で添加すると金属水素化
物は高速衝撃法のように粉砕されることが少なく、した
がって金属水素化物を塊状で添加すると金属水素化物は
十分に粉砕されないために粒度にばらつきが生じ、Fe
粉末の表面に均一に金属水素化物が被覆されないからで
ある。したがって、この発明は、(5)平均粒径:10
〜100μmのFe粉末およびFe粉末よりも相対的に
微細な平均粒径:1〜10μmを有する金属水素化物粉
末をバインダーとともに混合撹拌してバインダー法によ
りFe粉末の表面に金属水素化物を被覆する(1)また
は(2)記載の水素化物被覆Fe粉末の製造方法、に特
徴を有するものである。
By this binder method, hydride-coated Fe
To produce a powder, F with an average particle size of 10 to 100 μm is used.
e powder has a relatively finer average particle size than Fe powder: 1 to 1
Preference is given to using 0 μm metal hydride powder.
The reason is that in the binder method, when the metal hydride is added in a lump form for kneading with the binder, the metal hydride is less likely to be crushed as in the high-speed impact method. Therefore, when the metal hydride is added in a lump form, the metal hydride is added. Is not sufficiently pulverized, so the particle size varies,
This is because the surface of the powder is not uniformly covered with the metal hydride. Therefore, the present invention provides (5) average particle size: 10
Fe powder of ˜100 μm and metal hydride powder having a finer average particle diameter: 1 to 10 μm than Fe powder are mixed and stirred with a binder, and the surface of the Fe powder is coated with the metal hydride by the binder method ( The method is characterized by the method for producing a hydride-coated Fe powder according to 1) or (2).

【0012】この発明の水素化物被覆Fe粉末を使用し
て複合軟磁性焼結材を製造するには、前記(1)または
(2)記載の水素化物被覆Fe粉末を圧粉成形し、非酸
化性雰囲気中、温度:900〜1300℃で焼結したの
ち、水素雰囲気中、温度:150〜800℃で加熱する
ことにより水素化処理することにより得られる。この場
合、水素雰囲気中、温度:150〜800℃で加熱する
ことにより水素化処理する工程を、焼結後冷却する途中
の工程において雰囲気を水素雰囲気とすることにより代
替することができる。
In order to manufacture a composite soft magnetic sintered material using the hydride-coated Fe powder of the present invention, the hydride-coated Fe powder as described in (1) or (2) above is pressed and non-oxidized. It is obtained by performing a hydrogenation treatment by sintering in a hydrogen atmosphere at a temperature of 150 to 800 ° C. after sintering in an oxygen atmosphere at a temperature of 900 to 1300 ° C. In this case, the step of hydrogenating by heating at a temperature of 150 to 800 ° C. in a hydrogen atmosphere can be replaced by setting the atmosphere to be a hydrogen atmosphere in the step of cooling after sintering.

【0013】この発明において、前記Rは、Y,Ce,
La,Pr,Nd,Sm,Gd,Ho,Er,Yb,L
uの内の1種以上である。また、この発明の高強度、高
密度および高抵抗を有する複合軟磁性焼結材を製造する
ためのFe粉末は、アトマイズ法、電解法、還元法のい
ずれかの方法で作製したFe粉末を使用することができ
る。この発明で使用するFe粉末は、軟磁性を有するF
e粉末であればいかなるFe粉末であっても良い。
In the present invention, R is Y, Ce,
La, Pr, Nd, Sm, Gd, Ho, Er, Yb, L
It is one or more of u. Further, as the Fe powder for producing the composite soft magnetic sintered material having high strength, high density and high resistance of the present invention, the Fe powder produced by any of the atomizing method, the electrolytic method and the reducing method is used. can do. The Fe powder used in the present invention is F having soft magnetism.
Any Fe powder may be used as long as it is an e powder.

