JP2000087194A - Alloy for electromagnet and its manufacture - Google Patents

Alloy for electromagnet and its manufacture

Info

Publication number
JP2000087194A
JP2000087194A JP10280582A JP28058298A JP2000087194A JP 2000087194 A JP2000087194 A JP 2000087194A JP 10280582 A JP10280582 A JP 10280582A JP 28058298 A JP28058298 A JP 28058298A JP 2000087194 A JP2000087194 A JP 2000087194A
Authority
JP
Japan
Prior art keywords
alloy
powder
workability
electromagnet
grain size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10280582A
Other languages
Japanese (ja)
Inventor
Tamio Takada
民夫 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP10280582A priority Critical patent/JP2000087194A/en
Publication of JP2000087194A publication Critical patent/JP2000087194A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture an alloy for an electromagnet having high density and practical soft-magnetic characteristics and excellent in workability by using a die compacting-sintering process by the conventional powder metallurgical processing. SOLUTION: This alloy has 5-50 μm average grain diameter in a section and a compsn. consisting of 0.005-0.05%, in total, of residual carbon and residual oxygen, 15-60% Co and the balance Fe or further contg. 0.5-4% one or more selected from V, Si, Cr, Al and Mn.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は粉末冶金法により製
造する電磁石用合金に係り、さらに詳しくは、軟磁気特
性および加工性に優れた電磁石用合金およびその合金か
らなる部材の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alloy for an electromagnet manufactured by a powder metallurgy method, and more particularly to an alloy for an electromagnet excellent in soft magnetic properties and workability and a method for manufacturing a member made of the alloy. is there.

【0002】[0002]

【従来の技術】本発明の電磁石用合金とは、いわゆるパ
ーメンジュールと呼ばれるFe-Co基の軟磁性合金
で、磁性材料の中で最も高い磁束密度および透磁率を有
する。しかし、この合金は比較的脆いので冷間加工性が
悪く、従来から磁気特性を損なわずに加工性を改善する
試みが数多くなされいる。通常、この合金に2%程度の
バナジウム(V)を添加することによって、磁気特性お
よび電気特性を維持しつつ加工性を改善しており、例え
ば、2V−パーメンジュールとして、電磁石の磁極やプ
リンタヘッドのヨークなどの製造に利用されている。
2. Description of the Related Art The alloy for an electromagnet of the present invention is a so-called permendur, a soft magnetic alloy based on Fe--Co, having the highest magnetic flux density and magnetic permeability among magnetic materials. However, since this alloy is relatively brittle, the cold workability is poor, and many attempts have been made to improve the workability without impairing the magnetic properties. Usually, by adding about 2% of vanadium (V) to this alloy, the workability is improved while maintaining the magnetic characteristics and the electric characteristics. For example, as a 2V-permendur, the magnetic pole of the electromagnet or the printer is improved. It is used to manufacture head yokes.

【0003】一般に、Fe-Co基合金は鋳造法あるい
は精密鋳造法により作製されるが、鋳造の際に成分偏析
や巣の発生などの問題が生ずる。また、加工性が多少改
善されたとしても、この種の合金は難加工材料の域を脱
し得ないことには変わりはなく、最終部品の形状に仕上
げるための切削加工において、切削性の低さや欠けの発
生による歩留りの低下などの問題が残されている。粉末
冶金法はこのような問題を解決する手段として非常に有
効であり、溶解鋳造法では作製困難な部材を、ニアネッ
ト形状に大量生産することができるという利点を有す
る。しかし、Fe粉とCo粉との混合粉を金型成形した
後に焼結するのみでは、カーケンドルボイドの発生によ
り高密度の焼結合金を得ることは困難である。また、F
e-50%Co合金粉は高硬度であり圧縮成形性が非常
に劣るため成形焼結後の密度が低く、そのために実用性
のある磁気特性を有するものは得られない。したがっ
て、本合金の特徴である高い磁束密度の製品を得るため
には、再圧縮やHIP処理などを施さなければならな
い。
[0003] Generally, an Fe-Co based alloy is produced by a casting method or a precision casting method, but at the time of casting, problems such as segregation of components and generation of cavities occur. Also, even if the workability is somewhat improved, this kind of alloy still cannot escape from the area of difficult-to-process materials, and in the cutting work to finish the shape of the final part, the low machinability and Problems such as a decrease in yield due to the occurrence of chipping remain. The powder metallurgy method is very effective as a means for solving such a problem, and has an advantage that members that are difficult to produce by the melt casting method can be mass-produced in a near net shape. However, it is difficult to obtain a high-density sintered alloy by generating Kirkendle voids only by sintering the mixed powder of the Fe powder and the Co powder after forming the mold. Also, F
The e-50% Co alloy powder has high hardness and very poor compression moldability, so that the density after compacting and sintering is low, and therefore, a material having practical magnetic properties cannot be obtained. Therefore, in order to obtain a product having a high magnetic flux density, which is a feature of the present alloy, recompression and HIP processing must be performed.

【0004】本発明の電磁石用合金が対象とする製品
は、高い磁束密度、すなわちB>1.8T(テスラ、但
しH=2000A/m)を有するとともに、良好な軟磁
気特性(高透磁率、低保磁力)が要求される大型形状の
製品である。さらに、部品形状の最終仕上げでは、切
削、ドリル加工およびタッピングなど各種の機械加工を
施すので、良好な加工性も具備する必要がある。したが
って、このような実用的な磁気特性および加工性に優れ
た合金の開発が斯界では望まれている。一方、近時の射
出成形技術の進展は著しく、従来の金型圧縮成形−焼結
による粉末冶金法(以下「従来の粉末冶金法」という)
と比較して高密度の焼結体を得ることができる。これ
は、射出成型法では1μm〜数10μmの平均粒径を有
する表面エネルギの高い微粉末を使用するためである。
The products targeted by the alloy for electromagnets of the present invention have a high magnetic flux density, that is, B> 1.8T (Tesla, where H = 2000 A / m), and have good soft magnetic properties (high magnetic permeability, This is a large-sized product that requires low coercivity. Furthermore, in the final finishing of the component shape, various types of machining such as cutting, drilling, and tapping are performed, so that it is necessary to provide good workability. Therefore, there is a need in the art for the development of an alloy having such practical magnetic properties and excellent workability. On the other hand, the recent progress of injection molding technology has been remarkable, and powder metallurgy by conventional mold compression molding-sintering (hereinafter referred to as “conventional powder metallurgy”).
And a sintered body with a higher density can be obtained. This is because a fine powder having an average particle diameter of 1 μm to several tens of μm and having a high surface energy is used in the injection molding method.

【0005】しかし、射出成形法では多量の有機バイン
ダを使用するために、長時間の脱バインダ工程が必要で
ある。特に電磁石などに使用される部品は、肉厚が10
mm以上、重量が200g以上の厚肉大型形状の部品で
あり、脱バインダ工程が製造コストを著しく上昇させる
原因になっている。さらに、粉末冶金法に比べて射出成
形の圧力は低く成形体の密度が低いため、焼結後の収縮
量の大きさに起因して寸法精度が低下することなどの課
題が残されている。
However, in the injection molding method, a large amount of organic binder is used, so that a long binder removal step is required. In particular, parts used for electromagnets have a thickness of 10
It is a thick-walled large-sized part having a thickness of 200 mm or more and a weight of 200 g or more, and the binder removal step causes a significant increase in manufacturing cost. Furthermore, since the pressure of injection molding is lower and the density of the molded body is lower than that of the powder metallurgy method, there remains a problem such as a decrease in dimensional accuracy due to a large shrinkage amount after sintering.

