JP2003293007A - HYDRIDE-COATED Fe-Cr ELECTRICAL STAINLESS STEEL POWDER AND MANUFACTURING METHOD - Google Patents

HYDRIDE-COATED Fe-Cr ELECTRICAL STAINLESS STEEL POWDER AND MANUFACTURING METHOD

Info

Publication number
JP2003293007A
JP2003293007A JP2002101387A JP2002101387A JP2003293007A JP 2003293007 A JP2003293007 A JP 2003293007A JP 2002101387 A JP2002101387 A JP 2002101387A JP 2002101387 A JP2002101387 A JP 2002101387A JP 2003293007 A JP2003293007 A JP 2003293007A
Authority
JP
Japan
Prior art keywords
hydride
stainless steel
powder
steel powder
electromagnetic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002101387A
Other languages
Japanese (ja)
Inventor
Muneaki Watanabe
宗明 渡辺
Ryoji Nakayama
亮治 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2002101387A priority Critical patent/JP2003293007A/en
Publication of JP2003293007A publication Critical patent/JP2003293007A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide hydride-coated Fe-Cr electrical stainless steel powder and its manufacturing method. <P>SOLUTION: In the hydride-coated Fe-Cr electrical stainless steel powder, the surface of Fe-Cr electrical stainless steel powder is coated with hydride of rare-earth elements including Y, Zr hydride, Ti hydride, Hf hydride, V hydride, Ta hydride or Pd hydride (hereinafter referred to as metal hydride). In the method for manufacturing the hydride-coated Fe-Cr electrical stainless steel powder, the surface of the Fe-Cr electrical stainless steel powder is coated with the metal hydride by a high-speed impact method or a binder method by using the Fe-Cr electrical stainless steel powder having 10 to 150 μm average particle size and powder of the metal hydride having 1 to 10 μm average particle size. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、水素化物被覆Fe−
Cr系電磁ステンレス鋼粉末およびその製造方法に関す
るものである。
This invention relates to a hydride-coated Fe-
The present invention relates to a Cr-based electromagnetic stainless steel powder and a method for producing the same.

【0002】[0002]

【従来の技術】一般に、Fe−Cr系電磁ステンレス鋼
粉末を燒結して得られた軟磁性燒結材料は、電磁バル
ブ、自動車燃料噴射装置などの鉄心、ヨークなどに用い
られることは知られている。このFe−Cr系電磁ステ
ンレス鋼粉末を燒結して得られた軟磁性燒結材料は耐食
性に優れているが、固有抵抗が低く、これを磁心として
用いると、渦電流損失が発生して実効透磁率が低下する
ために、高周波用としては使用できない。これを避ける
ために、Fe−Cr系電磁ステンレス鋼粉末の表面にシ
リカ、酸化チタン、アルミナ、酸化ホウ素、鉄酸化物、ス
ピネル構造を有するフェライト等の金属酸化物、窒化
物、フッ化物、塩化物、臭化物、ヨウ化物などの固有抵
抗の大きい物質を被覆した高抵抗層被覆軟磁性粉末を作
製し、この高抵抗層被覆軟磁性粉末を燒結してFe−C
r系電磁ステンレス鋼粉末の粒界に固有抵抗の大きいシ
リカ、酸化チタン、アルミナ、酸化ホウ素、鉄酸化物、ス
ピネル構造を有するフェライト等の金属酸化物、窒化
物、フッ化物、塩化物、臭化物、ヨウ化物などを介在さ
せた組織を有する複合軟磁性焼結材がすでに知られてお
り、この複合軟磁性焼結材はFe−Cr系電磁ステンレ
ス鋼粉末の間に固有抵抗の大きな物質が介在しているた
めに、抵抗値が大きくなり、渦電流損失の発生は大幅に
低下するところから高周波用として使用できるようにな
った。
2. Description of the Related Art Generally, it is known that a soft magnetic sintered material obtained by sintering Fe--Cr type electromagnetic stainless steel powder is used for an electromagnetic valve, an iron core of an automobile fuel injection device, a yoke and the like. . The soft magnetic sintered material obtained by sintering the Fe-Cr-based electromagnetic stainless steel powder has excellent corrosion resistance, but has a low specific resistance, and when this is used as a magnetic core, eddy current loss occurs and effective magnetic permeability is generated. It cannot be used for high frequencies because of the decrease in In order to avoid this, metal oxides such as silica, titanium oxide, alumina, boron oxide, iron oxide, and ferrite having a spinel structure, nitrides, fluorides, and chlorides on the surface of Fe-Cr electromagnetic stainless steel powder. , A high-resistance layer-coated soft magnetic powder coated with a substance having a large specific resistance, such as bromide and iodide, was sintered and Fe-C was formed by sintering the high-resistance layer-coated soft magnetic powder.
Silica, titanium oxide, alumina, boron oxide, iron oxide, metal oxide such as ferrite having spinel structure, nitride, fluoride, chloride, bromide, which has a large specific resistance in the grain boundary of r-type electromagnetic stainless steel powder, A composite soft magnetic sintered material having a structure in which iodide or the like is intercalated is already known. In this composite soft magnetic sintered material, a substance having a large specific resistance is interposed between Fe—Cr type electromagnetic stainless steel powder. Therefore, the resistance value becomes large, and the occurrence of eddy current loss is greatly reduced, so that it can be used for high frequencies.

