JPH07166201A - Method for heat treatment of flaky soft magnetic powder - Google Patents

Method for heat treatment of flaky soft magnetic powder

Info

Publication number
JPH07166201A
JPH07166201A JP5342267A JP34226793A JPH07166201A JP H07166201 A JPH07166201 A JP H07166201A JP 5342267 A JP5342267 A JP 5342267A JP 34226793 A JP34226793 A JP 34226793A JP H07166201 A JPH07166201 A JP H07166201A
Authority
JP
Japan
Prior art keywords
powder
soft magnetic
heat
magnetic powder
flaky
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5342267A
Other languages
Japanese (ja)
Inventor
Masami Miyake
政美 三宅
Hiroyuki Imai
浩之 今井
Takanori Endo
貴則 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP5342267A priority Critical patent/JPH07166201A/en
Publication of JPH07166201A publication Critical patent/JPH07166201A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated

Abstract

PURPOSE:To efficiently obtain flaky soft magnetic powder excellent in shape characteristics and magnetic particle properties by mixing high m.p. heat-resistant grains having a large particle size to flaky soft magnetic powder and subjecting this mixed powder to heat treatment at a specified temp. in a hydrogen atmosphere. CONSTITUTION:Flaky soft magnetic powder such as permalloy based alloy powder is mixed with heat-resistant particles such as high m.p. aluminum oxide powder whose average particle diameter is 1 to 5 times of that of the powder and which is not brought into reaction with the powder. In this case, as for the mixing ratio, the heat resistant particle are preferably mixed by 1/2 to 5 times wt. of the flaky soft magnetic powder. Moreover, as for the particles of the flaky soft magnetic powder, preferably, the average particle diameter is regulated to 1mum to 10mm, the ratio of the minor axis/major axis to 1 to 0.3 and the ratio of the thickness/minor axis to <=1/3. The obtd. mixed powder is subjected to heating treatment at 650 to 1300 deg.C in a hydrogen atmosphere. Thus, the surface is reduced without sintering the soft magnetic powder. After that, the heat resistant particles are separated by a magnetic vibrating screen or the like, by which the flake soft magnetic powder of high quality can easily be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は鱗片状軟磁性粉末の加熱
処理方法に関する。より詳しくは、電子機器や高圧線な
どから発生する磁気、または地磁気などの外部磁場から
磁気に敏感な電子機器を保護する目的、あるいは電子機
器などから外部に漏洩する磁気を遮蔽する目的などに使
用される高透磁率および低保磁力を有する鱗片状軟磁性
粉末の加熱処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat treatment method for flaky soft magnetic powder. More specifically, it is used for the purpose of protecting electronic devices that are sensitive to magnetism from external magnetic fields such as magnetic fields generated by electronic devices and high voltage wires, or external magnetic fields such as earth magnetism, and for shielding the magnetic fields that leak to the outside from electronic devices The present invention relates to a heat treatment method for flaky soft magnetic powder having a high magnetic permeability and a low coercive force.

【0002】[0002]

【従来技術とその課題】従来、磁気シールド材として、
樹脂に磁気シールドフィラーを添加した樹脂系磁気シー
ルド材が知られており、上記磁気シールドフィラーには
パーマロイを代表とする軟磁性粉末が用いられている。
この軟磁性粉末は磁気漏れのないようにできるだけ粉末
が相互に接触していることが必要であり、従って、粉末
相互の接触面積が大きくなるように鱗片状の粉末である
ことが好ましい。このような鱗片状の金属粉末は、一般
に、溶融金属をアトマイズ法やスプレー法によって粉末
化し、これをボールミルやスタンプミルによって偏平化
して製造されている。ところが、磁気シールドフィラー
として常用されているパーマロイは、衝撃によって結晶
歪みを生じ易く、鱗片状に加工したものは結晶歪みのた
めに磁気特性が大幅に低下する問題がある。この結晶歪
みは粉末を高温で熱処理すると解消し、磁気特性を回復
する。そこで磁気シールド材として高い磁気特性を発揮
させるために、鱗片状に加工した粉末を高温で熱処理す
ることが必要であるが、磁気シールドフィラーとして用
いられれる鱗片状粉末は微細で表面積が大きいために高
温下で焼結し易く、加工後に結晶歪みを取るために加熱
処理すると焼結して鱗片状の形状を失し、磁気シールド
フィラーとして適さなくなる問題がある。
2. Description of the Related Art Conventionally, as a magnetic shield material,
A resin-based magnetic shield material obtained by adding a magnetic shield filler to a resin is known, and a soft magnetic powder typified by Permalloy is used for the magnetic shield filler.
It is necessary that the soft magnetic powders are in contact with each other as much as possible so that magnetic leakage does not occur. Therefore, it is preferable that the soft magnetic powders are scale-like powders so that the contact area between the powders becomes large. Such scale-like metal powder is generally produced by atomizing a molten metal by an atomizing method or a spray method and flattening the powder by a ball mill or a stamp mill. However, permalloy, which is commonly used as a magnetic shield filler, is apt to cause crystal distortion due to impact, and there is a problem that magnetic properties are greatly deteriorated due to crystal distortion when processed into a scale. This crystal strain is eliminated by heat treating the powder at a high temperature, and the magnetic characteristics are restored. Therefore, in order to exert high magnetic properties as a magnetic shield material, it is necessary to heat the scaled powder at a high temperature, but the scale-like powder used as a magnetic shield filler is fine and has a large surface area. There is a problem that it easily sinters at a high temperature, and if it is heat-treated to remove crystal strain after processing, it will sinter and lose its scaly shape, making it unsuitable as a magnetic shield filler.