【0006】また、上述の従来の粉末冶金法の例では、
何れも1300〜1400℃の高温焼結を行っており、
高密度化および結晶粒の粗大化による軟磁気特性の改善
には有効であるが、焼結後に最終部品形状に仕上げるた
めの切削加工やドリル加工やタッピング加工などが施さ
れる場合には、結晶粒の粗大化は逆に欠けや割れなどの
発生原因となる。
In the above-mentioned example of the conventional powder metallurgy method,
All have performed high temperature sintering of 1300-1400 degreeC,
It is effective in improving soft magnetic properties by increasing the density and coarsening the crystal grains.However, when cutting, drilling, tapping, etc. is performed to finish the final part shape after sintering, the crystal Conversely, coarsening of grains causes chipping or cracking.

【0007】[0007]

【発明が解決しようとする課題】上記のような従来の技
術状態に鑑み本発明者は種々の検討を行った。すなわ
ち、本発明の目的は、従来の粉末冶金法による金型圧縮
成形−焼結の工程を用い、高密度で実用性のある軟磁気
特性を有し、かつ加工性に優れた電磁石用合金を提供す
ることである。より具体的には、最終部品形状に仕上げ
る際の切削加工性やドリル加工性やタッピング加工性な
どに優れ、部品の肉厚が10mm以上で、重量が200
g以上の厚肉大型形状の電磁石用合金およびその製造方
法を提供することを目的とするものである。
In view of the above-mentioned state of the art, the present inventors have made various studies. That is, an object of the present invention is to provide an electromagnet alloy having high density, practical soft magnetic properties, and excellent workability by using a conventional mold compression molding-sintering process by powder metallurgy. To provide. More specifically, it is excellent in cutting workability, drilling workability, tapping workability, etc. when finishing to the final part shape, the part thickness is 10 mm or more, and the weight is 200
It is an object of the present invention to provide an electromagnet alloy having a large thickness of at least g and a method for manufacturing the same.

【0008】[0008]

【課題を解決するための手段】一般に、Fe-Co基合
金の軟磁気特性は、合金中の残留炭素および残留酸素な
どの不純物含有量、合金の結晶粒径、あるいは熱処理条
件などにより著しく影響される。特に、合金中の残留炭
素および残留酸素などの不純物含有量が多い場合には、
合金の軟磁気特性の中でも、結晶構造に影響され易い透
磁率や保磁力が著しく低下する。そのため、原料粉末の
不純物含有量の低減、成形潤滑剤の必要最低量の設定、
製造工程途中から混入するこれらの不純物に対する厳重
な工程管理などの対策が必要となる。また、Fe-Co
基合金は730℃付近において規則化変態が起こり脆化
が進行し易く、合金の冷間加工性が著しく損なわれる。
この脆化は800〜1100℃の温度範囲における溶体
化加熱後に急冷する溶体化処理によって防止することが
でき、冷間加工後に焼鈍を施す。焼結材料においても溶
解鋳造材料と同様の熱処理が施されることもあるが、こ
れは製造工程を煩雑にし、製造コストを上昇させる要因
となる。
In general, the soft magnetic properties of Fe-Co based alloys are significantly affected by the contents of impurities such as residual carbon and residual oxygen in the alloy, the crystal grain size of the alloy, and the heat treatment conditions. You. In particular, when the content of impurities such as residual carbon and residual oxygen in the alloy is large,
Among the soft magnetic properties of the alloy, the magnetic permeability and coercive force, which are easily affected by the crystal structure, are significantly reduced. Therefore, reducing the impurity content of the raw material powder, setting the necessary minimum amount of molding lubricant,
It is necessary to take measures such as strict process control for these impurities mixed in the middle of the manufacturing process. In addition, Fe-Co
At around 730 ° C., ordered transformation occurs in the base alloy, embrittlement is likely to progress, and the cold workability of the alloy is significantly impaired.
This embrittlement can be prevented by a solution treatment of rapid cooling after solution heating in a temperature range of 800 to 1100 ° C., and annealing is performed after cold working. The same heat treatment as that of the molten casting material may be applied to the sintered material, but this complicates the manufacturing process and increases the manufacturing cost.

【0009】一方、Fe-Co基合金の結晶粒径に関し
ては、従来技術の説明において述べたように、粗大化に
より軟磁気特性の向上が期待されるが、逆に加工性は低
下する傾向がある。
On the other hand, with respect to the crystal grain size of the Fe—Co-based alloy, as described in the description of the prior art, improvement in soft magnetic characteristics is expected due to coarsening, but workability tends to decrease. is there.

【0010】本発明者は、Fe-Co基合金の軟磁気特
性に及ぼす合金中の残留炭素および残留酸素などの不純
物含有量、合金の結晶粒径、あるいは熱処理条件などの
影響について、種々の検討を行った。その知見による
と、結晶粒径が大きく残留炭素や残留酸素などの不純物
量が少ない合金は軟磁気特性が優れていることは周知で
あるが、残留炭素と残留酸素が同時に特定量含まれる合
金の結晶粒径は著しく微細化され、また、平均粒径があ
る特定の大きさ以下の合金では不純物量に拘らず優れた
磁気特性を示すことを見出した。このような結晶粒径が
微細化された合金は、各種の機械加工性にも優れてい
る。
The present inventor has conducted various studies on the effects of the content of impurities such as residual carbon and residual oxygen in the alloy, the crystal grain size of the alloy, and the heat treatment conditions on the soft magnetic properties of the Fe—Co based alloy. Was done. According to the knowledge, it is well known that an alloy having a large crystal grain size and a small amount of impurities such as residual carbon and residual oxygen has excellent soft magnetic properties. It has been found that the crystal grain size is remarkably reduced, and that alloys having an average grain size less than a certain size exhibit excellent magnetic properties regardless of the amount of impurities. An alloy having such a fine crystal grain size is also excellent in various machinability.

【0011】本発明者は、合金の残留炭素と残留酸素の
合計含有量が0.005〜0.05%で、かつ平均結晶粒
径が5〜50μmのFe-Co基合金が、実用性のある
軟磁気特性と加工性を両立させ得ることを見出し本発明
を完成した。なお、本発明において、上記含有量、その
他配合量の「%」は特に付記のないかぎり「重量百分
率」である。また、合金の平均結晶粒径は、試料の断面
顕微鏡組織から、結晶粒のほぼ中央を通る両端までの最
大長さと最小長さの和の1/2を結晶粒径とし、2mm
2以上の面積を観察したときの結晶粒径の平均値であ
る。
The present inventor has conceived that an Fe—Co based alloy having a total content of residual carbon and residual oxygen of the alloy of 0.005 to 0.05% and an average crystal grain size of 5 to 50 μm is practically usable. The present inventors have found that both a certain soft magnetic property and workability can be achieved, and completed the present invention. In the present invention, “%” of the above content and other compounding amounts is “weight percentage” unless otherwise specified. Further, the average crystal grain size of the alloy is defined as a crystal grain size of 1/2 of the sum of the maximum length and the minimum length up to both ends passing substantially through the center of the crystal grain from the cross-sectional microstructure of the sample.
This is the average value of the crystal grain size when two or more areas are observed.