【0003】このFe−Cr系電磁ステンレス鋼粉末の
間に固有抵抗の大きい物質が介在している組織を有する
複合軟磁性焼結材は、Fe−Cr系電磁ステンレス鋼粉
末にシリカ、酸化チタン、アルミナ、酸化ホウ素、鉄酸化
物、フェライト等の金属酸化物、窒化物、フッ化物、塩
化物、臭化物、ヨウ化物からなるコロイドを混合して高
抵抗層被覆軟磁性粉末を作製し、この高抵抗層被覆軟磁
性粉末を焼結することにより作られる。これら高抵抗層
被覆軟磁性粉末を焼結することにより得られた複合軟磁
性焼結材料のうちでも、Fe−Cr系電磁ステンレス鋼
粉末の表面にスピネル構造を有するフェライト層を被覆
してなる高抵抗層被覆軟磁性粉末を焼結して得られたF
e−Cr系電磁ステンレス鋼粉末同士をフェライト層に
より隔離した組織を有する複合軟磁性焼結材は高周波特
性が特に優れており最も注目されている。
A composite soft magnetic sintered material having a structure in which a substance having a large specific resistance is present between the Fe--Cr type electromagnetic stainless steel powder is a Fe--Cr type electromagnetic stainless steel powder containing silica, titanium oxide, A colloid consisting of metal oxides such as alumina, boron oxide, iron oxide, ferrite, etc., nitrides, fluorides, chlorides, bromides, and iodides is mixed to produce a soft magnetic powder coated with a high resistance layer. It is made by sintering a layer-coated soft magnetic powder. Among the composite soft magnetic sintered materials obtained by sintering these high resistance layer-coated soft magnetic powders, the high-resistance layer obtained by coating the surface of Fe—Cr type electromagnetic stainless steel powder with a ferrite layer having a spinel structure is used. F obtained by sintering the soft magnetic powder coated with the resistance layer
A composite soft magnetic sintered material having a structure in which e-Cr-based electromagnetic stainless steel powders are separated by a ferrite layer has particularly excellent high-frequency characteristics, and thus has attracted the most attention.

【0004】[0004]

【発明が解決しようとする課題】しかし、Fe−Cr系
電磁ステンレス鋼粉末の表面にスピネル構造を有するフ
ェライト層を被覆してなる従来の高抵抗層被覆軟磁性粉
末を高温で燒結して密度を上げようとすると、フェライ
ト層は分解または破壊されるために十分な抵抗値が得ら
れなくなり、実際の燒結は900℃未満で行なわなけれ
ばならず、かかる低温で燒結すると、Fe−Cr系電磁
ステンレス鋼粉末の表面に形成されているフェライトの
層は分解または破壊が極めて少なくなる反面、焼結温度
が低いために得られた複合軟磁性燒結材の密度が低下
し、したがって機械的強度、特に抗折力が低下するとい
う欠点があった。一方、シリカ、酸化チタン、アルミ
ナ、酸化ホウ素、窒化物、フッ化物、塩化物、臭化物、
ヨウ化物などの耐熱性に優れ高抵抗物質からなる層をF
e−Cr系電磁ステンレス鋼粉末の粒間に形成してFe
−Cr系電磁ステンレス鋼粉末同士を隔離した組織を有
する複合軟磁性燒結材は、シリカ、酸化チタン、アルミ
ナ、酸化ホウ素、窒化物、フッ化物、塩化物、臭化物、
ヨウ化物などの高抵抗物質は熱に対して安定していると
ころから高温で燒結しても燒結時に高抵抗物質粉末は分
解または破壊されることが無いが、Fe−Cr系電磁ス
テンレス鋼粉末とシリカ、酸化チタン、アルミナ、酸化
ホウ素、窒化物、フッ化物、塩化物、臭化物、ヨウ化物
などの高抵抗物質粉末とは燒結時に拡散し固溶すること
が少なく、したがって、これら高抵抗物質粉末はFe−
Cr系電磁ステンレス鋼粉末同士の接合を妨げるため
に、十分な機械的強度を有する複合軟磁性焼結材は得ら
れないという欠点がある。ところが、近年、これら複合軟
磁性燒結材は、電磁弁、プランジャーなどの振動または
衝撃を受ける部品にも使用されようとしており、前記従
来の複合軟磁性燒結材では機械的強度が不十分であっ
て、かかる振動または衝撃を受ける部品に使用すること
のできる高強度で磁気特性に優れた複合軟磁性燒結材が
求められている。
However, the conventional high resistance layer-coated soft magnetic powder obtained by coating the surface of the Fe--Cr type electromagnetic stainless steel powder with the ferrite layer having the spinel structure is sintered at a high temperature to increase the density. If it is attempted to raise it, the ferrite layer will be decomposed or destroyed so that a sufficient resistance value cannot be obtained, and the actual sintering must be carried out at less than 900 ° C. If it is sintered at such a low temperature, the Fe-Cr type electromagnetic stainless steel will be produced. Although the ferrite layer formed on the surface of the steel powder is extremely less decomposed or destroyed, the density of the obtained composite soft magnetic sinter is decreased due to the low sintering temperature, and therefore the mechanical strength, especially There was a drawback that the folding force was reduced. On the other hand, silica, titanium oxide, alumina, boron oxide, nitride, fluoride, chloride, bromide,
A layer made of a highly resistant material such as iodide having excellent heat resistance is F
Fe formed between grains of e-Cr electromagnetic stainless steel powder
The composite soft magnetic sinter having a structure in which -Cr-based electromagnetic stainless steel powders are isolated from each other is silica, titanium oxide, alumina, boron oxide, nitride, fluoride, chloride, bromide,
Since a high resistance substance such as iodide is stable against heat, even if it is sintered at a high temperature, the high resistance substance powder will not be decomposed or destroyed at the time of sintering. High resistance material powders such as silica, titanium oxide, alumina, boron oxide, nitride, fluoride, chloride, bromide, iodide, etc. are less likely to diffuse and form a solid solution during sintering. Fe-
There is a drawback that a composite soft magnetic sintered material having sufficient mechanical strength cannot be obtained because it interferes with the joining of Cr-based electromagnetic stainless steel powders. However, in recent years, these composite soft magnetic sinter materials are about to be used for parts such as solenoid valves and plungers that are subject to vibration or impact, and the conventional composite soft magnetic sinter material is insufficient in mechanical strength. Therefore, there is a demand for a composite soft magnetic sinter that has high strength and is excellent in magnetic properties and that can be used for parts subject to such vibration or impact.