【0003】このような焼結を防止するために、例え
ば、特開平1-298101号には、鱗片状の軟磁性粉末に平均
粒径0.3μm 以下の微細な耐熱性酸化物粉末を混合し
て焼鈍する方法が記載されている。この方法は焼結防止
については一応の効果を有するものの、焼鈍後にこの微
細な酸化物粉末を分離するのが非常に困難である。この
方法では上記酸化物粉末を分離せずにインクやペイント
に混合して使用することを意図しているが、磁気シール
ドの点では不要な粉末が混入することになるため相対的
に軟磁性粉末の使用量が低下してシールド効果が不十分
になり易い。また軟磁性粉末の間に酸化物粉末が介在す
るので軟磁性粉末が相互に直接に接触できず、この点か
らもシールド効果が低下する。
In order to prevent such sintering, for example, in JP-A-1-298101, scale-like soft magnetic powder is mixed with fine heat-resistant oxide powder having an average particle size of 0.3 μm or less. A method for annealing is described. Although this method has a temporary effect on prevention of sintering, it is very difficult to separate the fine oxide powder after annealing. This method is intended to be used by mixing it with ink or paint without separating the above oxide powder, but in terms of magnetic shielding, unnecessary powder will be mixed in, so relatively soft magnetic powder It is easy for the shielding effect to become insufficient due to a decrease in the amount used. Further, since the oxide powder is present between the soft magnetic powders, the soft magnetic powders cannot directly contact each other, and the shield effect is reduced from this point as well.

【0004】[0004]

【発明の解決課題】本発明は、従来の鱗片状軟磁性粉末
における上記問題を解決した形状特性と磁気特性に優れ
た鱗片状軟磁性粉末の加熱処理方法、即ち、高透磁率で
あり、しかも低保磁力を有する鱗片状軟磁性粉末の加熱
処理方法を提供することを目的とする。本発明におい
て、従来の加熱処理方法における上記問題を解決するに
あたり、焼結防止用粒子の粒径によって焼結防止効果と
該粒子の分離効果が大きく影響を受けることが見出され
た。本発明はかかる知見に基づくものであり、軟磁性粉
末の焼結防止効果と添加粒子の分離効果の何れにも優れ
た加熱処理方法を達成したものである。
DISCLOSURE OF THE INVENTION The present invention solves the above problems in conventional flaky soft magnetic powders by a heat treatment method for flaky soft magnetic powders having excellent shape characteristics and magnetic properties, that is, high magnetic permeability, and It is an object of the present invention to provide a heat treatment method for flaky soft magnetic powder having a low coercive force. In the present invention, in solving the above problems in the conventional heat treatment method, it was found that the particle size of the particles for sintering prevention greatly affects the effect of preventing sintering and the effect of separating the particles. The present invention is based on such knowledge, and has achieved a heat treatment method which is excellent in both the effect of preventing sintering of soft magnetic powder and the effect of separating added particles.

【0005】[0005]

【発明の構成】本発明によれば、以下の構成を有する鱗
片状軟磁性粉末の製造方法が提供される。 (1) 鱗片状軟磁性粉末に、該軟磁性粉末の平均粒径
に対して1〜5倍の平均粒径を有し該軟磁性粉末と高温
下で反応しない高融点の耐熱粒子を混合し、該混合粉末
を水素雰囲気下で650〜1300℃で加熱処理した後
に上記耐熱粒子を分離することを特徴とする鱗片状軟磁
性粉末の加熱処理方法。 (2) 鱗片状のパーマロイ系合金粉末に酸化アルミニ
ウム粉末を混合し、加熱処理した後に磁気振動篩によっ
て上記粉末を分離する上記(1) の処理方法。 (3) 鱗片状軟磁性粉末に対して1/2〜5倍重量の
耐熱粒子を混合して加熱処理する上記(1) または(2) の
処理方法。 (4) 平均粒径が1μm 〜10mmであり、短軸/長軸
比が1〜0.3、厚さ/短軸比が1/3以下の鱗片状軟
磁性粉末を用いる上記(1) 、(2) または(3) の処理方
法。
According to the present invention, there is provided a method for producing flaky soft magnetic powder having the following constitution. (1) The flaky soft magnetic powder is mixed with high melting point heat-resistant particles having an average particle size 1 to 5 times the average particle size of the soft magnetic powder and not reacting with the soft magnetic powder at high temperature. A heat treatment method for scaly soft magnetic powder, which comprises heat-treating the mixed powder at 650 to 1300 ° C. in a hydrogen atmosphere and then separating the heat-resistant particles. (2) The treatment method according to the above (1), in which aluminum oxide powder is mixed with the flaky permalloy-based alloy powder, the mixture is heat treated, and then the powder is separated by a magnetic vibration sieve. (3) The treatment method according to the above (1) or (2), wherein heat-resistant particles are mixed in an amount of ½ to 5 times the weight of the flaky soft magnetic powder and the mixture is heat-treated. (4) Use of a scale-like soft magnetic powder having an average particle diameter of 1 μm to 10 mm, a minor axis / major axis ratio of 1 to 0.3, and a thickness / minor axis ratio of 1/3 or less, (1), The processing method of (2) or (3).