【0012】すなわち、本発明の要旨は、合金断面の平
均結晶粒径が5〜50μmで、合金中の残留炭素と残留
酸素の合計含有量が0.005〜0.05%であるCo:
15〜60%および残部のFeからなる組成の電磁石用
合金を提供することである。また、合金断面の平均結晶
粒径が5〜50μmで、合金中の残留炭素と残留酸素の
合計含有量が0.005〜0.05%であり、Co:15
〜60%、V、Si、Cr、Al、Mnの1種または2
種以上:0.5〜4%および残部のFeからなる組成の
電磁石用合金を提供することである。また、上記の合金
組成、残留炭素および残留酸素の量および平均結晶粒径
であって、密度比が94%以上である電磁石用合金部材
を提供することである。さらに、肉厚が10mm以上で
重量が200g以上の厚肉大型形状の電磁石用合金部材
を提供することである。また、他の本発明の要旨は、上
記のような組成で平均粒子径が1〜40μmの範囲の合
金粉末を、0.3〜2.5%の有機バインダを用いて40
〜400μmの範囲の平均粒子径に造粒した後、金型成
形し、その後に非酸化性雰囲気中で焼結して得られる電
磁石用合金部材の製造方法を提供することである。
That is, the gist of the present invention is that Co having an average crystal grain size of the alloy cross section of 5 to 50 μm and a total content of residual carbon and residual oxygen in the alloy of 0.005 to 0.05%:
An object of the present invention is to provide an electromagnet alloy having a composition of 15 to 60% and the balance of Fe. The average grain size of the alloy cross section is 5 to 50 μm, the total content of residual carbon and residual oxygen in the alloy is 0.005 to 0.05%, and Co: 15
-60%, one or two of V, Si, Cr, Al, Mn
Species or more: To provide an alloy for electromagnet having a composition consisting of 0.5 to 4% and the balance of Fe. Another object of the present invention is to provide an electromagnet alloy member having the above alloy composition, the amounts of residual carbon and residual oxygen, and the average crystal grain size, and having a density ratio of 94% or more. It is still another object of the present invention to provide a thick and large-sized electromagnet alloy member having a thickness of 10 mm or more and a weight of 200 g or more. Another gist of the present invention is to provide an alloy powder having the above composition and an average particle diameter in the range of 1 to 40 μm by using an organic binder of 0.3 to 2.5%.
An object of the present invention is to provide a method for producing an alloy member for an electromagnet obtained by granulating to an average particle diameter in the range of ~ 400 µm, forming a mold, and then sintering in a non-oxidizing atmosphere.

【0013】[0013]

【発明の実施の形態】以下に、本発明における合金成分
量およびその効果について具体的に説明する。まず、本
発明の対象製品である電磁石用部品はB>1.8T(但
しH=2000A/m)の高磁束密度および良好な軟磁
気特性(高透磁率、低保磁力)が要求される。従って、
合金の組成はこの条件を充足するように選定する。後記
の実施例の欄において詳述するが、Co量が15%より
少なくなると所望の磁束密度が得られず、一方、Co量
が60%を越える場合には磁束密度および透磁率がとも
に低下する傾向があり所望の値が得られない。従って、
本発明の合金組成のCo含有量は15〜60%の範囲が
好適である。なお、Coの含有量は望ましくは20〜5
0%である。良好な軟磁気特性を有するこのようなFe
-Co基合金は機械加工が困難となるが、それに0.5〜
4%の範囲のV、Si、Cr、Al、Mnの1種または
2種以上の元素を含有させることによって、結晶粒径を
小さくし、かつ加工性を改善する効果が得られる。これ
らの元素の含有量は0.5%未満では効果が殆ど認めら
れず、また4%を超えると軟磁気特性を低下させる。し
たがって、本発明では、V、Si、Cr、Al、Mnの
1種または2種以上の元素の含有量を0.5〜4%の範
囲に限定する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the amounts of alloy components and the effects thereof according to the present invention will be specifically described. First, the electromagnet part which is the target product of the present invention is required to have a high magnetic flux density of B> 1.8T (where H = 2000 A / m) and good soft magnetic properties (high magnetic permeability, low coercive force). Therefore,
The composition of the alloy is selected to satisfy this condition. As will be described in detail in the examples below, if the Co content is less than 15%, a desired magnetic flux density cannot be obtained. On the other hand, if the Co content exceeds 60%, both the magnetic flux density and the magnetic permeability decrease. There is a tendency and the desired value cannot be obtained. Therefore,
The Co content of the alloy composition of the present invention is preferably in the range of 15 to 60%. The content of Co is preferably 20 to 5%.
0%. Such Fe having good soft magnetic properties
-Co-based alloys are difficult to machine,
By containing one or more elements of V, Si, Cr, Al, and Mn in the range of 4%, the effect of reducing the crystal grain size and improving the workability can be obtained. If the content of these elements is less than 0.5%, almost no effect is recognized, and if it exceeds 4%, the soft magnetic properties are deteriorated. Therefore, in the present invention, the content of one or more elements of V, Si, Cr, Al, and Mn is limited to the range of 0.5 to 4%.

【0014】このような元素の添加を利用した結晶粒子
の微細化による加工性の改善法は、軟磁気特性の低下を
もたらし、またその添加効果にも限界がある。特に最終
部品形状に仕上げる際の切削性やドリル加工性、タッピ
ング加工性などを改善するためには結晶粒径をより微細
にすることが望ましい。
The method of improving workability by making crystal grains finer using the addition of such an element results in a decrease in soft magnetic characteristics and has a limited effect of the addition. In particular, in order to improve the machinability, drill workability, tapping workability, and the like when finishing to the final part shape, it is desirable to make the crystal grain size smaller.

【0015】本発明においては、合金断面の平均結晶粒
径が5〜50μmで、かつ合金中の残留炭素と残留酸素
の合計含有量が0.005〜0.05%の範囲に限定した
理由は、磁気特性および加工性を考慮したからである。
まず、合金断面の平均結晶粒径を5〜50μmの範囲に
限定した理由は、粒径が5μmより小さいと軟磁気特
性、特に透磁率が低くなる。さらに、焼結合金の平均結
晶粒径を5μm未満にするためには、1μmより微細な
出発原料粉末を使用する必要があり、そのような粉末は
製造コストを上昇させるため実用的ではない。実際に粒
径1μm未満の微粉末を用いると、焼結後の結晶粒径が
粗大化し易くなり、軟磁気特性は向上するが、各種の機
械加工性が低下する。一方、平均結晶粒径が50μmを
超える場合には軟磁気特性は改善されるが加工性が低下
し、欠けなどが生じ易くなる。また、合金中の残留炭素
と残留酸素の合計含有量を0.005〜0.05%の範囲
に限定とした理由は、残留炭素と残留酸素の合計含有量
が0.005%未満では、焼結合金の軟磁気特性は向上
するが、結晶粒径の微細化を図ることができず、そのた
めに、最終形状への仕上げ加工性が低下するからであ
る。さらにこの場合、焼結雰囲気(露点)の管理が難し
いなど実用面での課題も大きい。また、残留炭素と残留
酸素の合計含有量が0.05%を超えると軟磁気特性、
特に、透磁率および保磁力が低下するので好ましくな
い。
In the present invention, the reason why the average grain size of the alloy cross section is 5 to 50 μm and the total content of residual carbon and residual oxygen in the alloy is limited to the range of 0.005 to 0.05% is as follows. This is because magnetic characteristics and workability are considered.
First, the reason why the average crystal grain size of the alloy cross section is limited to the range of 5 to 50 μm is that if the grain size is smaller than 5 μm, the soft magnetic properties, particularly the magnetic permeability, decrease. Furthermore, in order to make the average crystal grain size of the sintered alloy less than 5 μm, it is necessary to use a starting material powder finer than 1 μm, and such a powder is not practical because it increases the production cost. Actually, when a fine powder having a particle size of less than 1 μm is used, the crystal particle size after sintering tends to be coarse, and the soft magnetic properties are improved, but various machinability is reduced. On the other hand, when the average crystal grain size exceeds 50 μm, the soft magnetic properties are improved, but the workability is reduced and chipping or the like is liable to occur. The reason that the total content of residual carbon and residual oxygen in the alloy is limited to the range of 0.005 to 0.05% is that if the total content of residual carbon and residual oxygen is less than 0.005%, then This is because the soft magnetic properties of the bonded gold are improved, but the crystal grain size cannot be reduced, and therefore, the finish workability to the final shape is reduced. Further, in this case, there is a large practical problem such as difficulty in controlling the sintering atmosphere (dew point). When the total content of residual carbon and residual oxygen exceeds 0.05%, soft magnetic properties,
In particular, it is not preferable because the magnetic permeability and the coercive force decrease.