【0005】[0005]

【課題を解決するための手段】そこで、本発明者らは、
高強度、高密度を有しかつ高抵抗を有する複合軟磁性焼
結材を得るべく研究を行った。その結果、 (イ)Fe−Cr系電磁ステンレス鋼粉末の表面に、Y
を含む希土類元素(以下、Rで示す)の水素化物、Zr
の水素化物、Tiの水素化物、Hfの水素化物、Vの水
素化物、Taの水素化物またはPdの水素化物(以下、
これらを金属水素化物という)が被覆されている水素化
物被覆Fe−Cr系電磁ステンレス鋼粉末を圧粉成形
し、非酸化性雰囲気中、温度:900〜1300℃で焼
結したのち、水素雰囲気中、温度:150〜800℃で
加熱することにより水素化処理することにより得られた
複合軟磁性焼結材は、Fe−Cr系電磁ステンレス鋼粉
末の粒界に前記金属水素化物が介在した組織を有する複
合軟磁性焼結材が得られ、この金属水素化物被膜は固有
抵抗値が高いところから、高抵抗を有する複合軟磁性焼
結材が得られ、この複合軟磁性焼結材は高温で燒結され
るところから鉄酸化物またはフェライト層を有する複合
軟磁性焼結材と比較して高密度および高強度を有し、一
方、シリカ、酸化チタン、アルミナ、酸化ホウ素、窒化
物、フッ化物、塩化物、臭化物、ヨウ化物などの耐熱性
に優れ高抵抗物質からなる層をFe−Cr系電磁ステン
レス鋼粉末の粒界に形成した従来の複合軟磁性燒結材に
比べて機械的強度が向上する、(ロ)前記燒結終了後、
水素雰囲気中で熱処理する熱処理工程において、水素雰
囲気に含まれる水素量を調節することにより金属水素化
物の水素化の程度を調節することができ、それによっ
て、Fe−Cr系電磁ステンレス鋼粉末の粒界に介在す
る金属水素化物における水素化量を調節することがで
き、それによって複合軟磁性焼結材の抵抗値を調節する
ことができるので低周波から高周波にわたる広範囲な周
波数帯域において使用可能な複合軟磁性燒結材が得られ
る、などの研究結果が得られたのである。
Therefore, the present inventors have
Research was conducted to obtain a composite soft magnetic sintered material having high strength, high density, and high resistance. As a result, (a) Y-on the surface of the Fe-Cr-based electromagnetic stainless steel powder,
Hydrides of rare earth elements (hereinafter represented by R) containing Zr
Hydride, Ti hydride, Hf hydride, V hydride, Ta hydride or Pd hydride (hereinafter,
These are referred to as metal hydrides), and hydride-coated Fe-Cr electromagnetic stainless steel powders are compacted and sintered in a non-oxidizing atmosphere at a temperature of 900 to 1300 ° C, and then in a hydrogen atmosphere. The composite soft magnetic sintered material obtained by the hydrogenation treatment by heating at a temperature of 150 to 800 ° C. has a structure in which the metal hydride is present in the grain boundaries of the Fe—Cr electromagnetic stainless steel powder. The resulting composite soft magnetic sintered material has a high specific resistance, and thus the composite soft magnetic sintered material having a high resistance is obtained. The composite soft magnetic sintered material is sintered at a high temperature. Therefore, it has higher density and higher strength compared with the composite soft magnetic sintered material having iron oxide or ferrite layer, while silica, titanium oxide, alumina, boron oxide, nitride, fluoride, chloride. , A mechanical strength is improved as compared with a conventional composite soft magnetic sinter material in which a layer made of a high resistance material having excellent heat resistance such as bromide and iodide is formed at a grain boundary of Fe—Cr electromagnetic stainless steel powder. B) After finishing the sintering
In the heat treatment step of heat treatment in a hydrogen atmosphere, the degree of hydrogenation of the metal hydride can be adjusted by adjusting the amount of hydrogen contained in the hydrogen atmosphere, whereby the particles of the Fe-Cr-based electromagnetic stainless steel powder can be adjusted. Since the amount of hydrogenation in the metal hydride intervening in the boundary can be adjusted, and the resistance value of the composite soft magnetic sintered material can be adjusted accordingly, a composite that can be used in a wide frequency band from low frequency to high frequency can be adjusted. Research results were obtained, such as obtaining a soft magnetic sintered material.

【0006】この発明は、かかる研究結果に基づいてな
されたものであって、 (1)Fe−Cr系電磁ステンレス鋼粉末の表面に金属
水素化物が被覆されている水素化物被覆Fe−Cr系電
磁ステンレス鋼粉末、に特徴を有するものである。
The present invention has been made on the basis of the results of such research. (1) A hydride-coated Fe-Cr electromagnetic system in which the surface of an Fe-Cr electromagnetic stainless steel powder is coated with a metal hydride. It is characterized by stainless steel powder.

【0007】前記Fe−Cr系電磁ステンレス鋼粉末は
平均粒径:10〜100μmを有し、このFe−Cr系
電磁ステンレス鋼粉末の表面に金属水素化物が被覆され
ていることが好ましい。平均粒径:10〜100μmを
有するFe−Cr系電磁ステンレス鋼粉末は一般に使用
されているFe−Cr系電磁ステンレス鋼粉末であり、
特に新規なものではない。したがって、この発明は、
(2)平均粒径:10〜100μmのFe−Cr系電磁
ステンレス鋼粉末の表面に金属水素化物が被覆されてい
る水素化物被覆Fe−Cr系電磁ステンレス鋼粉末、に
特徴を有するものである。
The Fe--Cr electromagnetic stainless steel powder has an average particle size of 10 to 100 μm, and the surface of the Fe--Cr electromagnetic stainless steel powder is preferably coated with a metal hydride. The Fe-Cr electromagnetic stainless steel powder having an average particle size of 10 to 100 µm is a commonly used Fe-Cr electromagnetic stainless steel powder,
It is not particularly new. Therefore, the present invention
(2) A hydride-coated Fe-Cr electromagnetic stainless steel powder in which the surface of an Fe-Cr electromagnetic stainless steel powder having an average particle diameter of 10 to 100 µm is coated with a metal hydride.

【0008】この発明の水素化物被覆Fe−Cr系電磁
ステンレス鋼粉末は、Fe−Cr系電磁ステンレス鋼粉
末と金属水素化物を機械的に混合撹拌し、Fe−Cr系
電磁ステンレス鋼粉末と金属水素化物粉末の間に機械的
エネルギーを加えてメカノケミカル的な反応によりFe
−Cr系電磁ステンレス鋼粉末の表面に金属水素化物を
被覆する方法(以下、この方法を高速衝撃法という)に
より作製することができる。
The hydride-coated Fe-Cr type electromagnetic stainless steel powder of the present invention mechanically mixes and stirs Fe-Cr type electromagnetic stainless steel powder and metal hydride to obtain Fe-Cr type electromagnetic stainless steel powder and metallic hydrogen. Fe by a mechanochemical reaction by applying mechanical energy between the oxide powders
It can be produced by a method of coating the surface of a —Cr-based electromagnetic stainless steel powder with a metal hydride (hereinafter, this method is referred to as a high-speed impact method).

