JPH08120393A - Production of iron-silicon soft magnetic sintered alloy - Google Patents

Production of iron-silicon soft magnetic sintered alloy

Info

Publication number
JPH08120393A
JPH08120393A JP6234354A JP23435494A JPH08120393A JP H08120393 A JPH08120393 A JP H08120393A JP 6234354 A JP6234354 A JP 6234354A JP 23435494 A JP23435494 A JP 23435494A JP H08120393 A JPH08120393 A JP H08120393A
Authority
JP
Japan
Prior art keywords
powder
alloy
soft magnetic
slurry
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6234354A
Other languages
Japanese (ja)
Inventor
Osamu Yamashita
治 山下
Masami Ueda
雅己 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP6234354A priority Critical patent/JPH08120393A/en
Publication of JPH08120393A publication Critical patent/JPH08120393A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE: To provide the magnetic alloy with improved fluldability during the forming, and with the excellent magnetic characteristic by adding kneading and the prescribed binder to the fine powder of Fe-Si alloy, and forming it after the granulation, formation and degreasing. CONSTITUTION: The binder consisting of, by weight, 0.1-2.0% polyvinyl alcohol, methyl-cellulose, and polyacrylamide in a single or composite manner and water is added to the fine powder of Fe-Si alloy, and kneaded and stirred to make the slurry of 20-50% in water content. This slurry is granulated to 20-400μm in the mean grain size by using a spray dryer device. Formation is made by using this granulated powder, and degreasing is achieved in the gaseous hydrogen flow to allow the sintering in vacuum or in the inert gas. The amount of the residual oxygen and carbon in the sintered body is reduced, the fluidability and lubricability of the powder during the formation is improved to improve the dimensional precision of the formed body and the productivity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、粉末冶金法によりF
e−Si系軟質磁性焼結合金を製造する方法に係り、特
に、特定のFe−Si系合金微粉末に特定のバインダー
を添加混練してスラリーとなし、これをスプレードライ
ヤー装置により平均粒径20〜400μmの造粒粉とな
すことにより、成形時の粉体の流動性、潤滑性を向上さ
せて、成形サイクルの向上、成形体の寸法精度を向上さ
せ、厚み10mm以上の厚肉形状やヨークなどの複雑形
状のFe−Si系軟質磁性焼結合金を提供することがで
きるFe−Si系軟質磁性焼結合金の製造方法に関す
る。
BACKGROUND OF THE INVENTION The present invention relates to a powder metallurgy
The present invention relates to a method for producing an e-Si soft magnetic sintered alloy, and in particular, a specific binder is added to a specific Fe-Si alloy fine powder and kneaded to form a slurry. The granulated powder having a particle size of up to 400 μm improves the fluidity and lubricity of the powder during molding, improves the molding cycle, improves the dimensional accuracy of the molded body, and improves the thickness and shape of the yoke with a thickness of 10 mm or more. The present invention relates to a method for producing an Fe—Si soft magnetic sintered alloy capable of providing an Fe—Si soft magnetic sintered alloy having a complicated shape such as

【0002】[0002]

【従来の技術】今日、家電製品を始めコンピューターの
周辺機器や変圧器その他の電気機器の鉄心あるいはヨー
ク材、さらに磁気ヘッドのコアとして種々の軟質磁性材
料が使用されており、そして複雑形状化、小型化、軽量
化とともに高性能化が求められている。現在の代表的な
軟質磁性材料としては、Mn−Zn、Ni−Znフェラ
イトなどのソフトフェライト、Fe−Niを主成分とす
るパーマロイ、Fe−Al−Si系のセンダスト、さら
にFe−Co系のパーメンジュール、Fe−Si系の珪
素鋼などが挙げられる。
2. Description of the Related Art Today, various soft magnetic materials are used as iron cores or yoke materials for home electric appliances, computer peripherals, transformers and other electric devices, as well as cores for magnetic heads, and have complicated shapes. Higher performance is required as well as smaller size and lighter weight. Typical typical soft magnetic materials at present are soft ferrites such as Mn-Zn and Ni-Zn ferrites, permalloy containing Fe-Ni as a main component, Fe-Al-Si-based sendust, and Fe-Co-based permanent. Mendules, Fe-Si-based silicon steel, etc. may be mentioned.

【0003】上記の中でも、Fe−Si系の珪素鋼は、
高い飽和磁束密度をもちながら他の軟質金属磁性材に比
べて電気抵抗率が高いことを特徴とし、鉄損が低いため
に交流用用途、例えば、交直流リレー用や高周波用の鉄
心等に広範囲に利用されている。一般に、FeにSiを
添加すると透磁率と電気抵抗が増加するために、交流磁
気特性が向上するが、Siの添加量を増やすにつれて材
料が難くて脆い合金になり、塑性加工、冷間圧延、切断
加工が困難になり、加工歩留りが低下する。このため、
特に3wt%以上のSiを含有するFe−Si系合金で
は、コスト的に製造可能な部品及び用途は自ずと限定さ
れていた。
Among the above, Fe--Si type silicon steel is
It has a high saturation magnetic flux density and a high electric resistivity compared to other soft metal magnetic materials.Because of low iron loss, it can be widely used for AC applications, such as AC / DC relays and high frequency iron cores. Is used for. In general, when Si is added to Fe, the magnetic permeability and electric resistance are increased, and thus the AC magnetic characteristics are improved, but as the amount of Si added is increased, the material becomes a brittle alloy, and plastic working, cold rolling, The cutting process becomes difficult and the processing yield decreases. For this reason,
In particular, for Fe-Si based alloys containing 3 wt% or more of Si, cost-manufacturable parts and applications were naturally limited.

【0004】[0004]

【発明が解決しようとする課題】かかる欠点を補うため
に、鋳型の中にFe−Si系合金の融湯を注入し、冷却
後に取り出すという精密鋳造により、複雑形状部品を作
製する方法も取られているが、凝固時にFeとSiの重
力偏析が生じたり、大きな気孔が残留して特に磁気特性
の劣化を引起し、品質が不安定になる欠点があった。
In order to make up for such a drawback, there is also adopted a method for producing a complex shaped part by precision casting in which a molten Fe-Si alloy is poured into a mold and taken out after cooling. However, there are drawbacks that the gravity segregation of Fe and Si occurs at the time of solidification, large pores remain to cause deterioration of the magnetic properties, and the quality becomes unstable.

【0005】また、焼結後、所要の組成になるように平
均粒径の大きなFe粉末と小さなFe−Si粉末を配合
混合して、Fe粉末の塑性変形を利用してバインダーの
役目をさせて圧縮成形した後、焼結する粉末冶金法も提
案(特開昭62−27545号)されているが、粉末の
流動性が悪いために成形時の型充填量がばらつきやす
く、焼結後の寸法精度が不安定になる欠点があり、近年
要求される10mm以上の厚肉形状で複雑形状で寸法精
度の優れる製品の製造が困難であった。
Further, after sintering, Fe powder having a large average particle diameter and Fe--Si powder having a small average particle diameter are mixed and mixed so as to have a required composition, and the plastic deformation of the Fe powder is utilized to function as a binder. A powder metallurgy method in which compression molding is performed and then sintering is also proposed (Japanese Patent Laid-Open No. 62-27545), but since the powder flowability is poor, the mold filling amount during molding tends to vary, and the size after sintering There is a drawback that the accuracy becomes unstable, and it has been difficult to manufacture a product which is required in recent years and has a thick shape of 10 mm or more, a complicated shape and excellent dimensional accuracy.

【0006】従来、Fe−Si系合金において、所定の
形状体を作製するために金属射出成形法(MIM)の適
用も行われているが、金属射出成形法では、一般にバイ
ンダー添加量が約10wt%と多いために焼結後に酸素
と炭素が残留しやすく、磁気特性、特に透磁率の劣化を
招きやすい問題がある。そこで、カップリング剤を添加
してバインダー添加量を減らし、焼結後の残留炭素量と
残留酸素量を減らし、磁気特性の向上を図る方法(特開
平1−212702〜212706号)も提案されてい
るが、この方法でも優れた磁気特性を有する焼結体を作
製するのは困難であった。
[0006] Conventionally, in an Fe-Si alloy, a metal injection molding method (MIM) has been applied in order to produce a body having a predetermined shape. However, in the metal injection molding method, a binder addition amount is generally about 10 wt. %, There is a problem that oxygen and carbon are likely to remain after sintering, leading to deterioration of magnetic properties, particularly magnetic permeability. Therefore, a method has also been proposed in which a coupling agent is added to reduce the binder addition amount to reduce the residual carbon amount and residual oxygen amount after sintering to improve the magnetic properties (Japanese Patent Laid-Open No. 1-212702 to 212706). However, even with this method, it was difficult to produce a sintered body having excellent magnetic properties.

【0007】また、金属射出成形法では、一般に焼結時
の収縮率が大きくなるために、寸法形状の大きい製品で
は、焼結時にワレを生じたり、脱脂時にフクレが起こる
ために、特に厚み10mm以上の厚肉形状で複雑形状で
寸法精度の優れる製品を得るのが困難だった。
Further, in the metal injection molding method, the shrinkage ratio during sintering generally becomes large, so that in a product having a large size and shape, cracks occur during sintering and blisters occur during degreasing, so that the thickness is especially 10 mm. It was difficult to obtain a product having the above-mentioned thick-walled shape, complicated shape, and excellent dimensional accuracy.