【0014】[0014]

【発明の実施の形態】実施例1 原料粉末として、平均粒径:70μmのFeアトマイズ
粉末を用意し、さらに、いずれも平均粒径:3μmを有
するYの水素化物粉末、Laの水素化物粉末、Ceの水
素化物粉末、Ndの水素化物粉末、Smの水素化物粉
末、Zrの水素化物粉末、Tiの水素化物粉末、Hfの
水素化物粉末、Vの水素化物粉末、Taの水素化物粉末
またはPdの水素化物粉末を用意した。前記Yの水素化
物粉末、Laの水素化物粉末、Ceの水素化物粉末、N
dの水素化物粉末、Smの水素化物粉末、Zrの水素化
物粉末、Tiの水素化物粉末、Hfの水素化物粉末、V
の水素化物粉末、Taの水素化物粉末またはPdの水素
化物粉末をFeアトマイズ粉末とともに回転可能なブレ
ードを有する高速衝撃装置に装入し、ブレードの回転
数:6000r.p.m.で3分間回転することにより
混合撹拌し、篩にかけることにより被覆されずに残った
水素化物粉末を除去して本発明水素化物被覆Fe粉末
(以下、本発明粉末という)1〜11を作製した。これ
ら本発明粉末1〜11を6ton/cm2の成形圧をか
けることにより縦:40mm、横:10mm、厚さ:5
mmの寸法を有する圧密体を成形し、得られた圧密体を
不活性ガス雰囲気中、1100℃の温度で焼結し、焼結
後の冷却工程において800℃まで冷却した時点で雰囲
気が水素雰囲気となるように水素を供給し、この水素雰
囲気は少なくとも150℃に冷却するまで保持すること
により水素化処理して複合軟磁性焼結材を作製した。
BEST MODE FOR CARRYING OUT THE INVENTION Example 1 As a raw material powder, an Fe atomized powder having an average particle size of 70 μm was prepared, and further, a hydride powder of Y and an hydride powder of La each having an average particle size of 3 μm, Ce hydride powder, Nd hydride powder, Sm hydride powder, Zr hydride powder, Ti hydride powder, Hf hydride powder, V hydride powder, Ta hydride powder or Pd hydride powder. A hydride powder was prepared. Y hydride powder, La hydride powder, Ce hydride powder, N
d hydride powder, Sm hydride powder, Zr hydride powder, Ti hydride powder, Hf hydride powder, V
Hydride powder of Ta, hydride powder of Ta or hydride powder of Pd was charged together with Fe atomized powder into a high-speed impact device having a rotatable blade, and the number of rotations of the blade was 6000 rpm. p. m. The mixture was agitated by rotating it for 3 minutes, and the remaining hydride powder not covered was removed by sieving to produce Fe powders 1 to 11 of the present invention (hereinafter referred to as the present powder). . By applying a molding pressure of 6 ton / cm 2 to the powders 1 to 11 of the present invention, length: 40 mm, width: 10 mm, thickness: 5
A compact having a size of mm is molded, the obtained compact is sintered in an inert gas atmosphere at a temperature of 1100 ° C., and the atmosphere is hydrogen when cooled to 800 ° C. in the cooling step after sintering. Was supplied so that the hydrogen atmosphere was maintained at a temperature of at least 150 ° C. until hydrogenation was performed to prepare a composite soft magnetic sintered material.

【0015】従来例1 比較のために、Feアトマイズ粉末の表面に(Mn17
16Fe6734を被覆した従来のフェライト被覆Fe
粉末(以下、従来粉末という)を用意し、この従来粉末
を6ton/cm2の成形圧をかけることにより縦:4
0mm、横:10mm、厚さ:5mmの寸法を有する圧
密体を成形し、得られた圧密体を800℃で燒結するこ
とにより粒界にフェライト相を有する複合軟磁性焼結材
を作製した。
Conventional Example 1 For comparison, (Mn 17 Z was formed on the surface of the Fe atomized powder.
n 16 Fe 67 ) 3 O 4 coated conventional ferrite coated Fe
A powder (hereinafter referred to as a conventional powder) is prepared, and a vertical pressure of 4 is obtained by applying a molding pressure of 6 ton / cm 2 to the conventional powder.
A compacted body having a size of 0 mm, width: 10 mm, and thickness: 5 mm was molded, and the obtained compacted body was sintered at 800 ° C. to prepare a composite soft magnetic sintered material having a ferrite phase at grain boundaries.

【0016】このようにして得られた複合軟磁性焼結材
について相対密度および抗折力を測定し、その結果を表
1に示し、さらに、磁束密度、抵抗値および周波数:1
00KHzの高周波における比透磁率を測定し、その結
果を表1に示した。
The relative density and transverse rupture strength of the thus obtained composite soft magnetic sintered material were measured, and the results are shown in Table 1. Furthermore, the magnetic flux density, resistance value and frequency: 1
The relative permeability at a high frequency of 00 KHz was measured, and the results are shown in Table 1.