【0009】この高速衝撃法により水素化物被覆Fe−
Cr系電磁ステンレス鋼粉末を製造する方法で使用する
金属水素化物は、粉末であっても良いが、特に粉末に限
定されるものではなく、塊状であっても良い。その理由
は金属水素化物はFe−Cr系電磁ステンレス鋼粉末よ
りも粉砕しやすいので、Fe−Cr系電磁ステンレス鋼
粉末に金属水素化物を添加して高速衝撃法を施すと、金
属水素化物は先に粉砕されて一層微細な粉末となり、一
方、硬いFe−Cr系電磁ステンレス鋼粉末の平均粒径
は殆ど変化することがないから、高速衝撃法の実施中に
金属水素化物はFe−Cr系電磁ステンレス鋼粉末より
も先に粉砕されて一層微細な粉末となり、Fe−Cr系
電磁ステンレス鋼粉末の表面を金属水素化物で被覆する
ようになるからである。しかし、金属水素化物はFe−
Cr系電磁ステンレス鋼粉末よりも微細である方が高速
衝撃法による水素化物被覆Fe−Cr系電磁ステンレス
鋼粉末の製造は早くなる。したがって、この高速衝撃法
により水素化物被覆Fe−Cr系電磁ステンレス鋼粉末
を製造に使用するFe−Cr系電磁ステンレス鋼粉末は
平均粒径:10〜100μmのFe−Cr系電磁ステン
レス鋼粉末を用い、一方、金属水素化物粉末はFe−C
r系電磁ステンレス鋼粉末よりも相対的に微細な平均粒
径:1〜10μmを有するを有する金属水素化物粉末を
用いることが一層好ましい。したがって、この発明は、
(3)Fe−Cr系電磁ステンレス鋼粉末および金属水
素化物の混合物に高速衝撃法を施すことによりFe−C
r系電磁ステンレス鋼粉末の表面に金属水素化物を被覆
する前記(1)または(2)記載の水素化物被覆Fe−
Cr系電磁ステンレス鋼粉末の製造方法、に特徴を有す
るものである。
By this high-speed impact method, hydride-coated Fe-
The metal hydride used in the method for producing the Cr-based electromagnetic stainless steel powder may be a powder, but is not particularly limited to the powder and may be a lump. The reason is that metal hydrides are easier to grind than Fe-Cr electromagnetic stainless steel powders. Therefore, when metal hydrides are added to Fe-Cr electromagnetic stainless steel powders and subjected to the high-speed impact method, the metal hydrides are Since the average particle size of the hard Fe-Cr-based electromagnetic stainless steel powder is hardly changed, the metal hydride is mixed with the Fe-Cr-based electromagnetic stainless steel during the high-speed impact method. This is because the powder is pulverized earlier than the stainless steel powder into a finer powder, and the surface of the Fe—Cr-based electromagnetic stainless steel powder is coated with the metal hydride. However, the metal hydride is Fe-
The finer the Cr-based electromagnetic stainless steel powder, the faster the production of the hydride-coated Fe-Cr-based electromagnetic stainless steel powder by the high-speed impact method. Therefore, the Fe-Cr-based electromagnetic stainless steel powder used for manufacturing the hydride-coated Fe-Cr-based electromagnetic stainless steel powder by this high-speed impact method uses the Fe-Cr-based electromagnetic stainless steel powder having an average particle size of 10 to 100 μm. On the other hand, the metal hydride powder is Fe-C
It is more preferable to use a metal hydride powder having an average particle size that is relatively finer than that of the r-type electromagnetic stainless steel powder: 1 to 10 μm. Therefore, the present invention
(3) Fe-C is obtained by subjecting a mixture of Fe-Cr electromagnetic stainless steel powder and metal hydride to a high-speed impact method.
The hydride-coated Fe- according to (1) or (2) above, wherein the surface of the r-type electromagnetic stainless steel powder is coated with a metal hydride.
It is characterized by a method for producing a Cr-based electromagnetic stainless steel powder.

【0010】さらに、Fe−Cr系電磁ステンレス鋼粉
末にバインダーおよび金属水素化物粉末を添加し、撹拌
したのち乾燥してFe−Cr系電磁ステンレス鋼粉末の
表面に金属水素化物粉末をバインダーにより被覆し固化
する方法(以下、バインダー法という)によりFe−C
r系電磁ステンレス鋼粉末の表面に金属水素化物を被覆
することができる。したがって、この発明は、(4)F
e−Cr系電磁ステンレス鋼粉末にバインダーおよび金
属水素化物粉末を添加し、撹拌したのち乾燥固化するバ
インダー法によりFe−Cr系電磁ステンレス鋼粉末の
表面に金属水素化物を被覆する前記(1)または(2)
記載の水素化物被覆Fe−Cr系電磁ステンレス鋼粉末
の製造方法、に特徴を有するものである。
Further, a binder and a metal hydride powder are added to the Fe-Cr type electromagnetic stainless steel powder, and the mixture is stirred and dried to coat the surface of the Fe-Cr type electromagnetic stainless steel powder with the metal hydride powder with the binder. Fe-C by a method of solidifying (hereinafter referred to as a binder method)
The surface of the r-type electromagnetic stainless steel powder can be coated with a metal hydride. Therefore, the present invention provides (4) F
The binder and the metal hydride powder are added to the e-Cr electromagnetic stainless steel powder, and the surface of the Fe-Cr electromagnetic stainless steel powder is coated with the metal hydride by the binder method of stirring and then drying and solidifying. (1) or (2)
The method for producing an Fe-Cr-based electromagnetic stainless steel powder described above is characterized.