【0016】合金の密度比が高いほど(気孔率少)磁気
特性が良好になる。上述のような本発明の合金組成、残
留炭素および残留酸素の量、平均結晶粒径の範囲であっ
て、密度比が90%程度であれば、従来の合金より高い
最大透磁率のものが得られる。密度比を94%以上にす
れば、最大透磁率が4000以上となる。本発明の製造
方法によっても密度比96%程度のものまで得ることが
できるが、更に高密度化し磁気特性を改善するために
は、コストの上昇を勘案した上で、焼結温度をより高く
設定したり、HIP処理を施すことも有効な手段とな
る。本発明によれば、従来と同程度の性能の焼結体(密
度比85〜90%)を得るのみであれば、従来の焼結条
件より低い温度で短い時間に設定することができるとい
う利点も見逃せない。
The higher the density ratio of the alloy (the lower the porosity), the better the magnetic properties. If the density ratio is about 90% in the range of the alloy composition of the present invention, the amount of residual carbon and residual oxygen, and the average crystal grain size as described above, a material having a higher maximum magnetic permeability than the conventional alloy can be obtained. Can be When the density ratio is 94% or more, the maximum magnetic permeability becomes 4000 or more. According to the production method of the present invention, a density ratio of about 96% can be obtained. However, in order to further increase the density and improve the magnetic characteristics, the sintering temperature is set higher in consideration of an increase in cost. And HIP processing are also effective means. ADVANTAGE OF THE INVENTION According to this invention, if only the sintered compact (density ratio 85-90%) of the same performance as a conventional one is obtained, it can set at a lower temperature and shorter time than the conventional sintering conditions. Can not be overlooked.

【0017】次に、本発明の製造方法について説明す
る。まず、高密度で実用性のある磁気特性および加工性
を有する焼結合金を得ること、ならびに平均結晶粒径を
5〜50μmに制御することを目的として、原料粉末と
して平均粒径が1〜40μmの金属微粉末を用いる。こ
のような金属微粉末を用いることにより、焼結性が大幅
に向上し、かつ焼結体密度が向上する。原料粉末は微粉
末であるほど焼結性が向上するが、その平均粒径が1μ
mより小さくなると製造コストが上昇し、焼結後の合金
断面の平均結晶粒径が却って粗大化し加工性が低下す
る。また、平均粒径が40μmより大きくなると焼結性
向上の効果が低い。したがって、本発明では、原料粉末
の平均粒径を1〜40μmの範囲に限定する。なお、焼
結性を大幅に向上させ得る平均粒径は、望ましくは1〜
20μmの範囲である。
Next, the manufacturing method of the present invention will be described. First, for the purpose of obtaining a sintered alloy having high density and practical magnetic properties and workability, and controlling the average crystal grain size to 5 to 50 μm, the average particle size of the raw material powder is 1 to 40 μm. Is used. By using such a metal fine powder, the sinterability is greatly improved and the density of the sintered body is improved. The sinterability improves as the raw material powder becomes finer, but the average particle size is 1 μm.
If it is smaller than m, the production cost increases, the average crystal grain size of the alloy cross section after sintering is rather coarsened, and the workability is reduced. On the other hand, when the average particle size is larger than 40 μm, the effect of improving sinterability is low. Therefore, in the present invention, the average particle size of the raw material powder is limited to the range of 1 to 40 μm. The average particle size capable of greatly improving the sinterability is desirably 1 to
It is in the range of 20 μm.

【0018】次に、原料微粉末に有機バインダを0.3
〜2.5%添加し、平均粒径が40〜400μmになる
ように造粒する。このような造粒粉末を用いることによ
り、造粒粉末の流動性や成形金型への充填性が改善さ
れ、従来の粉末冶金法による金型成形が可能となる。有
機バインダの添加量は、金属粉末の重量(100%)に
対して0.3〜2.5%とする。有機バインダの添加量が
0.3%より少ないと、造粒粉末の粒子強度が得られ
ず、成形前の給粉過程で破壊されて流動性が低下し、さ
らに金型成形時の潤滑効果が低下して、壊れた粉末がダ
イスと上下パンチとの間隙に入り込み型カジリの現象が
発生するなど、成形性が悪くなる。一方、有機バインダ
の添加量が2.5%を超えると、造粒粉末の見掛け密度
が低下し、その結果高密度の焼結体が得られない。ま
た、合金中の残留酸素および残留炭素が増加し、磁気特
性や加工性を低下させる。したがって、有機バインダの
添加量は0.3〜2.5%の範囲に限定する。
Next, an organic binder is added to the raw material fine powder at 0.3.
% 2.5% and granulated so that the average particle size becomes 40-400 μm. By using such a granulated powder, the fluidity of the granulated powder and the filling property into a molding die are improved, and a mold can be formed by a conventional powder metallurgy method. The amount of the organic binder to be added is 0.3 to 2.5% based on the weight (100%) of the metal powder. If the amount of the organic binder is less than 0.3%, the particle strength of the granulated powder cannot be obtained, the powder is broken during the powder supply process before molding, and the fluidity is reduced. As a result, the moldability deteriorates, for example, the broken powder enters the gap between the die and the upper and lower punches, causing a phenomenon of die galling. On the other hand, when the addition amount of the organic binder exceeds 2.5%, the apparent density of the granulated powder decreases, and as a result, a high-density sintered body cannot be obtained. In addition, residual oxygen and residual carbon in the alloy increase, thereby deteriorating magnetic properties and workability. Therefore, the addition amount of the organic binder is limited to the range of 0.3 to 2.5%.

【0019】これらの有機バインダを2種類以上複合し
て金属粉末に添加することは問題ない。その場合も、合
計添加量が0.3%より少ないと、造粒粉末の強度が得
られず、成形前の給粉過程で粉末粒子が壊れ、流動性お
よび成形性が低下する。一方、添加量が2.5%を超え
ると造粒粉末の見掛け密度が低下し、その結果高密度の
焼結体が得られない。また、合金中に含有される残留酸
素および残留炭素が増加し、磁気特性や加工性を低下さ
せる。したがって、有機バインダを2種類以上複合して
用いた場合もその添加量は0.3〜2.5%の範囲が好適
である。造粒に用いる有機バインダは、ポリビニルアル
コール(PVA)、ポリビニルピロリドン(PVP)、
メチルセルロース(MC)、ポリアクリルアミド(P
A)、ポリエチレングリコール(PEG)などから選ば
れる。これらは、溶媒として水あるいは工業用アルコー
ルを用い、水溶液あるいはアルコール溶液として金属粉
末に添加し造粒粉末を調製する。造粒粉末の強度を考慮
すると、ポリビニルアルコール、ポリビニルピロリドン
およびポリエチレングリコールなどが好ましい。
There is no problem in combining two or more of these organic binders and adding them to the metal powder. Also in this case, if the total amount is less than 0.3%, the strength of the granulated powder cannot be obtained, the powder particles are broken in the powder supply process before molding, and the fluidity and the moldability decrease. On the other hand, if the addition amount exceeds 2.5%, the apparent density of the granulated powder decreases, and as a result, a high-density sintered body cannot be obtained. Further, residual oxygen and residual carbon contained in the alloy increase, thereby deteriorating magnetic properties and workability. Therefore, even when two or more kinds of organic binders are used in combination, the addition amount is preferably in the range of 0.3 to 2.5%. Organic binders used for granulation include polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP),
Methylcellulose (MC), polyacrylamide (P
A), polyethylene glycol (PEG) and the like. These are prepared by using water or industrial alcohol as a solvent and adding them to a metal powder as an aqueous solution or an alcohol solution to prepare a granulated powder. Considering the strength of the granulated powder, polyvinyl alcohol, polyvinylpyrrolidone, polyethylene glycol and the like are preferred.