【0006】[0006]

【発明の具体的開示】本発明の処理方法は、その一例と
して、樹脂系磁気シールド材など各種の磁気シールド材
に配合される磁気シールドフィラー、あるいはその他の
磁気シールド粉末として用いられる鱗片状の軟磁性粉末
を対象とする。軟磁性粉末としては、この種のフィラー
として常用されているパーマロイを始めとするNi−F
e合金およびNi−Feを主成分としMo,Cr,Mn
などの添加元素を含むNi−Fe系合金(以下、パーマ
ロイ系合金と言う)について好適に実施されるが、処理
対象はパーマロイ系合金に限らない。パーマロイ系合金
に代表される軟磁性金属の鱗片状粉末は、従来、アトマ
イズ法やスプレー法を利用し、これらの溶融金属を粉末
化した後にボールミルやスタンプミルを用いて機械的圧
力を加え偏平化して得られる。加工条件により粒径およ
び偏平度を適宜選択することができる。本発明において
軟磁性材を鱗片状にする加工方法は限定されない。
DETAILED DESCRIPTION OF THE INVENTION The treatment method of the present invention is, for example, a magnetic shield filler mixed with various magnetic shield materials such as resin-based magnetic shield materials, or scale-like soft particles used as other magnetic shield powders. Targets magnetic powder. As the soft magnetic powder, Ni-F such as Permalloy which is commonly used as a filler of this kind is used.
Mainly composed of e-alloy and Ni-Fe, Mo, Cr, Mn
Ni-Fe based alloys (hereinafter referred to as permalloy based alloys) containing such additional elements as described above are preferably carried out, but the object to be treated is not limited to permalloy based alloys. Flake-shaped powder of soft magnetic metal typified by permalloy-based alloy is conventionally flattened by applying mechanical pressure using a ball mill or a stamp mill after atomizing these molten metals using an atomizing method or a spray method. Obtained. The particle size and flatness can be appropriately selected depending on the processing conditions. In the present invention, the processing method for making the soft magnetic material scale-like is not limited.

【0007】鱗片状粉末の寸法形状としては、平均粒径
が1μm 〜10mm、好ましくは2〜100μm であっ
て、偏平面の長軸に対する短軸の比(短軸/長軸)が1
〜0.3であり、短軸に対する厚さの比(厚さ/短軸)
が1/3以下であるものが適当である。ここで平均粒径
とは短径、長径および厚さを含めた平均値を意味し、レ
ーザ散乱法などによって測定することができる。また短
径および長径は偏平面の長さであり、長径はその最長径
および短径はその最短径を意味し、これらは肉眼あるい
は顕微鏡観察によって測定することができる。同様に偏
平面の厚さは平面に配向した鱗片状粉末の断面を顕微鏡
観察により測定することができる。偏平面の3次元観察
において、最も小さい長さが偏平面の厚さとなる。平均
粒径が1μm 未満では粒子径が小さ過ぎて高融点粒子を
混合しても加熱処理時に焼結を防止するのが難しくな
る。また平均粒子径が10mmを上回ると粒径のかなり大
きな耐熱性粒子を必要とするので実用的でない。短軸/
長軸比が1に近いほど偏平面の広がりが大きく、この比
が0.3未満では粉末が針状に近くなるので磁気シール
ドフィラーに適さない。また厚さ/短軸比が1に近いほ
ど棒状ないし塊状になるので磁気シールドフィラーに適
さず、従って、厚さ/短軸比は1/3以下が好ましい。
この比が1/3より大きいと偏平の程度が小さく好まし
くない。
The scaly powder has an average particle size of 1 μm to 10 mm, preferably 2 to 100 μm, and the ratio of the minor axis to the major axis of the plane is 1 (minor axis / long axis).
~ 0.3, the ratio of thickness to minor axis (thickness / minor axis)
Is preferably 1/3 or less. Here, the average particle diameter means an average value including the short diameter, the long diameter, and the thickness, and can be measured by a laser scattering method or the like. In addition, the short diameter and the long diameter are the lengths of the planes, the long diameter means the longest diameter and the short diameter means the shortest diameter, and these can be measured by the naked eye or microscopic observation. Similarly, the thickness of the flat surface can be measured by microscopically observing the cross section of the flaky powder oriented in the flat surface. In three-dimensional observation of the plane, the smallest length is the thickness of the plane. If the average particle size is less than 1 μm, the particle size is too small to prevent sintering during heat treatment even if high melting point particles are mixed. Further, if the average particle size exceeds 10 mm, heat-resistant particles having a considerably large particle size are required, which is not practical. Minor axis /
The closer the major axis ratio is to 1, the wider the flat surface is, and if this ratio is less than 0.3, the powder becomes needle-like and is not suitable as a magnetic shield filler. Further, the closer the thickness / minor axis ratio is to 1, the more it becomes rod-shaped or agglomerated, which is not suitable as a magnetic shield filler. Therefore, the thickness / minor axis ratio is preferably 1/3 or less.
If this ratio is larger than 1/3, the degree of flatness is small, which is not preferable.