【0011】このバインダー法により水素化物被覆Fe
−Cr系電磁ステンレス鋼粉末を製造するには、平均粒
径:10〜100μmのFe−Cr系電磁ステンレス鋼
粉末にFe−Cr系電磁ステンレス鋼粉末より相対的に
微細な平均粒径:1〜10μmの金属水素化物粉末を使
用することが好ましい。その理由は、バインダー法では
バインダーとともに混練するために金属水素化物を塊状
で添加すると金属水素化物は高速衝撃法のように粉砕さ
れることが少なく、したがって金属水素化物を塊状で添
加すると金属水素化物は十分に粉砕されないために粒度
にばらつきが生じ、Fe−Cr系電磁ステンレス鋼粉末
の表面に均一に金属水素化物が被覆されないからであ
る。したがって、この発明は、(5)平均粒径:10〜
100μmのFe−Cr系電磁ステンレス鋼粉末および
Fe−Cr系電磁ステンレス鋼粉末よりも相対的に微細
な平均粒径:1〜10μmを有する金属水素化物粉末を
バインダーとともに混合撹拌してバインダー法によりF
e−Cr系電磁ステンレス鋼粉末の表面に金属水素化物
を被覆する(1)または(2)記載の水素化物被覆Fe
−Cr系電磁ステンレス鋼粉末の製造方法、に特徴を有
するものである。
By this binder method, hydride-coated Fe
In order to produce —Cr-based electromagnetic stainless steel powder, an average particle diameter of 10 to 100 μm is added to Fe—Cr-based electromagnetic stainless steel powder, which is relatively finer than that of Fe—Cr-based electromagnetic stainless steel powder. It is preferred to use 10 μm metal hydride powder. The reason is that in the binder method, when the metal hydride is added in a lump form for kneading with the binder, the metal hydride is less likely to be crushed as in the high-speed impact method. Therefore, when the metal hydride is added in a lump form, the metal hydride is added. Is not sufficiently pulverized, so that the particle size varies, and the surface of the Fe—Cr electromagnetic stainless steel powder is not uniformly coated with the metal hydride. Therefore, the present invention provides (5) average particle size: 10
100 μm Fe-Cr electromagnetic stainless steel powder and metal hydride powder having an average particle size of 1 to 10 μm, which is relatively finer than that of Fe-Cr electromagnetic stainless steel powder, are mixed and stirred with a binder, and F is obtained by the binder method.
(1) or (2), wherein the surface of the e-Cr electromagnetic stainless steel powder is coated with a metal hydride.
And a method for producing a Cr-based electromagnetic stainless steel powder.

【0012】この発明の水素化物被覆Fe−Cr系電磁
ステンレス鋼粉末を使用して複合軟磁性焼結材を製造す
るには、前記(1)または(2)記載の水素化物被覆F
e−Cr系電磁ステンレス鋼粉末を圧粉成形し、非酸化
性雰囲気中、温度:900〜1300℃で焼結したの
ち、水素雰囲気中、温度:150〜800℃で加熱する
ことにより水素化処理することにより得られる。この場
合、水素雰囲気中、温度:150〜800℃で加熱する
ことにより水素化処理する工程を、焼結後冷却する途中
の工程において雰囲気を水素雰囲気とすることにより代
替することができる。
To produce a composite soft magnetic sintered material by using the hydride-coated Fe-Cr type electromagnetic stainless steel powder of the present invention, the hydride-coated F described in (1) or (2) above is used.
The e-Cr electromagnetic stainless steel powder is compacted, sintered in a non-oxidizing atmosphere at a temperature of 900 to 1300 ° C., and then heated in a hydrogen atmosphere at a temperature of 150 to 800 ° C. for hydrogenation treatment. It is obtained by doing. In this case, the step of hydrogenating by heating at a temperature of 150 to 800 ° C. in a hydrogen atmosphere can be replaced by setting the atmosphere to be a hydrogen atmosphere in the step of cooling after sintering.

【0013】この発明において、前記Rは、Y,Ce,
La,Pr,Nd,Sm,Gd,Ho,Er,Yb,L
uの内の1種以上である。また、この発明の高強度、高
密度および高抵抗を有する複合軟磁性焼結材を製造する
ためのFe−Cr系電磁ステンレス鋼粉末は、アトマイ
ズ法、電解法、還元法のいずれかの方法で作製したFe
−Cr系電磁ステンレス鋼粉末を使用することができ
る。この発明で使用するFe−Cr系電磁ステンレス鋼
粉末の具体的な組成組成として、質量%で、Cr:10
〜20%、C:0.1〜0.5%を含有し、残部がFe
および不可避不純物からなる組成のFe−Cr系電磁ス
テンレス鋼(例えば、17%Cr−1%C−Fe)粉末
やCr:10〜20%、Mo:0.1〜0.5%を含有
し、残部がFeおよび不可避不純物からなる組成のFe
−Cr系電磁ステンレス鋼(例えば、17%Cr−1%
Mo−Fe)粉末などが好ましいが、これに特に限定さ
れるものではなく、その他一般に知られているFe−C
r系電磁ステンレス鋼粉末を使用することができる。
In the present invention, R is Y, Ce,
La, Pr, Nd, Sm, Gd, Ho, Er, Yb, L
It is one or more of u. Further, the Fe-Cr-based electromagnetic stainless steel powder for producing the composite soft magnetic sintered material having high strength, high density and high resistance of the present invention is prepared by any of atomizing method, electrolyzing method and reducing method. Produced Fe
-Cr-based electromagnetic stainless steel powder can be used. A specific composition of the Fe—Cr-based electromagnetic stainless steel powder used in the present invention is, in mass%, Cr: 10.
-20%, C: 0.1-0.5%, balance Fe
And Fe-Cr electromagnetic stainless steel (for example, 17% Cr-1% C-Fe) powder having a composition consisting of unavoidable impurities and Cr: 10 to 20%, Mo: 0.1 to 0.5%, Fe with a composition in which the balance is Fe and inevitable impurities
-Cr-based electromagnetic stainless steel (for example, 17% Cr-1%
Mo-Fe) powder and the like are preferable, but the present invention is not particularly limited to this, and other generally known Fe-C
r-based electromagnetic stainless steel powder can be used.