【0008】一方、バインダーとしてポリビニルアルコ
ールは、焼結フェライトなどの酸化物の製造に用いら
れ、例えば、フェライトの仮焼粉をボールミルにて平均
粒度1μm程度まで湿式粉砕した後、ポリビニルアルコ
ールなどのバインダーを0.6〜1.0wt%を加え、
スプレードライヤーによって50〜100μmの造粒粉
を作製し、該造粒粉を成形し焼結する方法などが行われ
ているが、それらはいずれも成形後大気中で脱脂するた
めに、バインダーは燃焼してしまい、焼結後に焼結体中
に炭素はほとんど残留しないので有効である。
On the other hand, polyvinyl alcohol is used as a binder in the production of oxides such as sintered ferrite. For example, after calcined powder of ferrite is wet-ground to an average particle size of about 1 μm by a ball mill, the binder such as polyvinyl alcohol is used. 0.6 to 1.0 wt%
A method of producing granulated powder of 50 to 100 μm by a spray dryer, molding and sintering the granulated powder, etc. is performed. This is effective because carbon hardly remains in the sintered body after sintering.

【0009】ところが、この発明の対象とするFe−S
i系軟質磁性焼結合金の場合は、焼結を真空もしくは不
活性ガス中で行う必要があるために、最適な脱脂条件で
処理しなければ、当然焼結体中に酸素及び炭素が残留
し、焼結密度が低下すると同時に磁気特性も劣化するの
で、容易には前述のフェライトの製造法は適用できな
い。
However, Fe-S which is the object of the present invention
In the case of the i-based soft magnetic sintered alloy, it is necessary to perform the sintering in a vacuum or an inert gas. Therefore, unless it is processed under the optimum degreasing conditions, oxygen and carbon will naturally remain in the sintered body. However, since the sintering density is lowered and the magnetic properties are also deteriorated, the above-mentioned ferrite manufacturing method cannot be easily applied.

【0010】このようにFe−Si系軟質磁性焼結合金
の製造方法において、Fe−Si系合金の加工性を改良
したり、さらに金属射出成形法により成形方法を改良し
た試みが提案されているが、いずれの方法によっても近
年要求されるような厚さが10mm以上の厚肉形状やヨ
ーク等のごとき複雑形状でかつ優れた磁気特性を有する
Fe−Si系軟質磁性焼結合金を製造するのは困難であ
った。
As described above, in the method for manufacturing the Fe--Si soft magnetic sintered alloy, an attempt has been proposed to improve the workability of the Fe--Si alloy and further improve the molding method by the metal injection molding method. However, by any of the methods, a Fe—Si based soft magnetic sintered alloy having a thick shape with a thickness of 10 mm or more, a complicated shape such as a yoke, and excellent magnetic characteristics as required in recent years is manufactured. Was difficult.

【0011】この発明は、粉末冶金法により焼結合金を
製造する方法において、合金粉末とバインダーとの反応
を抑制し、焼結体中の残留酸素量、残留炭素量を低減さ
せるとともに、成形時の粉体の流動性、潤滑性を向上さ
せて、成形体の寸法精度の向上及び生産性の向上を図
り、厚さが10mm以上の厚肉形状やヨーク等のごとき
複雑形状でかつ優れた磁気特性を有するFe−Si系軟
質磁性焼結合金の製造方法の提供を目的とする。
According to the present invention, in a method for producing a sintered alloy by powder metallurgy, the reaction between the alloy powder and the binder is suppressed to reduce the residual oxygen content and residual carbon content in the sintered body, and at the time of molding. By improving the fluidity and lubricity of the powder, the dimensional accuracy of the molded body and the productivity are improved, and the complex shape such as a thick wall shape with a thickness of 10 mm or more, a yoke, etc. An object of the present invention is to provide a method for producing a Fe-Si based soft magnetic sintered alloy having characteristics.

【0012】[0012]

【課題を解決するための手段】発明者らは、Fe−Si
系合金粉末とバインダーとの反応を抑制でき、焼結体の
残留酸素量、残留炭素量を低減させる方法を種々検討し
た結果、バインダーとして少量のポリビニルアルコー
ル、メチルセルロース、ポリアクリルアミドを単独また
は2種類複合したものと水とからなるバインダーを用い
ることにより、スプレー造粒工程においてFe−Si系
合金粉末とバインダーとの反応を抑制することができ、
焼結後の焼結体中の残留酸素量、残留炭素量を大幅に低
減できることを知見した。
The inventors have found that Fe--Si
As a result of various studies on methods that can suppress the reaction between the base alloy powder and the binder and reduce the residual oxygen content and residual carbon content of the sintered body, a small amount of polyvinyl alcohol, methyl cellulose, or polyacrylamide can be used as the binder alone or in combination of two types. By using a binder composed of the above and water, it is possible to suppress the reaction between the Fe-Si alloy powder and the binder in the spray granulation step,
It was found that the residual oxygen content and residual carbon content in the sintered body after sintering can be significantly reduced.

【0013】すなわち、上記バインダーが、ポリビニル
アルコール、メチルセルロース、ポリアクリルアミドそ
れぞれが単独の場合、その添加量を2.0wt%以下で
スプレー造粒しても、成形時に金型へ粉末供給するため
のフィーダー内における振動にも十分耐えられる程度の
粒子間結合力と、十分な流動性及び成形体強度を得るこ
とができること、それらバインダーの2種類を複合した
場合、その量を1.5wt%としても上記と同様な作用
効果が得られること、さらに必要に応じて使用する滑剤
も0.3wt%以下と極少量でよく、従来の金属射出成
形の場合の約10wt%の添加量に比べてバインダー量
を大幅に低減できることを知見した。
That is, when each of the above binders is polyvinyl alcohol, methyl cellulose, and polyacrylamide alone, a feeder for supplying powder to a mold at the time of molding even if spray granulation is performed at an addition amount of 2.0 wt% or less. It is possible to obtain an interparticle bonding force sufficient to withstand internal vibration, sufficient fluidity and molded product strength. When two kinds of these binders are combined, the amount is 1.5 wt% The same effect as above can be obtained, and the lubricant used if necessary can be a very small amount of 0.3 wt% or less, and the binder amount can be made smaller than the addition amount of about 10 wt% in the conventional metal injection molding. We have found that it can be significantly reduced.

【0014】使用するFe−Si系合金粉末は、一般に
は鋳塊・粉化法、アトマイズ法によって焼結合金と同一
組成に作製されるが、これらの粉末粒子は粒内部あるい
は表面にかなり歪みエネルギーを蓄えており、この歪み
のために、造粒後、バインダーと金属粉末の界面との間
で電気2重層が形成されやすくなり、造粒粉の静電気に
より流動性を極度に低下させる。このため造粒前に粉末
歪みを除去する熱処理工程、すなわち、真空中もしくは
不活性ガス中にて300℃〜800℃の温度範囲で熱処
理を施すことにより、流動性の優れた造粒粉ができるこ
とを知見した。
The Fe-Si alloy powder to be used is generally produced to have the same composition as the sintered alloy by the ingot / pulverization method and atomizing method, but these powder particles have a considerable strain energy inside or on the surface. Due to this distortion, an electric double layer is likely to be formed between the binder and the interface of the metal powder after the granulation, and the static electricity of the granulated powder extremely reduces the fluidity. Therefore, a granulated powder having excellent fluidity can be obtained by a heat treatment step of removing powder distortion before granulation, that is, by performing heat treatment in a temperature range of 300 ° C to 800 ° C in a vacuum or in an inert gas. I found out.

【0015】また、前記鋳塊・粉化法、アトマイズ粉
は、一般に粉砕コストが大であるために、脆弱なFe3
Al型結晶構造を有するFe3Siを主成分とするFe
−Si系インゴットを粗粉砕後この合金粉末を水あるい
は有機溶媒中でボールミル、アトライターなどで湿式粉
砕して粉末粒子の残留歪みの少ない微粉末を作製し、乾
燥後にカーボニルFe粉を所要組成になるように添加混
合して、スプレー造粒することにより、流動性の優れた
造粒粉が安価に得られることを知見した。
In addition, since the ingot / pulverization method and atomized powder are generally high in crushing cost, they are fragile Fe 3
Fe containing Fe 3 Si as a main component and having an Al type crystal structure
After coarsely crushing the Si-based ingot, this alloy powder is wet-milled in water or an organic solvent with a ball mill, an attritor, or the like to produce a fine powder with little residual distortion of the powder particles, and after drying, carbonyl Fe powder is formed into the required composition. It was found that a granulated powder having excellent fluidity can be obtained at low cost by adding and mixing as described above and performing spray granulation.