【0020】本発明においては、攪拌式流動層造粒装置
を用いて造粒粉末を調製した。この装置では、所定量の
造粒用金属粉末をチャンバー内に投入した後、チャンバ
ーの下方に装着された攪拌子(ローター)を高速回転さ
せて、チャンバー内で金属粉末を攪拌流動させる。その
後、下方のノズルから上記の有機バインダ溶液を噴霧
し、金属粉末の表面に微量ずつコーティングする。所定
量の有機バインダ溶液を噴霧した後、下方の別のノズル
から噴出する温風によって、有機バインダの溶液成分を
徐々に揮発させて乾燥し、所望の造粒粉末を得る。もち
ろん、ローターが装着されていない流動層装置あるいは
スプレードライヤーなどの造粒装置を用いることもでき
るが、そのような装置では一般に内部が中空の造粒粉末
が生じ易く、そのために見掛け密度が低くなる傾向があ
る。前記の装置では、金属微粉末の表面にバインダを付
着させると同時にロータとの衝突により緻密な造粒粉末
が得られるという利点がある。
In the present invention, a granulated powder was prepared using a stirred fluidized bed granulator. In this apparatus, after a predetermined amount of granulating metal powder is charged into a chamber, a stirrer (rotor) mounted below the chamber is rotated at a high speed to stir and flow the metal powder in the chamber. Thereafter, the above-mentioned organic binder solution is sprayed from a lower nozzle, and a small amount is coated on the surface of the metal powder. After spraying a predetermined amount of the organic binder solution, the solution component of the organic binder is gradually volatilized and dried by warm air blown from another nozzle below to obtain a desired granulated powder. Of course, a granulating device such as a fluidized bed device without a rotor or a spray dryer can also be used, but in such a device, granulated powder having a hollow inside is generally liable to be generated, and therefore the apparent density is low. Tend. The above-described apparatus has an advantage in that a binder can be attached to the surface of the metal fine powder, and at the same time, a dense granulated powder can be obtained by collision with the rotor.

【0021】造粒粉末の粒度は、有機バインダ溶液の種
類、濃度、供給量および供給時間、また攪拌子(ロータ
ー)の回転速度、温風乾燥温度および乾燥時間などによ
り制御することができる。金属微粉末と有機バインダか
らなる造粒粉末は、平均粒径が40μmより小さくなる
と流動性が悪く、また400μmより大きいものは造粒
処理を長時間行わなければならず、そのため処理コスト
が上昇する。したがって、造粒粉末の平均粒径は40〜
400μmの範囲内が好ましい。造粒粉末の平均粒径
は、望ましくは40〜200μmである。また、工程は
繁雑になるが、得られた造粒粉末を分級した後、所定の
粒度分布になるように配合することによって、さらに流
動性や充填性に優れた造粒粉とすることもできる。この
ようにして得られた造粒粉末は、公知の従来の粉末冶金
工程、すなわち金型圧縮成形−焼結あるいは金型圧縮成
形−焼結−熱処理などの工程に供する。
The particle size of the granulated powder can be controlled by the type, concentration, supply amount and supply time of the organic binder solution, rotation speed of a stirrer (rotor), hot air drying temperature and drying time. Granulated powder composed of fine metal powder and organic binder has poor fluidity when the average particle diameter is smaller than 40 μm, and the granulated powder having a diameter larger than 400 μm has to be subjected to granulation for a long time, thereby increasing the processing cost. . Therefore, the average particle size of the granulated powder is 40 to
It is preferably within the range of 400 μm. The average particle size of the granulated powder is desirably 40 to 200 μm. In addition, the process becomes complicated, but after classifying the obtained granulated powder, by blending so as to have a predetermined particle size distribution, a granulated powder having further excellent fluidity and filling property can be obtained. . The granulated powder thus obtained is subjected to a known conventional powder metallurgy process, that is, a process such as die compression molding-sintering or die compression molding-sintering-heat treatment.

【0022】以下に、本発明の造粒粉末を用いた金型圧
縮成形−焼結の例をさらに説明する。本発明の造粒粉末
の成形は、一般の成形用金型を用いて圧縮成形すること
ができる。高密度の焼結体を得るには成形体も高密度の
方が好ましく、成形圧力を高めるべきであるが、成形圧
力が高くなると金型構造を強固にしたり、型の摩耗に対
する対策が必要となるため、成形圧力は一般的な5〜7
ton/cm2が望ましい。
Hereinafter, an example of compression molding and sintering of a mold using the granulated powder of the present invention will be further described. The granulated powder of the present invention can be compression-molded using a general molding die. In order to obtain a high-density sintered body, it is preferable that the molded body also has a high density, and the molding pressure should be increased, but when the molding pressure is increased, it is necessary to strengthen the mold structure or take measures against mold wear. Therefore, the molding pressure is generally 5 to 7
ton / cm 2 is desirable.

【0023】焼結は、通常の焼結炉を用いて通常の焼結
条件で行うことができる。焼結雰囲気は、焼結性の観点
から還元雰囲気または真空中で行う。焼結前の脱バイン
ダ処理は、射出成形法などと比較してバインダ添加量が
0.3〜2.5%と少ないため省略しても良いが、厚さが
10mm以上の厚肉大型形状部品の場合には、還元雰囲
気中で400〜600℃、30分〜1時間程度の処理を
行うことが望ましい。焼結条件は、使用する造粒粉末の
種類に応じて適宜選定し、焼結体合金の残留炭素と残留
酸素の合計量が0.005〜0.05%で、かつ、平均結
晶粒径が5〜50μmの範囲になるように保持する。本
発明におけるFe-Co系およびFe-Co-V系合金
は、還元雰囲気中で1000〜1400℃、1〜5時間
の条件が好ましい。望ましくは、還元雰囲気中で105
0〜1350℃、1〜3時間の焼結条件である。
The sintering can be performed using a normal sintering furnace under normal sintering conditions. The sintering is performed in a reducing atmosphere or in a vacuum from the viewpoint of sinterability. The binder removal process before sintering may be omitted because the amount of binder added is as small as 0.3 to 2.5% as compared with the injection molding method, etc. In this case, it is desirable to perform the treatment in a reducing atmosphere at 400 to 600 ° C. for about 30 minutes to 1 hour. The sintering conditions are appropriately selected according to the type of the granulated powder to be used. The total amount of residual carbon and residual oxygen in the sintered alloy is 0.005 to 0.05%, and the average crystal grain size is It is held so as to be in the range of 5 to 50 μm. The Fe-Co-based and Fe-Co-V-based alloys of the present invention are preferably set in a reducing atmosphere at 1000 to 1400C for 1 to 5 hours. Desirably, 105
The sintering conditions are 0 to 1350 ° C. for 1 to 3 hours.