【0014】[0014]

【発明の実施の形態】実施例1 原料粉末として、平均粒径:55μmを有し、成分組成
がCr:13%、C:0.2%を含有し、残部がFeお
よび不可避不純物からなるFe−Cr系電磁ステンレス
鋼のアトマイズ粉末を用意し、さらに、いずれも平均粒
径:3μmを有するY水素化物粉末、La水素化物粉
末、Ce水素化物粉末、Nd水素化物粉末、Sm水素化
物粉末、Zr水素化物粉末、Ti水素化物粉末、Hf水
素化物粉末、V水素化物粉末、Ta水素化物粉末または
Pd水素化物粉末を用意した。前記Y水素化物粉末、L
a水素化物粉末、Ce水素化物粉末、Nd水素化物粉
末、Sm水素化物粉末、Zr水素化物粉末、Ti水素化
物粉末、Hf水素化物粉末、V水素化物粉末、Ta水素
化物粉末またはPd水素化物粉末をFe−Cr系電磁ス
テンレス鋼アトマイズ粉末とともに回転可能なブレード
を有する高速衝撃装置に装入し、ブレードの回転数:6
000r.p.m.で3分間回転することにより混合撹
拌し、篩にかけることにより被覆されずに残った水素化
物粉末を除去して本発明水素化物被覆Fe−Cr系電磁
ステンレス鋼粉末(以下、本発明粉末という)1〜11
を作製した。これら本発明粉末1〜11を6ton/c
2の成形圧をかけることにより縦:40mm、横:1
0mm、厚さ:5mmの寸法を有する圧密体を成形し、
得られた圧密体を不活性ガス雰囲気中、1100℃の温
度で焼結し、焼結後の冷却工程において800℃まで冷
却した時点で雰囲気が水素雰囲気となるように水素を供
給し、この水素雰囲気は少なくとも150℃に冷却する
まで保持することにより水素化処理して複合軟磁性焼結
材を作製した。
BEST MODE FOR CARRYING OUT THE INVENTION Example 1 As a raw material powder, Fe having an average particle diameter of 55 μm, a composition of components of Cr: 13% and C: 0.2%, and the balance being Fe and inevitable impurities Atomized powder of Cr-based electromagnetic stainless steel was prepared, and further, Y hydride powder, La hydride powder, Ce hydride powder, Nd hydride powder, Sm hydride powder, and Zr each having an average particle diameter of 3 μm. Hydride powder, Ti hydride powder, Hf hydride powder, V hydride powder, Ta hydride powder or Pd hydride powder was prepared. The Y hydride powder, L
a hydride powder, Ce hydride powder, Nd hydride powder, Sm hydride powder, Zr hydride powder, Ti hydride powder, Hf hydride powder, V hydride powder, Ta hydride powder or Pd hydride powder. Fe-Cr system electromagnetic stainless steel Atomized powder and charged into a high-speed impact device having a rotatable blade, the number of rotations of the blade: 6
000r. p. m. The mixture is agitated by rotating for 3 minutes, and the hydride powder left uncoated is removed by sieving to remove Fe-Cr-based electromagnetic stainless steel powder of the present invention (hereinafter referred to as the present powder). 1-11
Was produced. 6 ton / c of these powders 1 to 11 of the present invention
By applying molding pressure of m 2 , length: 40 mm, width: 1
0 mm, thickness: molding a compact having a dimension of 5 mm,
The obtained compact is sintered in an inert gas atmosphere at a temperature of 1100 ° C., and hydrogen is supplied so that the atmosphere becomes a hydrogen atmosphere when cooled to 800 ° C. in the cooling step after sintering. The atmosphere was maintained until it was cooled to at least 150 ° C., and hydrogenation was performed to produce a composite soft magnetic sintered material.

【0015】従来例1 比較のために、Fe−Cr系電磁ステンレス鋼アトマイ
ズ粉末の表面に(Mn 17Zn16Fe6734を被覆した
従来のフェライト被覆Fe−Cr系電磁ステンレス鋼粉
末(以下、従来粉末という)を用意し、この従来粉末を
6ton/cm 2の成形圧をかけることにより縦:40
mm、横:10mm、厚さ:5mmの寸法を有する圧密
体を成形し、得られた圧密体を800℃で燒結すること
により粒界にフェライト相を有する複合軟磁性焼結材を
作製した。
Conventional Example 1 For comparison, Fe-Cr electromagnetic stainless steel atomized
On the surface of the powder (Mn 17Zn16Fe67)3OFourCoated
Conventional ferrite-coated Fe-Cr electromagnetic stainless steel powder
Prepare powder (hereinafter referred to as conventional powder) and use this conventional powder
6 ton / cm 2Vertical: 40 by applying molding pressure
Consolidation with dimensions of mm, width: 10 mm, thickness: 5 mm
Form the body and sinter the resulting compact at 800 ° C
To produce a composite soft magnetic sintered material that has a ferrite phase at the grain boundaries.
It was made.

【0016】このようにして得られた複合軟磁性焼結材
について相対密度および抗折力を測定し、その結果を表
1に示し、さらに、磁束密度、抵抗値および周波数:1
00KHzの高周波における比透磁率を測定し、その結
果を表1に示した。
The relative density and transverse rupture strength of the thus obtained composite soft magnetic sintered material were measured, and the results are shown in Table 1. Furthermore, the magnetic flux density, resistance value and frequency: 1
The relative permeability at a high frequency of 00 KHz was measured, and the results are shown in Table 1.

【0017】[0017]

【表1】 [Table 1]

【0018】表1に示される結果から、本発明粉末1〜
11で作製した複合軟磁性焼結材は、粒界にフェライト
相を有する従来粉末で作製した複合軟磁性焼結材に比べ
て磁気特性および抵抗値については遜色が無いが、本発
明粉末1〜11で作製した複合軟磁性焼結材は従来粉末
で作製した複合軟磁性焼結材に比べて一層高密度を有す
ると共に一層機械的強度が高いことが分かる。
From the results shown in Table 1, the powders of the present invention 1 to
The composite soft magnetic sintered material prepared in No. 11 is comparable to the composite soft magnetic sintered material prepared by the conventional powder having a ferrite phase in the grain boundary in the magnetic characteristics and the resistance value, It can be seen that the composite soft magnetic sintered material produced in No. 11 has a higher density and higher mechanical strength than the composite soft magnetic sintered material produced by the conventional powder.