【0016】また、Fe3Si化合物を主成分とする前
記Fe−Si系合金粉末とFe粉の混合粉に上記のバイ
ンダーを添加、混練してスラリーを作製する工程で、0
℃〜10℃に冷却してスラリー撹拌することにより水と
Fe−Si系合金粉末との酸化反応を大幅に防止できる
ことを知見した。さらに、水素中で脱脂することによ
り、バインダーをほとんど除去できるために、脱脂後の
焼結は引続きそのまま昇温することにより進行させるこ
とができ、焼結密度も向上することを知見した。
Further, in the step of preparing a slurry by adding and kneading the above binder to a mixed powder of the Fe-Si alloy powder containing Fe 3 Si compound as a main component and Fe powder,
It has been found that the oxidation reaction between water and the Fe-Si alloy powder can be largely prevented by cooling to -10 ° C and stirring the slurry. Further, it was found that the binder can be almost removed by degreasing in hydrogen, so that the sintering after degreasing can be advanced by continuing to raise the temperature as it is, and the sintering density is also improved.

【0017】湿式粉砕して得られたFe−Si系合金粉
末に上記のバインダーを添加、混練して0℃〜10℃の
低温でスラリー状となし、該スラリーをスプレードライ
ヤー装置により平均粒度が20μm〜400μmになる
ようにして得られた造粒粉を用いて成形することによ
り、造粒粉は十分な結合力を有し、バインダーと滑剤の
効果による優れた潤滑性とも相まって、粉体の流動性が
格段に向上し、成形体密度のバラツキや成形機の寿命を
低下させることもなく、焼結後の寸法精度にも優れ、厚
肉形状や複雑形状でかつ優れた磁気特性を有するFe−
Si系軟質磁性焼結合金が効率よく得られることを知見
し、この発明を完成した。
The above binder is added to the Fe-Si alloy powder obtained by wet pulverization and kneaded to form a slurry at a low temperature of 0 ° C to 10 ° C, and the slurry has an average particle size of 20 µm by a spray dryer. By molding using the granulated powder obtained so as to have a particle size of up to 400 μm, the granulated powder has a sufficient binding force, and combined with excellent lubricity due to the effect of the binder and the lubricant, the powder flow Fe-having excellent magnetic properties in a thick-walled shape and a complicated shape with excellent dimensional accuracy after sintering without significantly improving the density of the molded body or shortening the life of the molding machine.
The present invention has been completed by finding that a Si-based soft magnetic sintered alloy can be efficiently obtained.

【0018】すなわち、この発明は、Fe−Si系合金
の脆弱さを利用して湿式粉砕により粒内歪みを緩和した
Fe−Si系合金粉末に、ポリビニルアルコール、メチ
ルセルロース、ポリアクリルアミドを単独または2種類
複合したものを0.1〜2.0wt%と含水率20〜5
0wt%の水からなるバインダーを添加、混練した後、
0℃〜10℃の温度で撹拌してスラリー状となし、該ス
ラリーをスプレードライヤー装置により平均粒度が20
μm〜400μmの造粒粉となし、該造粒粉を用いて、
成形後に水素流気中で脱脂を行い、さらに真空中もしく
は不活性ガス中で焼結後、均一化熱処理して歪みを除去
して焼結合金を得ることを特徴とするFe−Si系軟質
磁性焼結合金の製造方法である。
That is, in the present invention, polyvinyl alcohol, methyl cellulose, and polyacrylamide are used alone or in two kinds in the Fe-Si alloy powder in which the intragranular strain is relaxed by the wet pulverization utilizing the brittleness of the Fe-Si alloy. The composite is 0.1-2.0 wt% and the water content is 20-5.
After adding and kneading a binder consisting of 0 wt% water,
Stir at a temperature of 0 ° C to 10 ° C to form a slurry, and the slurry has an average particle size of 20 by a spray dryer device.
a granulated powder having a particle size of μm to 400 μm, and using the granulated powder,
Fe-Si-based soft magnetic material characterized by degreasing in flowing hydrogen after forming, and further sintering in vacuum or an inert gas and homogenizing heat treatment to remove strains to obtain a sintered alloy. It is a method for producing a sintered alloy.

【0019】この発明の対象とするFe−Si系合金の
組成において、FeへのSiの添加は、透磁率、電気抵
抗の増加には有効であるが、Siが1wt%未満ではか
かる添加の効果がなく、10wt%を越えると飽和磁束
密度が極端に低下して実用性がなくなるため、Siは1
〜10wt%の含有とする。また、Fe3Al型結晶構
造を有するFe3Si化合物を主成分とするFe−Si
系合金粉末のSi量は6.5wt%〜23wt%であ
り、6.5wt%未満では得られるFe3Si化合物の
Feは体心立方構造となり、Siが6.5wt%含有の
Fe−Si合金粉末を用いることにより、得られるFe
−Si合金はSiが1〜6.5wt%であり、Siが2
3wt%を越えるとFe3Si化合物中に最密六方晶結
晶構造を有するFe5Si3が析出して、結晶反応を阻害
するため好ましくなく、要求される組成によって、Fe
3Si化合物を主成分とする所要のSi量含有のFe−
Si粉末とFe粉末の配合比を適宜選定できる。
In the composition of the Fe-Si alloy targeted by the present invention, the addition of Si to Fe is effective in increasing the magnetic permeability and electric resistance, but if Si is less than 1 wt%, the effect of such addition is obtained. However, if the content exceeds 10 wt%, the saturation magnetic flux density is extremely reduced and the practical use is lost.
The content is set to 10 wt%. Further, Fe-Si as a main component an Fe 3 Si compound having a Fe 3 Al type crystal structure
The amount of Si in the system alloy powder is 6.5 wt% to 23 wt%, and if the Fe content is less than 6.5 wt%, the Fe 3 Si compound Fe has a body-centered cubic structure, and the Fe-Si alloy contains 6.5 wt% Si. Fe obtained by using powder
-Si alloy has Si of 1 to 6.5 wt% and Si of 2
If it exceeds 3 wt%, Fe 5 Si 3 having a close-packed hexagonal crystal structure precipitates in the Fe 3 Si compound, which hinders the crystallization reaction, which is not preferable.
3 Fe-containing a required amount of Si containing Si compound as a main component
The compounding ratio of Si powder and Fe powder can be appropriately selected.

【0020】この発明において、Fe−Si系焼結合金
を作製するための素原料粉末は、所要組成からなる単一
の鋳塊・粉化粉、アトマイズ粉末、所要組成からなる単
一の合金を湿式粉砕した粉末や、例えば、Fe3Si化
合物を主成分とするFe−Si系合金粉末を湿式粉砕し
た後、Fe粉を添加混合して所要組成に調整した粉末、
さらには鉄損失、透磁率、製造性を改善するため、M
n、S、Ta、Cr、Ti、Al、Zr、V、W、C
u、Mg、Ag、Pb、Sb、Mo、Te、Seなど添
加元素を加えた合金の湿式粉砕など、公知のFe−Si
合金の粉末を用いることができる。
In the present invention, the raw material powder for producing the Fe--Si system sintered alloy is a single ingot / pulverized powder having the required composition, atomized powder, and a single alloy having the required composition. Wet-milled powder or, for example, powder obtained by wet-milling Fe—Si alloy powder containing Fe 3 Si compound as a main component, and then adding and mixing Fe powder to adjust the required composition,
Furthermore, in order to improve iron loss, magnetic permeability, and manufacturability, M
n, S, Ta, Cr, Ti, Al, Zr, V, W, C
Known Fe-Si, such as wet pulverization of alloys containing additive elements such as u, Mg, Ag, Pb, Sb, Mo, Te, and Se
Alloy powders can be used.

【0021】Fe−Si系合金粉末の製造方法も、鋳塊
・粉化法、アトマイズ法などの公知の方法を適宜選定す
ることができる。しかしこれらの粉末効果であるととも
に、作製段階で粉末粒子に急冷、衝撃あるいは酸化など
により内部歪みまたは表面歪みが加わっているために、
これら粉末に直接バインダーなどを添加して造粒する
と、バインダーと金属粉末との界面に電気二重層が形成
され、静電気により造粒後の造粒粉の流動性が著しく低
下する。このためにスラリー化前に粉末の歪みを除去す
る熱処理工程を取り入れる必要がある。真空中もしくは
不活性ガス中での熱処理温度は、300℃未満では歪み
取りが十分でなく、800℃を越える温度では粉末の一
部が溶着し始めるので、熱処理温度は300℃〜800
℃の温度が好ましい。
As the method for producing the Fe-Si alloy powder, a known method such as an ingot / pulverization method or an atomizing method can be appropriately selected. However, in addition to these powder effects, internal strain or surface strain is added to the powder particles by quenching, impact or oxidation at the manufacturing stage,
When a binder or the like is directly added to these powders for granulation, an electric double layer is formed at the interface between the binder and the metal powder, and the fluidity of the granulated powder after granulation remarkably decreases due to static electricity. For this reason, it is necessary to incorporate a heat treatment step for removing the distortion of the powder before making it into a slurry. If the heat treatment temperature in vacuum or in an inert gas is less than 300 ° C., strain relief is not sufficient, and if the temperature exceeds 800 ° C., a part of the powder begins to be welded, so the heat treatment temperature is 300 ° C. to 800 ° C.
A temperature of ° C is preferred.