【0008】本発明の処理方法は、高温下で該軟磁性粉
末と反応せず、かつ溶融しない高融点の耐熱粒子を混合
して加熱処理を行う。該耐熱粒子としては650〜13
00℃の加熱処理温度以上の融点を有する非磁性の酸化
物、炭化物、窒化物などが用いられる。具体的には、酸
化アルミニウム、酸化ジルコニウム、炭化ジルコニウム
などのセラミック粉末が好適である。非磁性粉末を用い
ることにより、加熱処理後に磁気振動篩によって容易に
鱗片状軟磁性粉末と分離することができる。
In the treatment method of the present invention, heat treatment is carried out by mixing heat-resistant particles having a high melting point that do not react with the soft magnetic powder at high temperature and do not melt. As the heat-resistant particles, 650 to 13
A non-magnetic oxide, carbide, or nitride having a melting point equal to or higher than the heat treatment temperature of 00 ° C. is used. Specifically, ceramic powders such as aluminum oxide, zirconium oxide, and zirconium carbide are suitable. By using the non-magnetic powder, it can be easily separated from the flaky soft magnetic powder by a magnetic vibrating screen after the heat treatment.

【0009】上記耐熱粒子の粒径は軟磁性粉末の平均粒
径に対して1〜5倍、好ましくは3〜4倍が適当であ
る。耐熱粒子の粒径が軟磁性粉末よりも小さいと耐熱粒
子の分離が困難になるうえ、焼結防止に必要な量を添加
すると嵩高くなる欠点がある。また飛散し易く取扱い難
い。一方、耐熱粒子の粒径が5倍を上回ると、該粒子の
間に軟磁性粉末が入り込み十分な焼結防止効果が得られ
ない。また上記耐熱粒子の混合量は、加熱処理の際に軟
磁性粉末の焼結を防止できる量である。軟磁性粉末に対
して同重量、特に、高温で酸化アルミニウムを用いる場
合には軟磁性粉末に対して3倍重量を用いると良い。通
常、耐熱粒子の混合量が軟磁性粉末に対して1/2倍重
量より少ないと十分な焼結防止効果が得られない。一
方、混合量が5倍重量程度を越えると加熱時の熱量が無
駄になり、耐熱性粒子の分離も面倒になる。
The particle size of the heat-resistant particles is appropriately 1 to 5 times, preferably 3 to 4 times the average particle size of the soft magnetic powder. If the particle size of the heat-resistant particles is smaller than that of the soft magnetic powder, it becomes difficult to separate the heat-resistant particles, and if added in an amount necessary for preventing sintering, the volume becomes bulky. Also, it is easily scattered and difficult to handle. On the other hand, if the particle size of the heat-resistant particles exceeds 5 times, the soft magnetic powder enters between the particles and a sufficient sintering preventing effect cannot be obtained. The amount of the heat-resistant particles mixed is an amount capable of preventing the soft magnetic powder from sintering during the heat treatment. The same weight as that of the soft magnetic powder, particularly, when aluminum oxide is used at a high temperature, it is preferable to use 3 times the weight of the soft magnetic powder. Usually, if the mixing amount of the heat-resistant particles is less than 1/2 times the weight of the soft magnetic powder, a sufficient effect of preventing sintering cannot be obtained. On the other hand, if the mixing amount exceeds about 5 times the weight, the heat amount at the time of heating is wasted, and the separation of the heat resistant particles becomes troublesome.

【0010】鱗片状軟磁性粉末に上記耐熱性粒子を混合
したものを、水素雰囲気下で650℃〜1300℃で加
熱処理し、鱗片状粉末の加工歪みを取り除き、磁気特性
を回復させる。加熱温度が650℃未満であると加工歪
みが十分に除去できず、粉末の磁気特性が低くなる。一
方、1300℃を超える高温での加熱処理はパーマロイ
合金が融点1450℃程度であり軟化するため不適当で
ある。加熱処理の雰囲気が酸化性あるいは不活性の場合
には軟磁性粉末表面の還元が行われず、磁気特性の回復
が十分ではない。
A mixture of the flaky soft magnetic powder and the above heat-resistant particles is heat-treated in a hydrogen atmosphere at 650 ° C. to 1300 ° C. to remove the processing strain of the flaky powder and restore the magnetic properties. If the heating temperature is lower than 650 ° C., the processing strain cannot be sufficiently removed, and the magnetic properties of the powder will deteriorate. On the other hand, heat treatment at a high temperature exceeding 1300 ° C. is unsuitable because the permalloy alloy has a melting point of about 1450 ° C. and softens. When the heat treatment atmosphere is oxidizing or inert, the soft magnetic powder surface is not reduced and the magnetic properties are not sufficiently recovered.