【0019】実施例2 実施例1で用意した平均粒径:55μmを有し、成分組
成がCr:13%、C:0.2%を含有し、残部がFe
および不可避不純物からなるFe−Cr系電磁ステンレ
ス鋼のアトマイズ粉末に、いずれも微細な平均粒径:3
μmを有するY水素化物粉末、La水素化物粉末、Ce
水素化物粉末、Nd水素化物粉末、Sm水素化物粉末、
Zr水素化物粉末、Ti水素化物粉末、Hf水素化物粉
末、V水素化物粉末、Ta水素化物粉末またはPd水素
化物粉末をそれぞれ2%配合し、さらにバインダーとし
てポリビニルアルコール:0.05%、残部:Fe−C
r系電磁ステンレス鋼アトマイズ粉末となるように配合
し、この配合粉末を回転可能な撹拌刃を有する処理装置
に装入し、撹拌刃を回転数:1000r.p.m.で2
0分間回転することにより混合撹拌して本発明水素化物
被覆Fe−Cr系電磁ステンレス鋼粉末(以下、本発明
粉末という)12〜22を作製し、これら粉末を6to
n/cm2の成形圧をかけることにより縦:40mm、
横:10mm、厚さ:5mmの寸法を有する圧密体を成
形し、得られた圧密体を不活性ガス雰囲気中、1150
℃の温度で焼結し、焼結後の冷却工程において800℃
まで冷却した時点で雰囲気が水素雰囲気となるように水
素を供給し、この水素雰囲気は少なくとも150℃に冷
却するまで保持することにより水素化処理して複合軟磁
性焼結材を作製した。
Example 2 The average particle size prepared in Example 1 was 55 μm, the composition of the components was Cr: 13%, C: 0.2%, and the balance was Fe.
Atomized powder of Fe-Cr electromagnetic stainless steel composed of unavoidable impurities and fine average particle size: 3
Y hydride powder with μm, La hydride powder, Ce
Hydride powder, Nd hydride powder, Sm hydride powder,
2% each of Zr hydride powder, Ti hydride powder, Hf hydride powder, V hydride powder, Ta hydride powder or Pd hydride powder, and polyvinyl alcohol: 0.05% as a binder, balance: Fe -C
r-type electromagnetic stainless steel atomized powder was compounded, and this compounded powder was charged into a processing device having a rotatable stirring blade, and the stirring blade was rotated at a rotation speed of 1000 r. p. m. In 2
By rotating for 0 minutes to mix and stir, the hydride-coated Fe-Cr-based electromagnetic stainless steel powders of the present invention (hereinafter referred to as the present invention powders) 12 to 22 are produced, and these powders are mixed at 6 to
Vertical: 40 mm by applying molding pressure of n / cm 2 .
A compacted body having dimensions of width: 10 mm and thickness: 5 mm is molded, and the obtained compacted body is subjected to 1150 in an inert gas atmosphere.
Sintered at a temperature of ℃, 800 ℃ in the cooling process after sintering
Hydrogen was supplied so that the atmosphere became a hydrogen atmosphere at the time of cooling, and this hydrogen atmosphere was held at least at 150 ° C. until it was hydrogenated to prepare a composite soft magnetic sintered material.

【0020】このようにして得られた複合軟磁性焼結材
について相対密度および抗折力を測定し、その結果を表
1に示し、さらに、磁束密度、抵抗値および周波数:1
00KHzの高周波における比透磁率を測定し、その結
果を表2に示した。
The relative density and the transverse rupture strength of the thus obtained composite soft magnetic sintered material were measured, and the results are shown in Table 1. Further, the magnetic flux density, the resistance value and the frequency: 1
The relative magnetic permeability was measured at a high frequency of 00 KHz, and the results are shown in Table 2.

【0021】[0021]

【表2】 [Table 2]

【0022】表2に示される本発明粉末12〜22で作
製した複合軟磁性焼結材は、粒界にフェライト相を有す
る表1に示される従来粉末で作製した複合軟磁性焼結材
と比較して、磁気特性および抵抗値については遜色が無
く、さらに本発明粉末12〜22で作製した複合軟磁性
焼結材は従来粉末で作製した複合軟磁性焼結材に比べて
一層高密度を有すると共に一層機械的強度が高いことが
分かる。
The composite soft magnetic sintered materials prepared from the powders 12 to 22 of the present invention shown in Table 2 are compared with the composite soft magnetic sintered materials prepared from the conventional powder shown in Table 1 having a ferrite phase at the grain boundary. In addition, the magnetic properties and resistance values are comparable to each other, and the composite soft magnetic sintered material produced by the powders 12 to 22 of the present invention has a higher density than the composite soft magnetic sintered material produced by the conventional powders. In addition, it can be seen that the mechanical strength is higher.

【0023】[0023]

【発明の効果】この発明は、高密度で機械的強度が優
れ、かつ高周波の比透磁率の高い複合軟磁性焼結材を提
供することができ、電気および電子産業において優れた
効果をもたらすものである。
INDUSTRIAL APPLICABILITY The present invention can provide a composite soft magnetic sintered material having a high density, excellent mechanical strength, and high relative permeability at high frequencies, and brings excellent effects in the electric and electronic industries. Is.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K018 AA33 AB10 AC03 BB04 BC09 BC28 BC32 BD01 KA43 KA44 5E041 AA11 BC01 CA01 HB17 NN01   ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 4K018 AA33 AB10 AC03 BB04 BC09                       BC28 BC32 BD01 KA43 KA44                 5E041 AA11 BC01 CA01 HB17 NN01