【0024】[0024]

【作用】本発明においては、原料粉末として平均粒径が
1〜40μmのFe-Co基合金微粉末を用いることに
より、焼結性が大幅に向上するとともに、焼結合金の平
均結晶粒径を5〜50μmに制御することができる。合
金粉末の造粒は、平均粒径が1〜40μmのFe-Co
基合金微粉末を、造粒して平均粒径が40〜400μm
になるように粗粒粉化することにより、成形金型内への
粉末の流動性、成形性を改善する。さらに、その際のバ
インダ添加量を0.3〜2.5%とすることによって、成
形金型への粉末の充填性を改善するとともに、合金中の
残留酸素と残留炭素の合計含有量を0.005〜0.05
%の範囲に制御し、合金の結晶粒径の微細化を図ること
ができる。このため、合金の最終形状への仕上げ加工性
を改善することができる。上記のようにして得られた造
粒粉末を、公知の従来の粉末冶金工程、すなわち、金型
圧縮成形−焼結、あるいは、金型圧縮成形−焼結−再圧
縮−焼鈍などの工程に供することにより所望の形状のF
e-Co基焼結部品を得ることができる。
In the present invention, the sinterability is greatly improved and the average crystal grain size of the sintered alloy is reduced by using an Fe-Co base alloy fine powder having an average particle size of 1 to 40 μm as a raw material powder. It can be controlled to 5 to 50 μm. The granulation of the alloy powder is performed using Fe-Co having an average particle size of 1 to 40 μm.
The base alloy fine powder is granulated to have an average particle size of 40 to 400 μm.
By making the powder coarse, the fluidity and moldability of the powder into the molding die are improved. Further, by setting the amount of the binder to be added at this time to 0.3 to 2.5%, the filling property of the powder into the molding die is improved, and the total content of residual oxygen and residual carbon in the alloy is reduced to 0%. .005-0.05
%, The crystal grain size of the alloy can be reduced. For this reason, finish workability to the final shape of the alloy can be improved. The granulated powder obtained as described above is subjected to a known conventional powder metallurgy process, that is, a process such as die compression molding-sintering, or die compression molding-sintering-recompression-annealing. The desired shape of F
An e-Co based sintered part can be obtained.

【0025】以下、実施例によって本発明をさらに説明
する。
Hereinafter, the present invention will be further described with reference to examples.

【実施例】<Co含有量の試験例>原料粉末としてCo
を10%、30%、50%および70%含有するFe-
Co合金組成の水アトマイズ粉末に、それぞれ内割率で
0%、0.5%、2%および4%のV粉末を添加し、攪
拌式流動層造粒装置を用いて造粒した。造粒装置には原
料粉末を3kg投入した後、バインダとしてポリビニルア
ルコール30gを含有する水溶液全量を噴霧した後、乾
燥して平均粒径40〜400μmの造粒粉末を調製し
た。上記の造粒粉末を3〜7ton/cm2の成形圧力で、各
種試験片の形状に金型成形し、水素雰囲気中で1000
〜1350℃で1〜5時間焼結した。試験片は内径が2
0mm、外形が30mm、高さが5mmのリング状焼結
体で、1次コイルを100回、2次コイルを20回の捲
き線を施し、磁束密度(B25)および最大透磁率
(μm)を測定した。測定結果を図1および図2に示
す。図1は、4種のV含有量のFe-Co合金のCo含
有量と磁束密度との関係を示し、図2は同じくFe-C
o合金のCo含有量と最大透磁率との関係を示すグラフ
である。これらのグラフを検討すると、Co含有量が1
5%より低くなると磁束密度が低下する傾向があり、所
望の磁束密度の合金が得られない。一方、Co含有量が
60%を越える場合には磁束密度および高透磁率が共に
低下する傾向がある。
<Example of Co content test> Co as a raw material powder
Containing 10%, 30%, 50% and 70%
0%, 0.5%, 2% and 4% of V powder were added to the water atomized powder of the Co alloy composition at an internal rate of 0%, respectively, and the mixture was granulated using a stirred fluidized bed granulator. After 3 kg of the raw material powder was charged into the granulator, the whole amount of an aqueous solution containing 30 g of polyvinyl alcohol as a binder was sprayed, and then dried to prepare a granulated powder having an average particle diameter of 40 to 400 μm. The above granulated powder is molded into various test pieces at a molding pressure of 3 to 7 ton / cm 2 , and 1000
Sintered at 131350 ° C. for 1-5 hours. The test piece has an inner diameter of 2
A ring-shaped sintered body having a diameter of 0 mm, an outer shape of 30 mm, and a height of 5 mm was wound with a primary coil of 100 times and a secondary coil of 20 times, and a magnetic flux density (B 25 ) and a maximum magnetic permeability (μ m ) Was measured. The measurement results are shown in FIGS. FIG. 1 shows the relationship between the Co content and the magnetic flux density of four types of V-content Fe—Co alloys, and FIG.
5 is a graph showing the relationship between the Co content of an o-alloy and the maximum magnetic permeability. Examination of these graphs shows that the Co content is 1
If it is lower than 5%, the magnetic flux density tends to decrease, and an alloy having a desired magnetic flux density cannot be obtained. On the other hand, when the Co content exceeds 60%, both the magnetic flux density and the high magnetic permeability tend to decrease.

【0026】<製造試験例>原料粉末としてFe-49
Co-2V合金組成およびFe-50Co合金組成の各種
平均粒径(2μm、8μm、20μm、40μm、50
μm)を有する水アトマイズ粉末を使用した。造粒は攪
拌式流動層造粒装置を用いて行った。造粒装置に原料粉
末を3kg投入した後、バインダとして各種添加量のポリ
ビニルアルコール水溶液またはポリビニルピロリドン・
メタノール溶液を噴霧により添加した後、乾燥して平均
粒径40〜400μmの造粒粉末を調製した。表1に得
られた造粒粉末の性状を示す。
<Production Test Example> Fe-49 was used as a raw material powder.
Various average particle diameters of the Co-2V alloy composition and the Fe-50Co alloy composition (2 μm, 8 μm, 20 μm, 40 μm, 50 μm)
water atomized powder having a micron size) was used. Granulation was performed using a stirred fluidized bed granulator. After adding 3 kg of the raw material powder to the granulator, various amounts of polyvinyl alcohol aqueous solution or polyvinyl pyrrolidone.
After adding the methanol solution by spraying, it was dried to prepare a granulated powder having an average particle size of 40 to 400 µm. Table 1 shows the properties of the obtained granulated powder.