【0011】上記加熱処理の後に上記耐熱性粒子を分離
する。耐熱性粒子として酸化アルミニウムなどの非磁性
粒子を用いれば、分離手段とし磁気振動篩を用いること
により軟磁性粉末と非磁性粒子を容易に分離することが
できる。このように上記耐熱性粒子を分離することによ
り、鱗片状軟磁性粉末相互の間にこれらの粒子が介在せ
ず、軟磁性粉末が直接に接触するので、磁気シールド効
果に優れる。また上記耐熱性粒子を分離せずに、軟磁性
粉末を耐熱性粒子と共に樹脂などに混合すると、混合量
が相対的に多くなるため樹脂シートなどに成形した場合
に柔軟性を失い易くなる。
After the heat treatment, the heat resistant particles are separated. When non-magnetic particles such as aluminum oxide are used as the heat-resistant particles, the soft magnetic powder and the non-magnetic particles can be easily separated by using a magnetic vibrating screen as the separating means. By separating the heat-resistant particles as described above, these particles do not exist between the flaky soft magnetic powders and the soft magnetic powders are in direct contact with each other, so that the magnetic shield effect is excellent. Further, if the soft magnetic powder is mixed with a resin or the like together with the heat-resistant particles without separating the heat-resistant particles, the amount of the mixture becomes relatively large, so that flexibility tends to be lost when the resin sheet or the like is molded.

【0012】[0012]

【実施例および比較例】以下、本発明の実施例を比較例
と共に示す。なお本実施例は例示であり本発明の範囲を
限定するものではない。
EXAMPLES AND COMPARATIVE EXAMPLES Examples of the present invention are shown below together with comparative examples. It should be noted that the present embodiment is an example and does not limit the scope of the present invention.

【0013】実施例1 水アトマイズ法で製造した後に50μm 以下に分級した
球状パーマロイ合金粉末(Ni80wt%−Fe20wt%)500
gと水1500ccおよびステアリン酸20gを湿式ボー
ルミル粉砕機(鋼球ボール使用)に装入し、30時間運
転して鱗片状パーマロイ粉末を得た。この粉末を100
℃で24時間乾燥した後に解砕した。得られた粉末をレ
ーザ散乱法によって粒子径を測定したところ平均粒径は
15μmであった。またSEM写真によれば短軸/長軸
比は0.6であり、厚さ/短軸比は1/10であった。
この粉末の保磁力を振動式磁気測定装置で測定したとこ
ろ12 Oe であった。この鱗片状パーマロイ粉末20g
に200メッシュの篩に通したアルミナ粉末(平均粒径
20μm )60gを混合して均一に攪拌した。この混合
粉末を水素雰囲気下、1100℃で30分間加熱した。
加熱後、混合粉末を磁気振動篩に入れ、パーマロイ粉末
とアルミナ粉末を分離した。分離して得た鱗片状パーマ
ロイ粉末の保磁力を振動式磁気測定装置で測定したとこ
ろ2 Oe であり、加熱処理前に比べて保磁力は約1/6
程度と格段に小さく、優れた軟磁性特性を有することが
確認された。
Example 1 Spherical permalloy alloy powder (Ni80wt% -Fe20wt%) 500 which was produced by a water atomizing method and then classified to 50 μm or less
g, 1500 cc of water, and 20 g of stearic acid were charged into a wet ball mill grinder (using steel balls) and operated for 30 hours to obtain scaly permalloy powder. 100 of this powder
It was crushed after being dried at ℃ for 24 hours. When the particle diameter of the obtained powder was measured by a laser scattering method, the average particle diameter was 15 μm. According to the SEM photograph, the minor axis / major axis ratio was 0.6 and the thickness / minor axis ratio was 1/10.
When the coercive force of this powder was measured by a vibrating magnetometer, it was 12 Oe. 20 g of this flaky permalloy powder
Then, 60 g of alumina powder (average particle size 20 μm) passed through a 200-mesh sieve was mixed and uniformly stirred. This mixed powder was heated at 1100 ° C. for 30 minutes in a hydrogen atmosphere.
After heating, the mixed powder was put into a magnetic vibration sieve to separate the permalloy powder and the alumina powder. The coercive force of the scale-like permalloy powder obtained by separation was measured by a vibrating magnetometer and found to be 2 Oe, which was about 1/6 of that before the heat treatment.
It was confirmed that it was extremely small and had excellent soft magnetic properties.

【0014】実施例2 水アトマイズ法で製造した後に45μm 以下に分級した球
状パーマロイ合金粉末(Ni 78wt %−Fe 22wt %)60
0gと水1500ccおよびステアリン酸15gを湿式ボ
ールミル粉砕機(鋼球ボール使用)に装入し、35時間
運転して鱗片状パーマロイ粉末を得た。この粉末を10
0℃で24時間乾燥した後に解砕した。得られた粉末を
レーザ散乱法によって粒子径を測定したところ平均粒径
は14μm であった。またSEM写真によれば短軸/長
軸比は0.6であり、厚さ/短軸比は1/8であった。
この粉末の保磁力を振動式磁気測定装置で測定したとこ
ろ10Oeであった。この鱗片状パーマロイ粉末20gに
235メッシュの篩に通した酸化ジルコニウム粉末(平
均粒径15μm )60gを混合して均一に攪拌した。こ
の混合粉末を水素雰囲気下、1000℃で30分間加熱
した。加熱後、混合粉末を磁気振動篩に入れ、パーマロ
イ粉末と酸化ジルコニウム粉末を分離した。分離して得
たパーマロイ粉末の保磁力を振動式磁気測定装置で測定
したところ3Oeであった。
Example 2 Spherical permalloy alloy powder (Ni 78 wt% -Fe 22 wt%) 60 produced by the water atomizing method and then classified to 45 μm or less
0 g of water, 1500 cc of water and 15 g of stearic acid were charged into a wet ball mill crusher (using steel ball balls) and operated for 35 hours to obtain flaky permalloy powder. 10 of this powder
It was crushed after being dried at 0 ° C. for 24 hours. When the particle diameter of the obtained powder was measured by a laser scattering method, the average particle diameter was 14 μm. According to the SEM photograph, the minor axis / major axis ratio was 0.6 and the thickness / minor axis ratio was 1/8.
The coercive force of this powder was measured by a vibrating magnetometer and found to be 10 Oe. 20 g of the flaky permalloy powder was mixed with 60 g of zirconium oxide powder (average particle size: 15 μm) passed through a 235 mesh sieve, and stirred uniformly. This mixed powder was heated in a hydrogen atmosphere at 1000 ° C. for 30 minutes. After heating, the mixed powder was put into a magnetic vibration sieve to separate the permalloy powder and the zirconium oxide powder. The coercive force of the separated permalloy powder was measured by a vibrating magnetometer and found to be 3 Oe.