【0022】一方、素原料コストの低減と粉末粒子の歪
みを緩和するために、Fe−Si系の特に脆弱な合金組
成であるFe3Si化合物を主成分とするインゴットを
作製し、これを粗粉砕後、溶媒中で比較的歪みの加わら
ないボールミル、アトライターなどにより湿式粉砕して
乾燥した粉末にFe粉を所要組成になるように添加し混
合した粉末に、バインダーなどを添加して造粒すると、
造粒後の造粒粉の流動性が静電気により低下することは
なく、流動性が良好である。特に、湿式粉砕時の水ある
いは有機溶媒とFe−Si系合金粉末との酸化反応を極
力防止するために0℃〜10℃に冷却してスラリー撹拌
することが重要である。また、アトマイズ法による合金
粉末の平均粒度は一般に5μmを越えるが、湿式粉砕は
粉砕粒度を任意に設定でき、3μm以下の平均粒度のも
のが得られ、また、アトマイズ法よりも残留炭素量を低
減でき、しかも安価に製造できる。
On the other hand, in order to reduce the cost of the raw material and alleviate the distortion of the powder particles, an ingot containing a Fe 3 Si compound, which is a particularly fragile Fe--Si alloy composition as a main component, was prepared and roughed. After pulverizing, Fe powder is added to the powder obtained by wet pulverizing with a ball mill, attritor, etc., which is not relatively distorted in a solvent and dried so that the required composition is obtained, and a binder or the like is added to the powder to granulate. Then,
The fluidity of the granulated powder after granulation is not deteriorated by static electricity, and the fluidity is good. In particular, it is important to cool the mixture to 0 ° C. to 10 ° C. and stir the slurry in order to prevent the oxidation reaction between the water or organic solvent and the Fe—Si alloy powder during wet pulverization as much as possible. Further, the average particle size of the alloy powder by the atomizing method generally exceeds 5 μm, but the crushing particle size can be arbitrarily set in the wet crushing, and the average particle size of 3 μm or less can be obtained, and the residual carbon amount is reduced as compared with the atomizing method. It can be manufactured at low cost.

【0023】バインダー この発明において、合金粉末をスラリー状にするため
に、添加するバインダーには、ポリビニルアルコール、
メチルセルロース、ポリアクリルアミドを単独または2
種類複合したものに水を添加したものを用いる。バイン
ダーとして、ポリビニルアルコール、メチルセルロー
ス、ポリアクリルアミドのそれぞれが単独の場合、その
添加量が0.1wt%未満では、成形前の給粉時に造粒
粉が壊れるとともに粉体の流動性が著しく低下し、また
2.0wt%を越えると、焼結体における残留酸素量と
残留炭素量が増加して透磁率が低下すると同時に焼結体
が変形しやすくなるので、0.1wt%〜2.0wt%
の含有量が好ましい。これらのバインダーを2種類複合
して用いる場合の含有量も、上記の各バインダーを単独
で用いる場合と同様に、0.1wt%未満では造粒粉内
の粒子間の結合力が弱く、成形前の給粉時に造粒粉が壊
れるとともに粉体の流動性が著しく低下し、また1.5
wt%を越えると焼結体における残留酸素量と残留炭素
量が増加して透磁率が低下すると同時に焼結体が変形し
やすくなるので、0.1wt%〜1.5wt%の含有量
が好ましい範囲である。
Binder In the present invention, the binder to be added to make the alloy powder into a slurry is polyvinyl alcohol,
Methyl cellulose, polyacrylamide alone or 2
Use a mixture of types with water added. As the binder, when each of polyvinyl alcohol, methyl cellulose, and polyacrylamide is alone, if the addition amount is less than 0.1 wt%, the granulated powder is broken during powder feeding before molding and the fluidity of the powder is significantly reduced, On the other hand, if it exceeds 2.0 wt%, the residual oxygen amount and the residual carbon amount in the sintered body increase, the magnetic permeability decreases, and the sintered body is easily deformed.
Is preferred. When the content of two kinds of these binders used in combination is similar to the case of using each of the above binders alone, if the content is less than 0.1 wt%, the bonding force between the particles in the granulated powder is weak, and therefore, before molding. The granulated powder is broken during powder feeding, and the fluidity of the powder is significantly reduced.
When the content exceeds 0.1 wt%, the residual oxygen content and the residual carbon content in the sintered body increase, the magnetic permeability decreases, and the sintered body is easily deformed. Therefore, the content of 0.1 wt% to 1.5 wt% is preferable. It is a range.

【0024】この発明において、原料粉末とバインダー
の混合スラリー中に添加する水の含有量は、20wt%
未満では、合金粉末とバインダーとを混練したスラリー
の濃度が高くなって、粘度が増加しすぎるため、該スラ
リーを後述する撹拌機からスプレードライヤー装置まで
供給することができず、また、50wt%を越えるとス
ラリー濃度が低くなりすぎ、撹拌機内及び撹拌機のスラ
リー供給パイプ内で沈殿が起こり、供給量が不安定にな
るとともにスプレードライヤー装置によって得られる造
粒粉の平均粒度が20μm未満となり、さらに粒度にバ
ラツキを生じるため、20wt%〜50wt%が好まし
い範囲である。さらに好ましくは、30wt%〜40w
t%の範囲である。水としては、Fe−Si系合金粉末
との反応を極力抑制するために、脱酸素処理した純水、
あるいは窒素などの不活性ガスでバブリング処理した水
を用いることが望ましい。また、バインダー添加後のス
ラリー撹拌は、チラーなどで0℃〜10℃に冷却して、
低温で行う方が合金粉末と水との酸化反応をより抑制す
ることができ、10℃を越える水温では、Fe−Si系
合金粉末と水との酸化反応が急激に促進されて酸素量が
増大するので好ましくない。
In the present invention, the content of water added to the mixed slurry of the raw material powder and the binder is 20 wt%.
When the amount is less than the above, the concentration of the slurry in which the alloy powder and the binder are kneaded becomes high, and the viscosity increases too much, so that the slurry cannot be supplied from the agitator described later to the spray dryer device, and 50 wt% is added. If it exceeds, the slurry concentration becomes too low, precipitation occurs in the stirrer and the slurry supply pipe of the stirrer, the supply amount becomes unstable, and the average particle size of the granulated powder obtained by the spray dryer device becomes less than 20 μm. 20 wt% to 50 wt% is a preferable range because the particle size varies. More preferably, 30 wt% to 40 w
It is in the range of t%. As water, deoxidized pure water in order to suppress the reaction with the Fe-Si alloy powder as much as possible,
Alternatively, it is desirable to use water bubbling with an inert gas such as nitrogen. In addition, stirring the slurry after adding the binder is cooled to 0 ° C to 10 ° C with a chiller or the like,
The lower temperature can suppress the oxidation reaction between the alloy powder and water more, and at the water temperature exceeding 10 ° C., the oxidation reaction between the Fe—Si alloy powder and water is rapidly accelerated to increase the oxygen content. Is not preferred.

【0025】また、上述したバインダーにグリセリン、
ワックスエマルジョン、ステアリン酸、フタール酸エス
テル、ペトリオール、グライコールなどの分散剤・潤滑
剤のうち少なくとも1種を添加するか、あるいはさら
に、n−オクチルアルコール、ポリアルキレン誘導体、
ポリエーテル系誘導体などの消泡剤を添加すると、スラ
リーの分散性、均一性の向上及びスプレードライヤー装
置中での粉化状態が良好になり、気泡が少なく、滑り
性、流動性にすぐれる球形の造粒粉を得ることが可能に
なる。なお、分散剤、潤滑剤を添加する場合は、0.0
3wt%未満の含有量では造粒粉を成形後の離型性改善
に効果がなく、また0.3wt%を越えると焼結体にお
ける残留炭素量と酸素量が増加して保磁力が増加して磁
気特性が劣化するので、0.03wt%〜0.3wt%
の含有量が好ましい。
Further, glycerin,
Wax emulsion, stearic acid, phthalic acid ester, petriol, add at least one of lubricants such as glycol, or further, n- octyl alcohol, polyalkylene derivative,
Addition of an antifoaming agent such as a polyether derivative improves the dispersibility and homogeneity of the slurry and improves the powdering state in the spray dryer device, resulting in less air bubbles and a spherical shape with excellent lubricity and fluidity. It is possible to obtain the granulated powder of. When adding a dispersant or a lubricant, 0.0
If the content is less than 3 wt%, there is no effect in improving the releasability after molding the granulated powder, and if it exceeds 0.3 wt%, the residual carbon content and oxygen content in the sintered body increase and the coercive force increases. As the magnetic properties deteriorate, 0.03 wt% to 0.3 wt%
Is preferred.

【0026】造粒方法 この発明において、合金粉末に上述したバインダーを添
加、混練したスラリーは、スプレードライヤー装置によ
って造粒粉にする。まず、スプレードライヤー装置を用
いた造粒粉の製造方法を説明すると、スラリー撹拌機か
らスラリーをスプレードライヤー装置に供給する、例え
ば、回転ディスクの遠心力で噴霧したり、加圧ノズル先
端部で霧状に噴霧され、噴霧された液滴は、加熱された
不活性ガスの熱風によって瞬時に乾燥されて造粒粉とな
り、回収部内の下部に自然落下する。
Granulation Method In the present invention, the slurry obtained by adding the above-mentioned binder to the alloy powder and kneading the mixture into granulated powder by a spray dryer device. First, a method for producing granulated powder using a spray drier will be described. A slurry is supplied from a slurry stirrer to a spray drier, for example, sprayed by centrifugal force of a rotating disk, or atomized by a pressure nozzle tip. The sprayed droplets are instantaneously dried by hot air of the heated inert gas to become granulated powder, and fall naturally to the lower part in the collection unit.