【0017】[0017]

【表1】 [Table 1]

【0018】表1に示される結果から、本発明粉末1〜
11で作製した複合軟磁性焼結材は、粒界にフェライト
相を有する従来粉末で作製した複合軟磁性焼結材に比べ
て磁気特性および抵抗値については遜色が無いが、本発
明粉末1〜11で作製した複合軟磁性焼結材は従来粉末
で作製した複合軟磁性焼結材に比べて一層高密度を有す
ると共に一層機械的強度が高いことが分かる。
From the results shown in Table 1, the powders of the present invention 1 to
The composite soft magnetic sintered material prepared in No. 11 is comparable to the composite soft magnetic sintered material prepared by the conventional powder having a ferrite phase in the grain boundary in the magnetic characteristics and the resistance value, It can be seen that the composite soft magnetic sintered material produced in No. 11 has a higher density and higher mechanical strength than the composite soft magnetic sintered material produced by the conventional powder.

【0019】実施例2 実施例1で用意した平均粒径:70μmを有するFeア
トマイズ粉末に、いずれも微細な平均粒径:3μmを有
するYの水素化物粉末、Laの水素化物粉末、Ceの水
素化物粉末、Ndの水素化物粉末、Smの水素化物粉
末、Zrの水素化物粉末、Tiの水素化物粉末、Hfの
水素化物粉末、Vの水素化物粉末、Taの水素化物粉末
またはPdの水素化物粉末をそれぞれ2%配合し、さら
にバインダーとしてポリビニルアルコール:0.05
%、残部:Feアトマイズ粉末となるように配合し、こ
の配合粉末を回転可能な撹拌刃を有する処理装置に装入
し、撹拌刃を回転数:1000r.p.m.で20分間
回転することにより混合撹拌して本発明水素化物被覆F
e粉末(以下、本発明粉末という)12〜22を作製
し、これら粉末を6ton/cm2の成形圧をかけるこ
とにより縦:40mm、横:10mm、厚さ:5mmの
寸法を有する圧密体を成形し、得られた圧密体を不活性
ガス雰囲気中、1150℃の温度で焼結し、焼結後の冷
却工程において800℃まで冷却した時点で雰囲気が水
素雰囲気となるように水素を供給し、この水素雰囲気は
少なくとも150℃に冷却するまで保持することにより
水素化処理して複合軟磁性焼結材を作製した。
Example 2 Fe atomized powder having an average particle size of 70 μm prepared in Example 1 was added to each of Y hydride powder, La hydride powder, and Ce hydrogen having a fine average particle size of 3 μm. Hydride powder, Nd hydride powder, Sm hydride powder, Zr hydride powder, Ti hydride powder, Hf hydride powder, V hydride powder, Ta hydride powder or Pd hydride powder. 2% each, and polyvinyl alcohol as a binder: 0.05
%, The balance: Fe atomized powder was blended, and this blended powder was charged into a processing device having a rotatable stirring blade, and the stirring blade was rotated at a rotation speed of 1000 r. p. m. The hydride coating F of the present invention is mixed and stirred by rotating at 20 ° C. for 20 minutes.
e powders (hereinafter referred to as powders of the present invention) 12 to 22 are produced, and a compaction body having dimensions of length: 40 mm, width: 10 mm, thickness: 5 mm is produced by applying a molding pressure of 6 ton / cm 2 to these powders. The compacted body obtained by molding is sintered in an inert gas atmosphere at a temperature of 1150 ° C., and hydrogen is supplied so that the atmosphere becomes a hydrogen atmosphere when cooled to 800 ° C. in the cooling step after sintering. By holding this hydrogen atmosphere until it was cooled to at least 150 ° C., hydrogenation treatment was performed to produce a composite soft magnetic sintered material.

【0020】このようにして得られた複合軟磁性焼結材
について相対密度および抗折力を測定し、その結果を表
1に示し、さらに、磁束密度、抵抗値および周波数:1
00KHzの高周波における比透磁率を測定し、その結
果を表2に示した。
The relative density and the transverse rupture strength of the thus obtained composite soft magnetic sintered material were measured, and the results are shown in Table 1. Further, the magnetic flux density, the resistance value and the frequency: 1
The relative magnetic permeability was measured at a high frequency of 00 KHz, and the results are shown in Table 2.