【0015】比較例1 水アトマイズ法で製造した後に50μm 以下に分級した球
状パーマロイ合金粉末(Ni 80wt %−Fe 20wt %)50
0gと水1500ccおよびステアリン酸20gを湿式ボ
ールミル粉砕機(鋼球ボール使用)に装入し、28時間
運転して鱗片状パーマロイ粉末を得た。この粉末を10
0℃で24時間乾燥した後に解砕した。得られた粉末を
レーザ散乱法によって粒子径を測定したところ平均粒径
は17μm であった。またSEM写真によれば短軸/長
軸比は0.6であり、厚さ/短軸比は1/8.5 であっ
た。この粉末の保磁力を振動式磁気測定装置で測定した
ところ12Oeであった。この鱗片状パーマロイ粉末30
gを水素雰囲気下、600℃で15分間加熱した。加熱
後の粉末は容器の形状に焼結していた。
Comparative Example 1 Spherical permalloy alloy powder (Ni 80 wt% -Fe 20 wt%) 50 produced by the water atomizing method and then classified to 50 μm or less
0 g of water, 1500 cc of water and 20 g of stearic acid were charged into a wet ball mill grinder (using steel ball balls) and operated for 28 hours to obtain flaky permalloy powder. 10 of this powder
It was crushed after being dried at 0 ° C. for 24 hours. When the particle diameter of the obtained powder was measured by a laser scattering method, the average particle diameter was 17 μm. According to the SEM photograph, the minor axis / major axis ratio was 0.6 and the thickness / minor axis ratio was 1 / 8.5. The coercive force of this powder was measured by a vibrating magnetometer and found to be 12 Oe. This scale-like permalloy powder 30
g was heated under a hydrogen atmosphere at 600 ° C. for 15 minutes. The powder after heating was sintered into the shape of a container.

【0016】比較例2 水アトマイズ法で製造した後に50μm 以下に分級した球
状パーマロイ合金粉末(Ni 80wt %−Fe 20wt %)50
0gと水1500ccおよびステアリン酸20gを湿式ボ
ールミル粉砕機(鋼球ボール使用)に装入し、24時間
運転して鱗片状パーマロイ粉末を得た。この粉末を10
0℃で24時間乾燥した後に解砕した。得られた粉末を
レーザ散乱法によって粒子径を測定したところ平均粒径
は15μm であった。またSEM写真によれば短軸/長
軸比は0.6であり、厚さ/短軸比は1/8.5 であっ
た。この粉末の保磁力を振動式磁気測定装置で測定した
ところ12Oeであった。この鱗片状パーマロイ粉末30
gを水素雰囲気下、300℃で30分間加熱した。加熱
後の粉末の保磁力を振動式磁気測定装置で測定したとこ
ろ10Oeであり、加熱処理前と殆ど同じであった。
Comparative Example 2 Spherical permalloy alloy powder (Ni 80 wt% -Fe 20 wt%) 50 produced by the water atomizing method and then classified to 50 μm or less
0 g of water, 1500 cc of water, and 20 g of stearic acid were charged into a wet ball mill crusher (using steel ball balls) and operated for 24 hours to obtain scaly permalloy powder. 10 of this powder
It was crushed after being dried at 0 ° C. for 24 hours. When the particle diameter of the obtained powder was measured by the laser scattering method, the average particle diameter was 15 μm. According to the SEM photograph, the minor axis / major axis ratio was 0.6 and the thickness / minor axis ratio was 1 / 8.5. The coercive force of this powder was measured by a vibrating magnetometer and found to be 12 Oe. This scale-like permalloy powder 30
g was heated in a hydrogen atmosphere at 300 ° C. for 30 minutes. The coercive force of the powder after heating was measured with a vibrating magnetometer and was found to be 10 Oe, which was almost the same as before the heat treatment.