【0027】スプレードライヤー装置の構成としては、
上記のディスク回転型、加圧ノズル型のいずれでもよい
が、特に微粉末のFe−Si系合金粉末は非常に酸化し
やすいために、装置のスラリー収納部分あるいは造粒粉
の回収部分を不活性ガスなどで置換でき、かつその酸素
濃度を常時3%以下に保持できる密閉構造であることが
好ましい。
The structure of the spray dryer device is as follows.
Either the disk rotating type or the pressure nozzle type described above may be used. However, since the fine powder Fe-Si alloy powder is very easily oxidized, the slurry storage part of the device or the granulated powder recovery part is inactive. It is preferable to have a closed structure that can be replaced by gas or the like and that can keep the oxygen concentration at 3% or less at all times.

【0028】また、スプレードライヤー装置の回収部分
の構成としては、回転ディスクあるいは加圧ノズルより
噴霧された液滴を瞬時に乾燥させるために、回転ディス
クの近傍あるいは加圧ノズルの上方に加熱された不活性
ガスを噴射する噴射口を配置し、また、回収部内の下部
に、噴射されたガスを回収部外へ排出する排出口を設け
るが、その際、予め装置外部あるいは装置に付属された
加熱器で所要温度に加熱された不活性ガスの温度を低下
させないように、上記噴射口を不活性ガスの温度に応じ
た温度、例えば60〜150℃に保持することが好まし
い。
Further, as the constitution of the recovery part of the spray dryer device, in order to instantly dry the liquid droplets sprayed from the rotary disk or the pressure nozzle, it is heated near the rotary disk or above the pressure nozzle. An injection port for injecting an inert gas is arranged, and a discharge port for discharging the injected gas to the outside of the recovery unit is provided in the lower part of the recovery unit.At that time, heating outside the device or attached to the device is performed in advance. It is preferable to maintain the injection port at a temperature corresponding to the temperature of the inert gas, for example, 60 to 150 ° C., so as not to lower the temperature of the inert gas heated to the required temperature in the vessel.

【0029】すなわち、不活性ガスの温度が低下する
と、噴霧された液滴を短時間で十分乾燥することができ
なくなるため、スラリーの供給量を減少させなければな
らず能率が低下してしまう。また、比較的大きな粒径の
造粒粉を作る場合は、回転ディスクの回転数あるいは加
圧ノズルの圧力を低下させるが、その際に不活性ガスの
温度が低下していると、噴霧された液滴を十分乾燥する
ことができないので、結果としてスラリーの供給量を減
少させることにより、大きな粒径の造粒粉を得る場合に
は極端に能率が低下することになる。従って、予め加熱
された不活性ガスの温度をそのまま維持しながら回収部
内へ送り込むには、噴射口の温度を60〜150℃に保
持することが好ましく、特に100℃前後が最も好まし
い。
That is, when the temperature of the inert gas is lowered, the sprayed droplets cannot be dried sufficiently in a short time, so that the slurry supply amount must be reduced and the efficiency is lowered. When making granulated powder having a relatively large particle size, the number of revolutions of the rotating disk or the pressure of the pressurizing nozzle is reduced, but when the temperature of the inert gas is lowered, the spraying is performed. Since the droplets cannot be dried sufficiently, as a result, when the amount of supplied slurry is reduced, the efficiency of obtaining granulated powder having a large particle diameter is extremely reduced. Therefore, in order to feed the preheated inert gas into the recovery unit while maintaining the temperature of the inert gas as it is, it is preferable to maintain the temperature of the injection port at 60 to 150 ° C, and most preferably around 100 ° C.

【0030】また、不活性ガスの噴射口と排出口の温度
差が小さい場合も処理能率が低下する傾向があるので、
排出口の温度は50℃以下、好ましくは40℃以下、特
に好ましくは常温に設定することが望ましい。不活性ガ
スとしては、窒素ガスやアルゴンガスが好ましく、加熱
温度は60〜150℃が好ましい。
Further, when the temperature difference between the inert gas injection port and the exhaust port is small, the processing efficiency tends to decrease,
The temperature of the outlet is desirably set at 50 ° C. or lower, preferably 40 ° C. or lower, and particularly preferably at room temperature. As the inert gas, nitrogen gas or argon gas is preferable, and the heating temperature is preferably 60 to 150 ° C.

【0031】造粒粉の粒度は、スプレードライヤー装置
へ供給するスラリーの濃度や、その供給量、あるいは回
転ディスクの回転数または加圧ノズルの圧力によって制
御することができるが、造粒粉の平均粒径が20μm未
満では、造粒粉の流動性がほとんど向上せず、また、平
均粒径が400μmを越えると、粒径が大きすぎて成形
時の金型内への充填密度が低下するとともに成形体密度
も低下し、ひいては、焼結後の焼結体密度の低下をきた
すこととなるため好ましくなく、よって、造粒粉の平均
粒径は20〜400μmに限定する。特に好ましくは5
0〜200μmである。また、ふるいによりアンダーカ
ット、オーバーカットを行うことにより、さらに極めて
流動性に富んだ造粒粉を得ることができる。さらに、得
られた造粒粉にステアリン酸亜鉛、ステアリン酸マグネ
シウム、ステアリン酸カルシウム、ステアリン酸アルミ
ニウム、ポリエチレングリコールなどの潤滑剤を少量添
加すると、さらに流動性を向上させることができ有効で
ある。
The particle size of the granulated powder can be controlled by the concentration of the slurry supplied to the spray dryer device, the supply amount thereof, the number of revolutions of the rotary disk or the pressure of the pressure nozzle. When the particle size is less than 20 μm, the fluidity of the granulated powder is hardly improved, and when the average particle size exceeds 400 μm, the particle size is too large and the packing density in the mold at the time of molding decreases. It is not preferable because the density of the compact is also lowered, which in turn lowers the density of the sintered body after sintering. Therefore, the average particle diameter of the granulated powder is limited to 20 to 400 μm. Particularly preferably 5
It is 0 to 200 μm. Further, by performing undercutting and overcutting with a sieve, it is possible to obtain a granulated powder having an extremely high fluidity. Further, it is effective to add a small amount of a lubricant such as zinc stearate, magnesium stearate, calcium stearate, aluminum stearate or polyethylene glycol to the obtained granulated powder, because the fluidity can be further improved.

【0032】造粒後の工程、すなわち、成形、焼結、熱
処理などの条件、方法は公知のいずれの粉末冶金的手段
を採用することができる。以下に好ましい条件の一例を
示す。成形は、公知のいずれの成形方法でも採用できる
が、圧縮成形で行うことが最も好ましく、その圧力は
0.3〜2.0Ton/cm2が好ましい。また、複雑
形状品を成形する場合には、スプレー造粒粉は流動性に
優れているために、多段プレス機により成形することが
でき、かなり複雑な形状のものまで対応できる。
Any known powder metallurgical means can be adopted for the step after granulation, that is, the conditions and methods such as molding, sintering, heat treatment and the like. An example of preferable conditions is shown below. The molding can be performed by any known molding method, but is most preferably performed by compression molding, and the pressure is preferably 0.3 to 2.0 Ton / cm 2 . In the case of molding a product having a complicated shape, the spray granulated powder is excellent in fluidity, so that it can be formed by a multi-stage press machine, and it is possible to cope with a product having a considerably complicated shape.

【0033】成形後、焼結前において、真空中で加熱す
る一般的な方法や、水素流気中で100℃〜200℃/
時間で昇温し、300℃〜800℃で1〜2時間保持す
る方法などにより脱バインダー処理を行うことが好まし
い。特に、磁気特性の優れたFe−Si合金を作製する
場合には、焼結後の残留酸素量と残留炭素量を低減する
ために、水素流気中で脱バインダー処理を施すことが不
可欠である。300℃以下の温度では、脱バインダーが
十分でなく、バインダーを完全に除去できず、高純度の
焼結体が得られない。また、800℃を越える温度では
原料粉末表面の不純物を除去する前に粉末同士の焼結が
早く進行するために、不純物が除去できなくなる。
After molding and before sintering, a general method of heating in vacuum or 100 ° C. to 200 ° C./in hydrogen flow
It is preferred that the binder be removed by a method in which the temperature is raised over a period of time and held at 300 ° C. to 800 ° C. for 1 to 2 hours. In particular, when producing an Fe-Si alloy having excellent magnetic properties, it is indispensable to perform debinding processing in flowing hydrogen in order to reduce the amount of residual oxygen and the amount of residual carbon after sintering. . At a temperature of 300 ° C. or lower, the binder is not sufficiently removed, the binder cannot be completely removed, and a high-purity sintered body cannot be obtained. Further, at a temperature higher than 800 ° C., the sintering cannot be performed because the sintering of the powders progresses before the impurities on the surface of the raw material powder are removed.