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】Fe−Cr系電磁ステンレス鋼粉末の表面
に、Yを含む希土類元素の水素化物、Zrの水素化物、
Tiの水素化物、Hfの水素化物、Vの水素化物、Ta
の水素化物またはPdの水素化物(以下、これらを金属
水素化物という)が被覆されていることを特徴とする水
素化物被覆Fe−Cr系電磁ステンレス鋼粉末。
1. A hydride of a rare earth element containing Y, a hydride of Zr, on the surface of an Fe—Cr-based electromagnetic stainless steel powder,
Ti hydride, Hf hydride, V hydride, Ta
Or Fe-Cr-based electromagnetic stainless steel powder coated with hydride of Pd or Pd (hereinafter referred to as metal hydride).
【請求項2】平均粒径:10〜100μmのFe−Cr
系電磁ステンレス鋼粉末の表面に金属水素化物が被覆さ
れていることを特徴とする水素化物被覆Fe−Cr系電
磁ステンレス鋼粉末。
2. Fe-Cr having an average particle size of 10 to 100 μm.
A hydride-coated Fe-Cr system electromagnetic stainless steel powder characterized in that the surface of the system-based electromagnetic stainless steel powder is coated with a metal hydride.
【請求項3】平均粒径:10〜100μmのFe−Cr
系電磁ステンレス鋼粉末および金属水素化物を混合撹拌
して機械的エネルギーを加えることにより、Fe−Cr
系電磁ステンレス鋼粉末の表面に金属水素化物を被覆す
ることを特徴とする請求項1または2記載の水素化物被
覆Fe−Cr系電磁ステンレス鋼粉末の製造方法。
3. Fe-Cr having an average particle size of 10 to 100 μm.
-Based electromagnetic stainless steel powder and metal hydride are mixed and stirred, and mechanical energy is applied to the Fe-Cr powder.
The method for producing a hydride-coated Fe-Cr electromagnetic stainless steel powder according to claim 1 or 2, wherein the surface of the electromagnetic stainless steel powder is coated with a metal hydride.
【請求項4】Fe−Cr系電磁ステンレス鋼粉末に金属
水素化物粉末およびバインダーを添加し撹拌したのち乾
燥固化することによりFe−Cr系電磁ステンレス鋼粉
末の表面に金属水素化物を被覆することを特徴とする請
求項1または2記載の水素化物被覆Fe−Cr系電磁ス
テンレス鋼粉末の製造方法。
4. A method for coating a surface of an Fe—Cr electromagnetic stainless steel powder with a metal hydride by adding a metal hydride powder and a binder to an Fe—Cr electromagnetic stainless steel powder, stirring and drying and solidifying. The method for producing a hydride-coated Fe-Cr-based electromagnetic stainless steel powder according to claim 1 or 2.
【請求項5】前記Fe−Cr系電磁ステンレス鋼粉末は
平均粒径:10〜100μmを有し、前記金属水素化物
粉末は平均粒径:1〜10μmを有し、金属水素化物粉
末の平均粒径は金属水素化物粉末の平均粒径よりも相対
的に微細であることを特徴とする請求項4記載の水素化
物被覆Fe−Cr系電磁ステンレス鋼粉末の製造方法。
5. The Fe-Cr type electromagnetic stainless steel powder has an average particle size of 10 to 100 μm, the metal hydride powder has an average particle size of 1 to 10 μm, and the average particle of the metal hydride powder. The method for producing a hydride-coated Fe-Cr-based electromagnetic stainless steel powder according to claim 4, wherein the diameter is relatively finer than the average particle diameter of the metal hydride powder.
JP2002101387A 2002-04-03 2002-04-03 HYDRIDE-COATED Fe-Cr ELECTRICAL STAINLESS STEEL POWDER AND MANUFACTURING METHOD Withdrawn JP2003293007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002101387A JP2003293007A (en) 2002-04-03 2002-04-03 HYDRIDE-COATED Fe-Cr ELECTRICAL STAINLESS STEEL POWDER AND MANUFACTURING METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002101387A JP2003293007A (en) 2002-04-03 2002-04-03 HYDRIDE-COATED Fe-Cr ELECTRICAL STAINLESS STEEL POWDER AND MANUFACTURING METHOD

Publications (1)

Publication Number Publication Date
JP2003293007A true JP2003293007A (en) 2003-10-15

Family

ID=29241788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002101387A Withdrawn JP2003293007A (en) 2002-04-03 2002-04-03 HYDRIDE-COATED Fe-Cr ELECTRICAL STAINLESS STEEL POWDER AND MANUFACTURING METHOD

Country Status (1)

Country Link
JP (1) JP2003293007A (en)

Similar Documents

Publication Publication Date Title
JP4924615B2 (en) R-Fe-B fine crystal high-density magnet and method for producing the same
EP2947670B1 (en) Method for manufacturing powder magnetic core, powder magnetic core, and coil component
JP5874951B2 (en) Method for producing RTB-based sintered magnet
JP6669304B2 (en) Crystalline Fe-based alloy powder and method for producing the same
TW200422416A (en) Fabrication of B/C/N/O/Si doped sputtering targets
JP2019012796A (en) Method of producing rare earth magnet
JP2007251125A (en) Soft magnetic alloy consolidation object and method for fabrication thereof
TWI778112B (en) Fe-BASED ALLOY, CRYSTALLINE Fe-BASED ALLOY ATOMIZED POWDER, AND MAGNETIC CORE
JP6691666B2 (en) Method for manufacturing RTB magnet
JP2003293007A (en) HYDRIDE-COATED Fe-Cr ELECTRICAL STAINLESS STEEL POWDER AND MANUFACTURING METHOD
CN109509628A (en) A kind of preparation method of sintered NdFeB composite powder
JP4257846B2 (en) Method for producing soft magnetic compact
JP2003293003A (en) HYDRIDE-COATED Fe POWDER AND MANUFACTURING METHOD
JP2003226947A (en) Complex soft magnetic sintered material with high strength, high density and high resistivity, and its manufacturing method
JP2003239035A (en) Composite soft magnetic sintered material with high strength, high density, and high resistivity, and its manufacturing method
JPH07166201A (en) Method for heat treatment of flaky soft magnetic powder
JP2003293005A (en) HYDRIDE-COATED Fe-Ni SOFT MAGNETIC ALLOY POWDER AND MANUFACTURING METHOD
JP2003293004A (en) HYDRIDE-COATED Fe-Co SOFT MAGNETIC ALLOY POWDER AND MANUFACTURING METHOD
JP2003293006A (en) HYDRIDE-COATED Fe-Si SOFT MAGNETIC ALLOY POWDER AND MANUFACTURING METHOD
JP2000336404A (en) Method for pulverizing wc-containing alloy, oxide powder of wc-containing alloy, method for regenerating wc- containing alloy, regenerated wc-containing alloy powder, production of cemented carbide using the same powder and cemented carbide using the same powder
CN106498208B (en) Ni in Binder Phase3The generated in-situ cermet material preparation methods of Al
JP2005008951A (en) Method for manufacturing soft magnetic sintered alloy having structure containing metal nitride in boundary among the alloy particles
JP2003239049A (en) Composite soft magnetic sintered material with high strength, high density, and high resistivity, and its manufacturing method
Yang et al. Microstructure and magnetic properties of SiO2/FeCoNiSi0. 25 core-shell high-entropy alloys with nanotwinned structures
JP2003226903A (en) Complex soft magnetic sintered compact with high strength, high density and high resistivity, and its manufacturing method

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050607