【0017】比較例3 実施例1と同様にして得た平均粒径15μm 、短軸/長
軸比0.8、厚さ/短軸比が1/10、保磁力10.5
Oe の鱗片状パーマロイ粉末20gに、平均粒径3μm
のアルミナ粉末60gを混合して均一に攪拌した。この
混合粉末を水素雰囲気下、1100℃で30分間加熱し
た。加熱後、混合粉末を磁気振動篩に入れ、パーマロイ
粉末とアルミナ粉末の分離を試みたがアルミナ粉末60
gのうち約20gは分離することができなかった。本比
較例の上記分離処理後のパーマロイ粉末と実施例1の加
熱分離したパーマロイ粉末とをおのおの塩化ビニール樹
脂に練り込み、シート状の成形してその柔軟性を調べた
ところ、実施例1の粉末を混練した試料Aは、成形体全
体の75wt%まで粉末を添加しても柔軟性を維持した
が、本比較例の粉末を混練した試料Bは、該粉末を成形
体全体の40wt%添加した段階で90度に折り曲げると
破断した。また上記試料A、Bを磁石とガウスメータの
間に置き、磁気シールド性能を簡易的に測定したとこ
ろ、本比較例に係る試料Bのシールド効果は実施例1に
係る試料Aの1/10であった。
Comparative Example 3 An average particle diameter of 15 μm obtained in the same manner as in Example 1, a minor axis / major axis ratio of 0.8, a thickness / minor axis ratio of 1/10, and a coercive force of 10.5.
Oe scale flaky permalloy powder 20g, average particle size 3μm
60 g of the alumina powder of was mixed and stirred uniformly. This mixed powder was heated at 1100 ° C. for 30 minutes in a hydrogen atmosphere. After heating, the mixed powder was put into a magnetic vibrating screen to try to separate the permalloy powder and the alumina powder.
About 20 g of g could not be separated. The permalloy powder after the above separation treatment of this comparative example and the heat-separated permalloy powder of Example 1 were kneaded into vinyl chloride resin, respectively, and molded into a sheet shape, and its flexibility was examined. The sample A in which the powder was kneaded maintained the flexibility even when the powder was added up to 75 wt% of the entire molded body, while the sample B in which the powder of this comparative example was kneaded added 40 wt% of the powder in the entire molded body. When it was bent at 90 degrees at the stage, it broke. Further, when the samples A and B were placed between the magnet and the Gauss meter and the magnetic shield performance was simply measured, the shielding effect of the sample B according to this comparative example was 1/10 of that of the sample A according to the first embodiment. It was

【0018】[0018]

【発明の効果】本発明の製造方法によれば、樹脂系磁気
シールド材などに混合される磁気シールドフィラーとし
て最適な磁気特性に優れた鱗片状軟磁性粉末を容易に得
ることができる。また本発明の製法は高融点の耐熱粒子
を混合し、加熱処理後に該粒子を分離する方法であり、
軟磁性粉末の前処理などの必要がなく容易に実施するこ
とができるので製造費も低い。しかも得られた粉末は優
れた軟磁性特性を有しており、各種の磁気シールド材用
フィラーとして幅広く用いることができる。
According to the manufacturing method of the present invention, it is possible to easily obtain a flaky soft magnetic powder having excellent magnetic characteristics, which is optimum as a magnetic shield filler mixed with a resin-based magnetic shield material or the like. The production method of the present invention is a method of mixing heat-resistant particles having a high melting point and separating the particles after heat treatment,
The manufacturing cost is low because it can be easily performed without the need for pretreatment of the soft magnetic powder. Moreover, the obtained powder has excellent soft magnetic properties and can be widely used as a filler for various magnetic shield materials.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】鱗片状軟磁性粉末に、該軟磁性粉末の平均
粒径に対して1〜5倍の平均粒径を有し該軟磁性粉末と
高温下で反応しない高融点の耐熱粒子を混合し、該混合
粉末を水素雰囲気下で650〜1300℃で加熱処理し
た後に上記耐熱粒子を分離することを特徴とする鱗片状
軟磁性粉末の加熱処理方法。
1. A heat-resistant particle having a high melting point, wherein the flaky soft magnetic powder has an average particle diameter 1 to 5 times the average particle diameter of the soft magnetic powder and does not react with the soft magnetic powder at a high temperature. A method for heat-treating flaky soft magnetic powder, which comprises mixing and heat-treating the mixed powder in a hydrogen atmosphere at 650 to 1300 ° C., and then separating the heat-resistant particles.
【請求項2】鱗片状のパーマロイ系合金粉末に酸化アル
ミニウム粉末を混合し、加熱処理した後に磁気振動篩に
よって上記粉末を分離する請求項1の処理方法。
2. The treatment method according to claim 1, wherein the aluminum oxide powder is mixed with the flaky permalloy-based alloy powder, the mixture is heat-treated, and then the powder is separated by a magnetic vibration sieve.
【請求項3】鱗片状軟磁性粉末に対して1/2〜5倍重
量の耐熱粒子を混合して加熱処理する請求項1または2
の処理方法。
3. A heat treatment by mixing 1/2 to 5 times the weight of heat-resistant particles with the flaky soft magnetic powder, and subjecting to heat treatment.
Processing method.
【請求項4】平均粒径が1μm 〜10mmであり、短軸/
長軸比が1〜0.3、厚さ/短軸比が1/3以下の鱗片
状軟磁性粉末を用いる請求項1、2または3の処理方
法。
4. The average particle size is 1 μm to 10 mm, and the short axis /
The treatment method according to claim 1, 2 or 3, wherein a flaky soft magnetic powder having a major axis ratio of 1 to 0.3 and a thickness / minor axis ratio of 1/3 or less is used.
JP5342267A 1993-12-15 1993-12-15 Method for heat treatment of flaky soft magnetic powder Withdrawn JPH07166201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5342267A JPH07166201A (en) 1993-12-15 1993-12-15 Method for heat treatment of flaky soft magnetic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5342267A JPH07166201A (en) 1993-12-15 1993-12-15 Method for heat treatment of flaky soft magnetic powder