【0034】なお、金属射出成形体の場合と異なり、バ
インダー添加量が数分の一と少ないために、脱バインダ
ー時の昇温スピードをバインダー無添加のものとほぼ同
等のスピードに設定しても、特に割れ、フクレは発生し
ないので、金属射出成形に比べて高能率で生産対応でき
る利点がある。脱バインダー処理後は、真空中もしくは
不活性ガス中で引き続いて加熱昇温して焼結を行うこと
が好ましく、800℃を越えてからの昇温速度は任意に
選定すればよく、例えば100〜300℃/時間など、
公知の昇温方法を採用できる。
Unlike the case of the metal injection molded body, since the binder addition amount is as small as a fraction, even if the temperature rising speed at the time of debinding is set to a speed almost equal to that without the binder. In particular, since cracks and blisters do not occur, there is an advantage that production can be performed with higher efficiency than metal injection molding. After the binder removal treatment, it is preferable to carry out sintering by heating in a vacuum or in an inert gas, and the temperature rising rate after the temperature exceeds 800 ° C. may be arbitrarily selected. 300 ° C / hour, etc.
A known heating method can be adopted.

【0035】脱バインダー処理後の成形品の焼結並びに
焼結後の熱処理条件は、選定した合金粉末に応じて適宜
選定されるが、焼結並びに焼結後の熱処理条件として
は、1200℃〜1350℃、1〜2時間保持する焼結
工程、300℃〜1000℃、1〜2時間保持する均一
化処理工程が好ましい。さらに好ましい均一化処理温度
は500℃〜900℃である。
Sintering of the molded product after the binder removal treatment and heat treatment conditions after the sintering are appropriately selected according to the selected alloy powder, but the sintering and heat treatment conditions after the sintering are 1200 ° C. A sintering step of holding at 1350 ° C. for 1 to 2 hours and a homogenizing treatment step of holding at 300 ° C. to 1000 ° C. for 1 to 2 hours are preferable. A more preferable homogenization treatment temperature is 500 ° C to 900 ° C.

【0036】[0036]

【作用】この発明は、熱処理して歪み取りしたFe−S
i系のアトマイズ合金粉末あるいはFe3Siを主成分
とするFe−Si合金の湿式粉砕粉にFe粉を添加混合
した混合粉末に、ポリビニルアルコール、メチルセルロ
ース、ポリアクリルアミドを単独または複合したものと
水とからなるバインダーを添加、混練してスラリー状と
なし、0℃〜10℃の低温で撹拌したスラリーをスプレ
ードライヤー装置により平均粒度20μm〜400μm
の造粒粉となし、該造粒粉を用いて、成形、脱脂、焼結
することにより、バインダーと滑剤の効果により優れた
潤滑性とも相まって、粉体の流動性が格段に向上し、成
形サイクルが向上するとともに、成形体密度のバラツキ
を低下させることもなく、焼結後の寸法精度にも優れ
る、厚肉形状や複雑形状で、かつ優れた磁気特性を有す
るFe−Si系軟質磁性焼結合金が得られる。
The present invention is based on Fe-S which is heat-treated to remove strain.
An i-based atomized alloy powder or a wet-pulverized powder of Fe—Si alloy containing Fe 3 Si as a main component, mixed with Fe powder, was mixed with polyvinyl alcohol, methyl cellulose, polyacrylamide alone or in combination, and water. An average particle size of 20 μm to 400 μm is obtained with a spray dryer device by adding a binder consisting of, kneading to form a slurry, and stirring the slurry at a low temperature of 0 ° C. to 10 ° C.
The granulated powder of, and by molding, degreasing and sintering using the granulated powder, combined with excellent lubricity due to the effect of the binder and lubricant, the fluidity of the powder is significantly improved, Fe-Si soft magnetic calcination that has a thick wall shape and a complicated shape and has excellent magnetic properties, which improves the cycle, does not reduce the variation in the density of the compact, and has excellent dimensional accuracy after sintering. Bond gold is obtained.

【0037】また、この発明による製造方法は、金属射
出成形法に比べて脱脂時間が大幅に短縮されると同時に
残留酸素量と残留炭素量を低減できるために、製造コス
トの低減と品質の安定化を図ることができる利点があ
る。さらに、この発明における造粒粉は、バインダーに
よって被覆されているために、大気中において酸化しが
たいので、成形工程における作業性が向上する利点も有
する。
Further, the manufacturing method according to the present invention can significantly reduce the degreasing time as compared with the metal injection molding method, and at the same time, can reduce the residual oxygen content and the residual carbon content, thereby reducing the manufacturing cost and stabilizing the quality. There is an advantage that it can be realized. Furthermore, since the granulated powder in the present invention is hardly oxidized in the atmosphere because it is covered with the binder, there is an advantage that workability in the molding step is improved.

【0038】[0038]

【実施例】【Example】

実施例1 Si3.0wt%残部Feからなる平均粒径9.8μm
のガスアトマイズ粉を表1に示す熱処理温度でArガス
中で熱処理した後、該粉末に同表に示す種類及び添加量
のバインダー、水、滑剤などを添加して同表に示す撹拌
温度で各5時間撹拌してスラリーを作製した。該スラリ
ーをチャンバー内を窒素ガスで置換して酸素濃度を0.
5%まで低下させた密閉式のディスク回転型スプレード
ライヤー装置により、熱風入口温度を100℃、熱風出
口温度を40℃に設定して造粒を行った。
Example 1 Si 3.0 wt% Remaining Fe Fe average particle size 9.8 μm
After the gas atomized powder of No. 1 was heat-treated in Ar gas at the heat treatment temperature shown in Table 1, binder, water, lubricant, etc. of the kind and the addition amount shown in the same table were added to the powder, and each was mixed at the stirring temperature shown in the same table for 5 A slurry was prepared by stirring for a time. The inside of the chamber was replaced with nitrogen gas for the slurry to adjust the oxygen concentration to 0.
Granulation was carried out by setting the hot air inlet temperature to 100 ° C. and the hot air outlet temperature to 40 ° C. by means of a closed disk rotary spray dryer device that was lowered to 5%.

【0039】該造粒粉をプレス機を用いて、圧力1To
n/cm2で10mm×15mm×厚み10mmの形状
に成形した後、水素流気中で室温から600℃までを昇
温速度100℃/時で加熱する脱バインダー処理を行
い、引き続いて真空中で1300℃まで昇温し2時間保
持する焼結を行った後、800℃で1時間保持の均一化
熱処理をして冷却して焼結体を得た。また、この時磁気
特性測定用サンプルとして30φ×24φ×5tのリン
グをプレス成形して上記材料と同時に脱脂、焼結、均一
化熱処理を行った。
The granulated powder was pressed with a press at a pressure of 1 To.
After forming into a shape of 10 mm × 15 mm × thickness of 10 mm at n / cm 2 , a binder removal treatment of heating from room temperature to 600 ° C. at a heating rate of 100 ° C./hour in flowing hydrogen gas was performed, and subsequently in vacuum. After performing sintering by heating to 1300 ° C. and holding for 2 hours, uniformized heat treatment of holding at 800 ° C. for 1 hour and cooling were performed to obtain a sintered body. Further, at this time, a ring of 30φ × 24φ × 5t was press-molded as a sample for magnetic property measurement, and degreasing, sintering and homogenizing heat treatment were performed simultaneously with the above materials.

【0040】次に、直流磁気特性をAUTOMATIC
D.C. B−H CURVESTRACERによっ
て測定し、表2に記載するごとく、最大透磁率μmax
保磁力Hc、20Oeにおける磁束密度B20の値を得
た。また鉄損評価装置により交流磁気特性である鉄損を
求めた。造粒粉の流動性、焼結体の相対密度、残留酸素
量と残留炭素量、磁気特性を表2に示す。ここでは相対
密度はFe−3%Siのインゴットの密度を真密度とし
て用いた。なお、流動性は内径8mmのロート管を10
0gの原料粉が自然落下し通過するまでに要した時間で
測定した。また、造粒粉の粒度はメッシュで篩通して重
量を平均した値である。造粒粉の流動性は、20sec
以下を目標とし、また鉄損は磁束密度5kG、周波数1
MHzでの値で1000(J/m3)以下を目標とし
た。また、得られた焼結体には、ワレ、ヒビ、変形など
はまったく見られなかった。なお、原料粉末の熱処理温
度が150℃と900℃の場合には、表1、2の比較例
(No.1とNo.5)の粉体の流動性が悪いために、
プレス成形で複雑形状品の作製が困難であるので、適用
外とした。
Next, the direct current magnetic characteristics are determined by AUTOMATIC.
D. C. B-H CURVESTRACER, as shown in Table 2, maximum permeability μ max ,
The values of magnetic flux density B 20 at coercive force Hc and 20 Oe were obtained. Moreover, the iron loss, which is an AC magnetic characteristic, was obtained by an iron loss evaluation device. Table 2 shows the fluidity of the granulated powder, the relative density of the sintered body, the amount of residual oxygen and the amount of residual carbon, and the magnetic properties. Here, as the relative density, the density of the Fe-3% Si ingot was used as the true density. In addition, the fluidity is 10
It was measured by the time required for 0 g of the raw material powder to fall spontaneously and pass through. The particle size of the granulated powder is a value obtained by sieving with a mesh and averaging the weight. Flowability of granulated powder is 20 sec
The target is as follows, and the iron loss is magnetic flux density 5kG, frequency 1
The target value was 1000 (J / m 3 ) or less in MHz. Moreover, cracks, cracks, and deformation were not observed in the obtained sintered body at all. In addition, when the heat treatment temperature of the raw material powder is 150 ° C. and 900 ° C., the fluidity of the powder of the comparative examples (No. 1 and No. 5) in Tables 1 and 2 is poor,
Since it is difficult to manufacture a complex shaped product by press molding, it was excluded.