【0027】平均粒径が8μmの原料粉末およびポリビ
ニルアルコールを用いた場合、バインダの添加量が0.
2%では造粒粉末の粒径が小さく、また造粒粉末の強度
が低いため、成形時に粒子が壊れ金型のクリアランスに
入り込むなど成形性が悪い(試験例2)。バインダの添
加量が0.3%以上で、造粒後の平均粒径が40μm以
上では、流動性および成形性が良好な造粒粉末が得られ
る(試験例4、5、7、8)。バインダとしてポリビニ
ルピロリドンを用いた場合も、ポリビニルアルコールの
場合と同様の結果が得られた(試験例6) 平均粒径が2μm、20μm、40μm、50μmの原
料粉末を用いた場合も流動性および成形性が良好な造粒
粉末が得られる(試験例1、9〜11)。粉末冶金で一
般的に使用されるステアリン酸亜鉛(Zn-st)と混
合した粉末は流動しない(試験例12)。また、原料粉
末にFe-20Co合金粉末およびFe-50Co合金粉
末を用いた場合も、本発明のバインダ添加量であれば、
流動性および成形性が良好な造粒粉末が得られる(試験
例13、14)。
When a raw material powder having an average particle size of 8 μm and polyvinyl alcohol are used, the amount of the binder to be added is 0.1%.
At 2%, the particle size of the granulated powder is small and the strength of the granulated powder is low, so that the moldability is poor such that the particles break during molding and enter the clearance of the mold (Test Example 2). When the amount of the binder added is 0.3% or more and the average particle size after granulation is 40 μm or more, granulated powder having good fluidity and moldability can be obtained (Test Examples 4, 5, 7, and 8). When polyvinyl pyrrolidone was used as the binder, the same results as in the case of polyvinyl alcohol were obtained (Test Example 6). Fluidity and molding were obtained even when raw material powders having average particle diameters of 2 μm, 20 μm, 40 μm, and 50 μm were used. A granulated powder having good properties is obtained (Test Examples 1, 9 to 11). Powder mixed with zinc stearate (Zn-st) commonly used in powder metallurgy does not flow (Test Example 12). Also, when using Fe-20Co alloy powder and Fe-50Co alloy powder as the raw material powder, if the amount of the binder of the present invention is added,
A granulated powder having good fluidity and moldability is obtained (Test Examples 13 and 14).

【0028】このようにして得られた造粒粉末を3〜7
ton/cm2の成形圧力で、各種試験片の形状に金型成形
し、水素雰囲気中で1000〜1350℃で1〜5時間
焼結した。磁気測定用試験片は内径が20mm、外形が
30mm、高さが5mmのリング状焼結体で、1次コイ
ルを100回、2次コイルを20回の捲き線を施し、磁
束密度(B25)、最大透磁率(μm)を測定した。加工
性評価用試験片は50mm×50mm×15mmの焼結
体で、表面を切削加工した後、φ3のドリル加工および
M3のタッピング加工を施し、欠けの有無、ネジ山の状
態などを評価した。
The granulated powder thus obtained is mixed with 3 to 7
Each test piece was molded into a mold at a molding pressure of ton / cm 2 and sintered at 1000 to 1350 ° C. for 1 to 5 hours in a hydrogen atmosphere. The test piece for magnetic measurement is a ring-shaped sintered body having an inner diameter of 20 mm, an outer diameter of 30 mm, and a height of 5 mm. The primary coil is wound 100 times, the secondary coil is wound 20 times, and the magnetic flux density (B 25 ) to measure the maximum permeability (μ m). The test piece for evaluation of workability was a sintered body of 50 mm × 50 mm × 15 mm. After cutting the surface, a drilling of φ3 and tapping of M3 were performed to evaluate the presence or absence of chipping and the state of the thread.

【0029】表2に得られた焼結体の密度比、残留炭素
量、残留酸素量、平均結晶粒径、直流磁気特性および加
工性評価の結果を示す。バインダ添加量が0.2%では
造粒粉末の成形性が悪く、密度比が比較的低いため、最
大透磁率が4000を下廻っている(試験例2)。バイ
ンダ添加量が0.3%以上ではいずれも95%以上の高
い密度比が得られるため良好な磁気特性が得られる(試
験例1、3〜5、7)。ただし、造粒粉の平均粒径が4
0μmに満たないものであったものは加工性が悪い結果
となっている(試験例3)。バインダにポリビニルピロ
リドンを用いた場合も、ポリビニルアルコールの場合と
全く同様であり、高い密度比および良好な磁気特性が得
られる(試験例6)。しかし、バインダ添加量が3%を
超えると、焼結後の残留炭素量および残留酸素量が極め
て多くなり、このため結晶粒の成長が妨げられ磁気特性
が著しく低下するほか、加工性も悪い(試験例8)。原
料粉末の平均粒径が大きくなるほど焼結性が低下する傾
向にあり、平均粒径が40μmを超えると焼結体の密度
比が低下し、磁気特性が低下するとともに加工性も悪い
ものとなっている(試験例9、11)。ステアリン酸亜
鉛(Zn-st)と混合した粉末は、成形性が悪く高密
度の焼結体が得られないため磁気特性、加工性とも良く
ない(試験例12)。原料粉末にFe-20Co、Fe-
50Co合金粉末を用いた場合も高い密度比および良好
な磁気特性が得られる(試験例13、14)。加工性に
関しては、造粒粉末の平均粒径が小さいもの(試験例
3)、焼結後の残留炭素量および残留酸素量が多いもの
(試験例8)、平均結晶粒径が大きいもの(試験例1
1、12)は加工性が低下する傾向にあるが、本発明の
実施例は何れも磁気特性および加工性に優れている。ま
た、最大透磁率が4000以上を示すとともに加工性が
良好な合金は、組成が上述のようなFe-Co基合金で
あって、残留炭素および残留酸素量の合計が0.005
〜0.05%、平均結晶粒径が5〜50μmであるとと
もに密度比94%以上のものである。
Table 2 shows the density ratio, the residual carbon content, the residual oxygen content, the average crystal grain size, the DC magnetic properties and the results of the evaluation of the workability of the obtained sintered body. When the amount of the binder added was 0.2%, the compactability of the granulated powder was poor and the density ratio was relatively low, so that the maximum magnetic permeability was lower than 4000 (Test Example 2). When the amount of the binder added is 0.3% or more, a high density ratio of 95% or more can be obtained, and good magnetic properties can be obtained (Test Examples 1, 3 to 5, and 7). However, the average particle size of the granulated powder is 4
Those having a thickness of less than 0 μm have poor workability (Test Example 3). When polyvinylpyrrolidone is used as the binder, the same as in the case of polyvinyl alcohol, a high density ratio and good magnetic properties are obtained (Test Example 6). However, if the amount of the binder exceeds 3%, the amount of residual carbon and the amount of residual oxygen after sintering become extremely large, so that the growth of crystal grains is hindered, the magnetic properties are remarkably reduced, and the workability is also poor ( Test Example 8). As the average particle size of the raw material powder increases, the sinterability tends to decrease. If the average particle size exceeds 40 μm, the density ratio of the sintered body decreases, and the magnetic properties decrease and the workability becomes poor. (Test Examples 9 and 11). A powder mixed with zinc stearate (Zn-st) has poor magnetic properties and workability because a compactability is poor and a high-density sintered body cannot be obtained (Test Example 12). Fe-20Co, Fe-
Even when the 50Co alloy powder is used, a high density ratio and good magnetic properties can be obtained (Test Examples 13 and 14). Regarding the workability, the granulated powder had a small average particle size (Test Example 3), the sintering had a large amount of residual carbon and oxygen (Test Example 8), and the average crystal particle size was large (Test Example 1
1, 12) tend to decrease workability, but all of the examples of the present invention are excellent in magnetic properties and workability. An alloy having a maximum magnetic permeability of 4000 or more and having good workability is an Fe-Co-based alloy having the above-described composition, and the total amount of residual carbon and residual oxygen is 0.005.
〜0.05%, average crystal grain size is 5-50 μm, and density ratio is 94% or more.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】[0032]

【発明の効果】以上述べたように、本発明によれば、高
い焼結性を有する金属微粉末の使用を容易にし、従来の
粉末冶金法の金型圧縮成形および焼結の工程を用いた、
軟磁気特性および加工性に優れたFe-Co基電磁石用
合金を製造することができる。さらに、本発明によれ
ば、射出成型法では作製が難しい厚さが10mm以上の
厚肉大型形状のFe-Co基電磁石用合金を低コストに
大量生産することができる。
As described above, according to the present invention, it is possible to easily use a metal fine powder having a high sintering property, and to use a conventional mold compression molding and sintering process of powder metallurgy. ,
An alloy for an Fe-Co based electromagnet having excellent soft magnetic properties and workability can be manufactured. Further, according to the present invention, it is possible to mass-produce an alloy for a Fe-Co-based electromagnet having a large thickness and a thickness of 10 mm or more, which is difficult to produce by an injection molding method, at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】4種のV含有量のFe-Co合金のCo含有量
と磁束密度との関係を示すグラフ。
FIG. 1 is a graph showing the relationship between the Co content and the magnetic flux density of four types of V-content Fe—Co alloys.