Publications (1)

Publication Number Publication Date
JPH07166201A true JPH07166201A (en) 1995-06-27

Family

ID=18352398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5342267A Withdrawn JPH07166201A (en) 1993-12-15 1993-12-15 Method for heat treatment of flaky soft magnetic powder

Country Status (1)

Country Link
JP (1) JPH07166201A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5800636A (en) * 1996-01-16 1998-09-01 Tdk Corporation Dust core, iron powder therefor and method of making
JP2010010501A (en) * 2008-06-30 2010-01-14 Hitachi Ltd Oriented dust core
JP2017135358A (en) * 2016-01-22 2017-08-03 株式会社東芝 Flat magnetic metal particle, dust material, dynamo-electric machine, motor, generator
JP2018152449A (en) * 2017-03-13 2018-09-27 株式会社東芝 Plural flat magnetic metal particles, pressed powder material, and rotary electric machine
JP2020017741A (en) * 2019-09-03 2020-01-30 株式会社東芝 Plural flat magnetic metal particles, pressed powder material, and rotary electric machine
US10937576B2 (en) 2018-07-25 2021-03-02 Kabushiki Kaisha Toshiba Flaky magnetic metal particles, pressed powder material, rotating electric machine, motor, and generator

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5800636A (en) * 1996-01-16 1998-09-01 Tdk Corporation Dust core, iron powder therefor and method of making
JP2010010501A (en) * 2008-06-30 2010-01-14 Hitachi Ltd Oriented dust core
JP2017135358A (en) * 2016-01-22 2017-08-03 株式会社東芝 Flat magnetic metal particle, dust material, dynamo-electric machine, motor, generator
JP2020017740A (en) * 2016-01-22 2020-01-30 株式会社東芝 Flat magnetic metal particle, powdered-iron material, rotary electric machine, motor, generator
JP2018152449A (en) * 2017-03-13 2018-09-27 株式会社東芝 Plural flat magnetic metal particles, pressed powder material, and rotary electric machine
US10774404B2 (en) 2017-03-13 2020-09-15 Kabushiki Kaisha Toshiba Plurality of flaky magnetic metal particles, pressed powder material, and rotating electric machine
US11459645B2 (en) 2017-03-13 2022-10-04 Kabushiki Kaisha Toshiba Plurality of flaky magnetic metal particles, pressed powder material, and rotating electric machine
US10937576B2 (en) 2018-07-25 2021-03-02 Kabushiki Kaisha Toshiba Flaky magnetic metal particles, pressed powder material, rotating electric machine, motor, and generator
JP2020017741A (en) * 2019-09-03 2020-01-30 株式会社東芝 Plural flat magnetic metal particles, pressed powder material, and rotary electric machine

Similar Documents

Publication Publication Date Title
JP5920495B2 (en) Soft magnetic metal powder and soft magnetic metal powder core using the powder
JP5168637B2 (en) Metal magnetic fine particles and production method thereof, dust core
KR20190111023A (en) Magnetic flat powder and magnetic sheet containing it
CN109794599B (en) Soft magnetic metal powder, method for producing same, and soft magnetic metal powder magnetic core
JPH07166201A (en) Method for heat treatment of flaky soft magnetic powder
WO2005011899A1 (en) Fe-Ni-Mo FLAKY METAL SOFT MAGNETIC POWDER AND MAGNETIC COMPOSITE MATERIAL CONTAINING SOFT MAGNETIC POWDER
JPH02301502A (en) Production of permanent magnet metal par- ticles for usage in production of bonded permanent magnet
KR102393236B1 (en) soft magnetic flat powder
JPH01294801A (en) Production of flat fine fe-ni alloy powder
CN113365764A (en) Amorphous alloy ribbon, amorphous alloy powder, nanocrystalline alloy dust core, and method for producing nanocrystalline alloy dust core
US5352268A (en) Fe-Ni alloy fine powder of flat shape
JP2799893B2 (en) Shape anisotropic soft magnetic alloy powder
JP4196392B2 (en) Soft magnetic flat powder and method for producing the same
JPH01294802A (en) Production of flat fine fe-ni-al alloy powder
JP4218111B2 (en) Fe-Ni alloy powder and method for producing the same
JPH0149762B2 (en)
CN109509628A (en) A kind of preparation method of sintered NdFeB composite powder
JP2000063999A (en) FLAT Fe-BASE ALLOY POWDER FOR MAGNETIC SHIELD
JP2001181713A (en) Pare earth metal-transition metal alloy powder and producing method therefor
WO2022172543A1 (en) Soft-magnetic flat powder
JP2735615B2 (en) Flat Fe-Ni-based alloy fine powder and method for producing the same
JP2000087194A (en) Alloy for electromagnet and its manufacture
WO2023063171A1 (en) Sm-fe-n-based magnetic powder and method for manufacturing same
WO2022202760A1 (en) Magnetic material for high frequency use, and method for producing same
WO2021200600A1 (en) Soft magnetic alloy powder, magnetic core, magnetism application component, and noise suppression sheet

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010306