【0041】実施例2 Si14.4wt%残部Feからなる原料をArガス雰
囲気中で高周波溶解してFe3Si化合物のボタン状溶
製合金を得た後、該インゴットを粗粉砕し、さらにディ
スクミルにより約30μmの粒度に粉砕した。該粉末を
表3に示す溶媒を入れたボールミルに装入した後、チラ
ーで5℃に冷却した槽の中にボールミルを入れて10時
間回転して微粉砕した。得られたFe3Si化合物の粉
末の平均粒径は3.3μmであった。該粉砕スラリーを
真空中で乾燥した後、Fe3Si化合物粉末と平均粒径
4.7μmのカーボニルFe粉をFe−3%Siの組成
になるように添加混合した後、表3に示す種類及び添加
量のバインダー、水、滑剤などを添加して、同表に示す
撹拌温度で各5時間撹拌しスラリーを作製した。該スラ
リーをチャンバー内を窒素ガスで置換して酸素濃度を
0.5%まで低下させた密閉式のディスク回転型スプレ
ードライヤー装置により、熱風入口温度を100℃、熱
風出口温度を40℃に設定して造粒を行った。
Example 2 A raw material consisting of 14.4 wt% of the balance of Fe was subjected to high frequency melting in an Ar gas atmosphere to obtain a button-shaped ingot alloy of a Fe 3 Si compound, and then the ingot was roughly crushed and further disc milled. Was crushed to a particle size of about 30 μm. The powder was charged into a ball mill containing the solvent shown in Table 3, and then the ball mill was placed in a tank cooled to 5 ° C. with a chiller and rotated for 10 hours to finely pulverize. The average particle size of the obtained Fe 3 Si compound powder was 3.3 μm. After the pulverized slurry was dried in a vacuum, Fe 3 Si compound powder and carbonyl Fe powder having an average particle size of 4.7 μm were added and mixed so as to have a composition of Fe-3% Si. A binder, water, a lubricant, etc. were added in amounts to be added, and the mixture was stirred at the stirring temperatures shown in the table for 5 hours each to prepare a slurry. The hot air inlet temperature was set to 100 ° C. and the hot air outlet temperature was set to 40 ° C. by a closed disk rotary spray dryer device in which the inside of the chamber was replaced with nitrogen gas to reduce the oxygen concentration to 0.5%. And granulated.

【0042】該造粒粉をプレス機を用いて、圧力1To
n/cm2で10mm×15mm×厚み10mmの形状
に成形した後、水素流気中で室温から600℃までを昇
温速度100℃/時で加熱する脱バインダー処理を行
い、引き続いて真空中で1300℃まで昇温し2時間保
持する焼結を行った後、800℃で1時間保持の均一化
熱処理をして冷却して焼結体を得た。また、この時、磁
気特性測定用サンプルとして30φ×24φ×5tのリ
ングをプレス成形して上記試料と同時に脱脂、焼結、均
一化熱処理を行った。
The granulated powder was pressed with a press at a pressure of 1 To.
After forming into a shape of 10 mm × 15 mm × thickness of 10 mm at n / cm 2 , a binder removal treatment of heating from room temperature to 600 ° C. at a heating rate of 100 ° C./hour in flowing hydrogen gas was performed, and subsequently in vacuum. After performing sintering by heating to 1300 ° C. and holding for 2 hours, uniformized heat treatment of holding at 800 ° C. for 1 hour and cooling were performed to obtain a sintered body. At this time, a ring of 30φ × 24φ × 5t was press-molded as a sample for magnetic property measurement, and degreasing, sintering, and homogenizing heat treatment were performed simultaneously with the above sample.

【0043】次に、直流磁気特性測定をAUTOMAT
IC D.C. B−H CURVES TRACER
によって測定し、表4に記載するごとく、最大透磁率μ
max、保磁力Hc、20Oeにおける磁束密度B20の値
を得た。また鉄損評価装置により交流磁気特性である鉄
損を求めた。造粒粉の流動性、焼結体の相対密度、残留
酸素量と残留炭素量、磁気特性を表4に示す。ここで相
対密度はFe−3%Siのインゴットの密度を真密度と
して用いた。なお、流動性は内径8mmのロートの管を
100gの原料粉が自然落下し通過するまでに要した時
間で測定した。また、造粒粉の粒度はメッシュで篩通し
て重量平均した値である。造粒粉の流動性は、20se
c以下を目標とし、また鉄損は磁束密度5kG、周波数
1MHzでの値で1000(J/m3)以下を目標とし
た。また得られた焼結体には、ワレ、ヒビ、変形などは
まったく見られなかった。実施例2において、Fe3
i化合物の湿式粉砕した粉末とFe粉との混合によるF
e−Si系化合物の作製は、アトマイズ粉に比べて、原
料コストの低減を図ることができる利点を有する。
Next, direct current magnetic characteristic measurement is performed by AUTOMAT.
IC D. C. B-H CURVES TRACER
And the maximum magnetic permeability μ as shown in Table 4.
The values of max , coercive force Hc, and magnetic flux density B 20 at 20 Oe were obtained. Moreover, the iron loss, which is an AC magnetic characteristic, was obtained by an iron loss evaluation device. Table 4 shows the fluidity of the granulated powder, the relative density of the sintered body, the residual oxygen content and the residual carbon content, and the magnetic properties. Here, as the relative density, the density of an ingot of Fe-3% Si was used as the true density. The fluidity was measured by the time required for 100 g of the raw material powder to spontaneously drop and pass through a funnel tube having an inner diameter of 8 mm. Further, the particle size of the granulated powder is a value obtained by sieving through a mesh and weight-averaged. The fluidity of the granulated powder is 20se
The target was c or less, and the iron loss was 1000 (J / m 3 ) or less at a magnetic flux density of 5 kG and a frequency of 1 MHz. In addition, cracks, cracks, and deformation were not observed in the obtained sintered body. In Example 2, Fe 3 S
F by wet-milled powder of i-compound and Fe powder
The production of the e-Si-based compound has an advantage that the raw material cost can be reduced as compared with the atomized powder.

【0044】実施例3 Arガス中で400℃×2Hの熱処理を行った実施例1
の原料粉末(表5)とFe3Siを湿式粉砕し、粉末と
カーボニルFe粉の実施例2の混合粉末(表7)に、各
々表5と7に示す種類及び添加量のバインダー、水、滑
剤などを添加して、5℃の撹拌温度で5時間撹拌しスラ
リーを作製した。該スラリーを実施例1と同一条件でス
プレー造粒を行った。該造粒粉をプレス機を用いて、圧
力1Ton/cm2で10mm×15mm×厚み10m
mの形状に成形した後、水素流気中で室温から600℃
までを昇温速度100℃/時で加熱する脱バインダー処
理を行い、引き続いて真空中で1300℃まで昇温し2
時間保持する焼結を行った後、800℃で1時間保持の
均一化熱処理をして冷却して焼結体を得た。また、この
時、磁気特性測定用サンプルとして30φ×24φ×5
tのリングをプレス成形して上記試料と同時に脱脂、焼
結、均一化熱処理を行った。
Example 3 Example 1 in which a heat treatment of 400 ° C. × 2H was performed in Ar gas.
Of the raw material powder (Table 5) and Fe 3 Si are wet pulverized, and the mixed powder (Table 7) of the powder and the carbonyl Fe powder of Example 2 is mixed with the binder and water in the types and addition amounts shown in Tables 5 and 7, respectively. A lubricant or the like was added, and the mixture was stirred at a stirring temperature of 5 ° C. for 5 hours to prepare a slurry. The slurry was spray-granulated under the same conditions as in Example 1. The granulated powder is pressed with a press machine at a pressure of 1 Ton / cm 2 to 10 mm × 15 mm × thickness 10 m.
m shape, then room temperature to 600 ° C in flowing hydrogen
Is heated at a heating rate of 100 ° C / hour to remove the binder, and subsequently heated to 1300 ° C in vacuum.
After carrying out the sintering for holding for a time, a homogenizing heat treatment of holding for 1 hour at 800 ° C. and cooling were performed to obtain a sintered body. At this time, as a sample for measuring magnetic characteristics, 30φ × 24φ × 5
The ring of t was press-molded and simultaneously subjected to degreasing, sintering, and uniform heat treatment at the same time as the above sample.