【0021】[0021]

【表2】 [Table 2]

【0022】表2に示される本発明粉末12〜22で作
製した複合軟磁性焼結材は、粒界にフェライト相を有す
る表1に示される従来粉末で作製した複合軟磁性焼結材
と比較して、磁気特性および抵抗値については遜色が無
く、さらに本発明粉末12〜22で作製した複合軟磁性
焼結材は従来粉末で作製した複合軟磁性焼結材に比べて
一層高密度を有すると共に一層機械的強度が高いことが
分かる。
The composite soft magnetic sintered materials prepared from the powders 12 to 22 of the present invention shown in Table 2 are compared with the composite soft magnetic sintered materials prepared from the conventional powder shown in Table 1 having a ferrite phase at the grain boundary. In addition, the magnetic properties and resistance values are comparable to each other, and the composite soft magnetic sintered material produced by the powders 12 to 22 of the present invention has a higher density than the composite soft magnetic sintered material produced by the conventional powders. In addition, it can be seen that the mechanical strength is higher.

【0023】[0023]

【発明の効果】この発明は、高密度で機械的強度が優
れ、かつ高周波の比透磁率の高い複合軟磁性焼結材を提
供することができ、電気および電子産業において優れた
効果をもたらすものである。
INDUSTRIAL APPLICABILITY The present invention can provide a composite soft magnetic sintered material having a high density, excellent mechanical strength, and high relative permeability at high frequencies, and brings excellent effects in the electric and electronic industries. Is.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】Fe粉末の表面に、Yを含む希土類元素の
水素化物、Zrの水素化物、Tiの水素化物、Hfの水
素化物、Vの水素化物、Taの水素化物またはPdの水
素化物(以下、これらを金属水素化物という)が被覆さ
れていることを特徴とする水素化物被覆Fe粉末。
1. A hydride of a rare earth element containing Y, a hydride of Zr, a hydride of Ti, a hydride of Hf, a hydride of V, a hydride of Ta, a hydride of Ta or a hydride of Ta (Pd) on the surface of Fe powder. Hereinafter, these are referred to as metal hydrides) are coated with hydride-coated Fe powder.
【請求項2】平均粒径:10〜100μmのFe粉末の
表面に金属水素化物が被覆されていることを特徴とする
水素化物被覆Fe粉末。
2. A hydride-coated Fe powder, characterized in that the surface of the Fe powder having an average particle diameter of 10 to 100 μm is coated with a metal hydride.
【請求項3】平均粒径:10〜100μmのFe粉末お
よび金属水素化物を混合撹拌して機械的エネルギーを加
えることにより、Fe粉末の表面に金属水素化物を被覆
することを特徴とする請求項1または2記載の水素化物
被覆Fe粉末の製造方法。
3. An Fe powder having an average particle size of 10 to 100 μm and a metal hydride are mixed and stirred to apply mechanical energy to coat the surface of the Fe powder with the metal hydride. 1. The method for producing the hydride-coated Fe powder according to 1 or 2.
【請求項4】Fe粉末に金属水素化物粉末およびバイン
ダーを添加し撹拌したのち乾燥固化することによりFe
粉末の表面に金属水素化物を被覆することを特徴とする
請求項1または2記載の水素化物被覆Fe粉末の製造方
法。
4. Fe powder prepared by adding a metal hydride powder and a binder to Fe powder, stirring and drying and solidifying Fe.
The method for producing a hydride-coated Fe powder according to claim 1, wherein the surface of the powder is coated with a metal hydride.
【請求項5】前記Fe粉末は平均粒径:10〜100μ
mを有し、前記金属水素化物粉末は平均粒径:1〜10
μmを有し、金属水素化物粉末の平均粒径は金属水素化
物粉末の平均粒径よりも相対的に微細であることを特徴
とする請求項4記載の水素化物被覆Fe粉末の製造方
法。
5. The Fe powder has an average particle diameter of 10 to 100 μm.
m, the metal hydride powder has an average particle size of 1 to 10
5. The method for producing a hydride-coated Fe powder according to claim 4, wherein the metal hydride powder has an average particle size of μm and the average particle size of the metal hydride powder is relatively finer than the average particle size of the metal hydride powder.
JP2002101368A 2002-04-03 2002-04-03 HYDRIDE-COATED Fe POWDER AND MANUFACTURING METHOD Abandoned JP2003293003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002101368A JP2003293003A (en) 2002-04-03 2002-04-03 HYDRIDE-COATED Fe POWDER AND MANUFACTURING METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002101368A JP2003293003A (en) 2002-04-03 2002-04-03 HYDRIDE-COATED Fe POWDER AND MANUFACTURING METHOD