【図2】同様なFe-Co合金のCo含有量と最大透磁
率との関係を示すグラフ。
FIG. 2 is a graph showing the relationship between the Co content and the maximum magnetic permeability of a similar Fe—Co alloy.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 合金断面の平均結晶粒径が5〜50μm
であり、合金中の残留炭素量と残留酸素量の合計が0.
005〜0.05%である、Co:15〜60%および
残部のFeからなる組成の電磁石用合金。
An average grain size of the alloy cross section is 5 to 50 μm.
And the sum of the residual carbon content and the residual oxygen content in the alloy is 0.
An alloy for an electromagnet having a composition of Co: 15 to 60% and the balance of Fe, which is 005 to 0.05%.
【請求項2】 合金断面の平均結晶粒径が5〜50μm
であり、合金中の残留炭素量と残留酸素量の合計が0.
005〜0.05%である、Co:15〜60%、V、
Si、Cr、Al、Mnの1種または2種以上:0.5
〜4%および残部のFeからなる組成の電磁石用合金。
2. The average grain size of the alloy cross section is 5 to 50 μm.
And the sum of the residual carbon content and the residual oxygen content in the alloy is 0.
005-0.05%, Co: 15-60%, V,
One or more of Si, Cr, Al, and Mn: 0.5
An alloy for an electromagnet having a composition of about 4% and the balance of Fe.
【請求項3】 密度比が94%以上であることを特徴と
する請求項1または2に記載の電磁石用合金。
3. The alloy for an electromagnet according to claim 1, wherein the density ratio is 94% or more.
【請求項4】 肉厚が10mm以上で、重量が200g
以上の厚肉大型形状であることを特徴とする請求項1に
記載の電磁石用合金。
4. The thickness is at least 10 mm and the weight is 200 g.
The alloy for an electromagnet according to claim 1, wherein the alloy has a thick and large shape as described above.
【請求項5】 請求項1または請求項2に記載の合金組
成を有し、平均粒子径が1〜40μmの範囲の合金用粉
末を、0.3〜2.5%の有機バインダを用いて平均粒子
径40〜400μmの範囲に造粒し、金型成形の後に非
酸化性雰囲気中で焼結することからなる電磁石用合金部
材の製造方法。
5. An alloy powder having an alloy composition according to claim 1 or 2 having an average particle diameter of 1 to 40 μm, using an organic binder of 0.3 to 2.5%. A method for producing an alloy member for an electromagnet, comprising granulating to an average particle diameter of 40 to 400 μm, and sintering in a non-oxidizing atmosphere after molding.
JP10280582A 1998-09-16 1998-09-16 Alloy for electromagnet and its manufacture Pending JP2000087194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10280582A JP2000087194A (en) 1998-09-16 1998-09-16 Alloy for electromagnet and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10280582A JP2000087194A (en) 1998-09-16 1998-09-16 Alloy for electromagnet and its manufacture

Publications (1)

Publication Number Publication Date
JP2000087194A true JP2000087194A (en) 2000-03-28

Family

ID=17627057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10280582A Pending JP2000087194A (en) 1998-09-16 1998-09-16 Alloy for electromagnet and its manufacture

Country Status (1)

Country Link
JP (1) JP2000087194A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002098599A (en) * 2000-09-27 2002-04-05 Toyoda Mach Works Ltd Torque sensor
JP2006336038A (en) * 2005-05-31 2006-12-14 Sanyo Special Steel Co Ltd High magnetic flux-density material and its manufacturing method
JP2008248392A (en) * 2008-05-13 2008-10-16 Sanyo Special Steel Co Ltd METHOD FOR MANUFACTURING Fe-Co-V-BASED ALLOY MATERIAL
JPWO2008062757A1 (en) * 2006-11-21 2010-03-04 株式会社アルバック Method for manufacturing oriented body, molded body and sintered body, and method for manufacturing permanent magnet
CN114645205A (en) * 2022-03-21 2022-06-21 安徽工业大学 Graphite-based powder metallurgy material for drilling and locking and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002098599A (en) * 2000-09-27 2002-04-05 Toyoda Mach Works Ltd Torque sensor
JP2006336038A (en) * 2005-05-31 2006-12-14 Sanyo Special Steel Co Ltd High magnetic flux-density material and its manufacturing method
JPWO2008062757A1 (en) * 2006-11-21 2010-03-04 株式会社アルバック Method for manufacturing oriented body, molded body and sintered body, and method for manufacturing permanent magnet
JP2008248392A (en) * 2008-05-13 2008-10-16 Sanyo Special Steel Co Ltd METHOD FOR MANUFACTURING Fe-Co-V-BASED ALLOY MATERIAL
CN114645205A (en) * 2022-03-21 2022-06-21 安徽工业大学 Graphite-based powder metallurgy material for drilling and locking and preparation method thereof

Similar Documents

Publication Publication Date Title
EP0215168B1 (en) Method for making rare-earth element containing permanent magnets
CA2667843C (en) High compressibility iron powder, and iron powder for dust core and dust core using the same
US20020106297A1 (en) Co-base target and method of producing the same
JP2007092162A (en) Highly compressive iron powder, iron powder for dust core using the same and dust core
JPH0353506A (en) Manufacture of softly magnetic sintered body of fe-p alloy
JP3435223B2 (en) Method for producing sendust-based sintered alloy
JP2007251125A (en) Soft magnetic alloy consolidation object and method for fabrication thereof
JP2587872B2 (en) Method for producing soft magnetic sintered body of Fe-Si alloy
KR20160134548A (en) Soft magnetic metal powder and soft magnetic metal dust core
JP2000087194A (en) Alloy for electromagnet and its manufacture
JPH03191036A (en) Sintered fe-co alloy
CN110238379B (en) Metal powder for powder metallurgy, composite, granulated powder, and sintered body
JP6690781B2 (en) Alloy steel powder
JP2015117391A (en) Iron-based sintered alloy, method for producing the same, and high-carbon iron-based powder
JPH0257608A (en) Fe-co based alloy fine powder and fe-co based sintered magnetic material
JP3432905B2 (en) Method for producing sendust-based sintered alloy
JP4070069B2 (en) Method for producing sintered soft magnetic stainless steel with excellent corrosion resistance
JP2003068514A (en) Powder magnetic core and method for manufacturing the same
JP2003055747A (en) Sintered tool steel and production method therefor
JP2000212679A (en) Raw material granular body for iron-silicon base soft magnetic sintered alloy, its production and production of iron-silicon base soft magnetic sintered alloy member
JPH08120393A (en) Production of iron-silicon soft magnetic sintered alloy
KR20200128158A (en) Alloy steel powder for powder metallurgy and iron-based mixed powder for powder metallurgy
JP3492884B2 (en) Method for producing soft magnetic sintered metal
JP2018206835A (en) Soft magnetic alloy particle and electronic component
JPH04298006A (en) Manufacture of fe-si-al alloy sintered soft magnetic substance

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040427