Publications (1)

Publication Number Publication Date
JP2003293003A true JP2003293003A (en) 2003-10-15

Family

ID=29241773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002101368A Abandoned JP2003293003A (en) 2002-04-03 2002-04-03 HYDRIDE-COATED Fe POWDER AND MANUFACTURING METHOD

Country Status (1)

Country Link
JP (1) JP2003293003A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015184474A1 (en) * 2014-05-26 2015-12-03 Hrl Laboratories, Llc Hydride-coated microparticles and methods for making the same
WO2017011715A1 (en) * 2015-07-15 2017-01-19 Hrl Laboratories, Llc Semi-passive control of solidification in powdered materials

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015184474A1 (en) * 2014-05-26 2015-12-03 Hrl Laboratories, Llc Hydride-coated microparticles and methods for making the same
CN106457388B (en) * 2014-05-26 2021-04-27 Hrl实验室有限责任公司 Hydride coated microparticles and method of making same
WO2017011715A1 (en) * 2015-07-15 2017-01-19 Hrl Laboratories, Llc Semi-passive control of solidification in powdered materials

Similar Documents

Publication Publication Date Title
JP5304907B2 (en) R-Fe-B fine crystal high density magnet
JP4873008B2 (en) R-Fe-B porous magnet and method for producing the same
JP4872887B2 (en) Porous material for R-Fe-B permanent magnet and method for producing the same
JP2019511133A (en) Intergranular engineering of sintered magnetic alloys and compositions derived therefrom
WO2010073590A1 (en) Composite soft magnetic material and method for producing same
JP6037093B1 (en) Method for producing RTB-based sintered magnet
JP2007251125A (en) Soft magnetic alloy consolidation object and method for fabrication thereof
JP2018029108A (en) Method of manufacturing r-t-b based sintered magnet
JP2003293003A (en) HYDRIDE-COATED Fe POWDER AND MANUFACTURING METHOD
JP4257846B2 (en) Method for producing soft magnetic compact
JP2010185126A (en) Composite soft magnetic material and method for producing the same
KR102399418B1 (en) Manufacturing method of sintered magnetic and sintered magnetic manufactured by the same
JP2003226947A (en) Complex soft magnetic sintered material with high strength, high density and high resistivity, and its manufacturing method
JP2003293006A (en) HYDRIDE-COATED Fe-Si SOFT MAGNETIC ALLOY POWDER AND MANUFACTURING METHOD
JP2003293005A (en) HYDRIDE-COATED Fe-Ni SOFT MAGNETIC ALLOY POWDER AND MANUFACTURING METHOD
JP2004327762A (en) Composite soft magnetic material
JP2003293007A (en) HYDRIDE-COATED Fe-Cr ELECTRICAL STAINLESS STEEL POWDER AND MANUFACTURING METHOD
JP2003293004A (en) HYDRIDE-COATED Fe-Co SOFT MAGNETIC ALLOY POWDER AND MANUFACTURING METHOD
JP2003239049A (en) Composite soft magnetic sintered material with high strength, high density, and high resistivity, and its manufacturing method
EP4310213A1 (en) Powder for magnetic core, method for manufacturing same, and dust core
JP2003239035A (en) Composite soft magnetic sintered material with high strength, high density, and high resistivity, and its manufacturing method
JPH0494502A (en) High magnetic permeability material, its manufacturing method, and method for manufacturing high magnetic permeability alloy powder
JP2003226903A (en) Complex soft magnetic sintered compact with high strength, high density and high resistivity, and its manufacturing method
JP2004014614A (en) METHOD FOR PRODUCING Fe-Si BASED SOFT MAGNETISM SINTERED ALLOY HAVING HIGH DENSITY AND HIGH PERMEABILITY
JP2003193174A (en) METHOD FOR MANUFACTURING Fe-Si SOFT MAGNETIC SINTERED MATERIAL WITH HIGH DENSITY AND EXCELLENT MAGNETIC PERMEABILITY

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050318

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060125

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060214

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20061124