【0045】次に、直流磁気特性測定をAUTOMAT
IC D.C. B−H CURVES TRACER
によって測定し、表6と8に記載するごとく、最大透磁
率μmax、保磁力Hc、20Oeにおける磁束密度B20
の値を得た。また鉄損評価装置により交流磁気特性であ
る鉄損を求めた。造粒粉の流動性、焼結体の相対密度、
残留酸素量と残留炭素量、磁気特性を表6と8に示す。
ここで相対密度はFe−3%Siのインゴットの密度を
真密度として用いた。なお、流動性は内径8mmのロー
トの管を100gの原料粉が自然落下し通過するまでに
要した時間で測定した。また、造粒粉の粒度はメッシュ
で篩通して重量平均した値である。造粒粉の流動性は、
20sec以下を目標とし、また鉄損は磁束密度5k
G、周波数1MHzでの値で1000(J/m3)以下
を目標とした。また得られた焼結体には、ワレ、ヒビ、
変形などはまったく見られなかった。なお、ポリビニル
アルコールのバインダー添加量を0.05wt%とした
No.15の造粒粉は、流動性が悪いために、複雑形状
品の成形が困難となるために適用外とした。
Next, the direct current magnetic characteristic is measured by AUTOMAT.
IC D. C. B-H CURVES TRACER
And the maximum magnetic permeability μ max , the coercive force Hc, and the magnetic flux density B 20 at 20 Oe as shown in Tables 6 and 8.
Got the value of. Moreover, the iron loss, which is an AC magnetic characteristic, was obtained by an iron loss evaluation device. Fluidity of granulated powder, relative density of sintered body,
Tables 6 and 8 show the amount of residual oxygen, the amount of residual carbon, and the magnetic properties.
Here, as the relative density, the density of an ingot of Fe-3% Si was used as the true density. The fluidity was measured by the time required for 100 g of the raw material powder to spontaneously drop and pass through a funnel tube having an inner diameter of 8 mm. Further, the particle size of the granulated powder is a value obtained by sieving through a mesh and weight-averaged. The fluidity of granulated powder is
The target is 20 seconds or less, and the iron loss is a magnetic flux density of 5k.
The target value was 1000 (J / m 3 ) or less at G and a frequency of 1 MHz. In addition, the obtained sintered body, cracks, cracks,
No deformation was observed. In addition, when the binder addition amount of polyvinyl alcohol was 0.05 wt%, No. Since the granulated powder of No. 15 had poor fluidity, it was difficult to form a product having a complicated shape, and thus was excluded from the application.

【0046】[0046]

【表1】 [Table 1]

【0047】[0047]

【表2】 [Table 2]

【0048】[0048]

【表3】 [Table 3]

【0049】[0049]

【表4】 [Table 4]

【0050】[0050]

【表5】 [Table 5]

【0051】[0051]

【表6】 [Table 6]

【0052】[0052]

【表7】 [Table 7]

【0053】[0053]

【表8】 [Table 8]

【0054】[0054]

【発明の効果】実施例から明らかなように、Fe−Si
系合金粉末を水あるいは溶媒中で湿式粉砕した後、真空
乾燥した微粉末に、ポリビニルアルコール、メチルセル
ロース、ポリアクリルアミドを単独または2種類複合し
たものと水とからなるバインダーを添加、混練し、スラ
リー状となし、該スラリーを0℃〜10℃の温度に冷却
して撹拌した後、スプレードライヤー装置により平均粒
径20〜400μmの造粒粉となし、該造粒粉を用いて
プレス成形し、水素流気中で特定温度条件にて脱脂を行
った後、真空中もしくは不活性ガス中で焼結する粉末冶
金法により、焼結密度が高く、磁気特性の優れた焼結体
が得られることがわかった。この発明による造粒粉は非
常に流動性が良好であるために、多段プレス成形により
複雑形状の成形体を作製することができるので、今後の
Fe−Si系軟質磁性焼結合金の用途が拡大されると考
えられる。
As is clear from the examples, the Fe--Si
Wet-milling the base alloy powder in water or a solvent, then adding a binder consisting of polyvinyl alcohol, methyl cellulose, polyacrylamide alone or in combination of two and water to fine powder dried in vacuum and kneading to form a slurry After that, the slurry was cooled to a temperature of 0 ° C. to 10 ° C. and stirred, and then formed into a granulated powder having an average particle size of 20 to 400 μm by a spray dryer device, press-molded using the granulated powder, and hydrogen. The powder metallurgy method of degreasing in flowing air at a specific temperature condition and then sintering in vacuum or an inert gas may yield a sintered body with high sintering density and excellent magnetic properties. all right. Since the granulated powder according to the present invention has very good fluidity, it is possible to produce a compact having a complicated shape by multi-stage press molding, so that the future use of the Fe-Si soft magnetic sintered alloy will be expanded. It is thought to be done.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01F 1/22 Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display area H01F 1/22

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 Fe−Si系合金微粉末に、ポリビニル
アルコール、メチルセルロース、ポリアクリルアミドを
単独または2種類複合したものを0.1〜2.0wt%
と水からなるバインダーを添加、混練、撹拌して含水率
20〜50wt%のスラリー状となし、該スラリーをス
プレードライヤー装置により平均粒径20〜400μm
の造粒粉となし、該造粒粉を用いて、成形後に水素流気
中で脱脂を行い、さらに真空中もしくは不活性ガス中で
焼結する粉末冶金法により焼結合金を得ることを特徴と
するFe−Si系軟質磁性焼結合金の製造方法。
1. Fe-Si based alloy fine powder, polyvinyl alcohol, methyl cellulose, polyacrylamide alone or in combination of two kinds 0.1-2.0 wt%
And a binder composed of water are added, kneaded and stirred to form a slurry having a water content of 20 to 50 wt%, and the slurry has an average particle size of 20 to 400 μm by a spray dryer device.
Characterized by obtaining a sintered alloy by the powder metallurgy method of degreasing in a stream of hydrogen after molding and further sintering in a vacuum or in an inert gas. And a method for producing a Fe-Si based soft magnetic sintered alloy.
【請求項2】 Fe−Si系合金微粉末は真空中もしく
は不活性ガス中で300℃〜800℃の温度で熱処理し
た鋳塊・粉化粉、アトマイズ粉であることを特徴とする
請求項1に記載のFe−Si系軟質磁性焼結合金の製造
方法。
2. The Fe—Si alloy fine powder is an ingot, powdered powder, or atomized powder that is heat-treated at a temperature of 300 ° C. to 800 ° C. in a vacuum or in an inert gas. The method for producing the Fe-Si based soft magnetic sintered alloy according to 1.
【請求項3】 Fe−Si系合金微粉末はFe3Si化
合物を主成分とするFe−Si系合金粉末とFe粉の混
合粉であることを特徴とする請求項1に記載のFe−S
i系軟質磁性焼結合金の製造方法。
3. The Fe—S alloy according to claim 1, wherein the Fe—Si alloy fine powder is a mixed powder of Fe powder containing Fe 3 Si compound as a main component and Fe powder.
A method for producing an i-based soft magnetic sintered alloy.
【請求項4】 Fe3Si化合物を主成分とするFe−
Si系合金粉末のSi量が6.5wt%〜23wt%で
あることを特徴とする請求項3に記載のFe−Si系軟
質磁性焼結合金の製造方法。
4. Fe-containing Fe 3 Si compound as a main component
The amount of Si of Si type alloy powder is 6.5 wt% -23 wt%, The manufacturing method of the Fe-Si type soft magnetic sintered alloy of Claim 3 characterized by the above-mentioned.
【請求項5】 バインダー添加後のスラリーを、0℃〜
10℃に冷却した状態で撹拌することを特徴とする請求
項1に記載のFe−Si系軟質磁性焼結合金の製造方
法。
5. The slurry after the binder is added is 0 ° C.
The method for producing a Fe-Si based soft magnetic sintered alloy according to claim 1, wherein stirring is performed in a state of being cooled to 10 ° C.
【請求項6】 成形体を水素流気中で300℃〜800
℃の温度で脱脂することを特徴とする請求項1に記載の
Fe−Si系軟質磁性焼結合金の製造方法。
6. A molded body in a flowing hydrogen atmosphere at 300 ° C. to 800 ° C.
Degreasing is performed at a temperature of [deg.] C. The method for producing a Fe-Si based soft magnetic sintered alloy according to claim 1.
【請求項7】 焼結体を300℃〜1000℃にて均一
化熱処理することを特徴とする請求項1に記載のFe−
Si系軟質磁性焼結合金の製造方法。
7. The Fe- according to claim 1, wherein the sintered body is subjected to a uniform heat treatment at 300 ° C to 1000 ° C.
A method for manufacturing a Si-based soft magnetic sintered alloy.
JP6234354A 1994-08-26 1994-09-02 Production of iron-silicon soft magnetic sintered alloy Pending JPH08120393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6234354A JPH08120393A (en) 1994-08-26 1994-09-02 Production of iron-silicon soft magnetic sintered alloy

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP22585794 1994-08-26
JP6-225857 1994-08-26
JP6234354A JPH08120393A (en) 1994-08-26 1994-09-02 Production of iron-silicon soft magnetic sintered alloy

Publications (1)

Publication Number Publication Date
JPH08120393A true JPH08120393A (en) 1996-05-14

Family

ID=26526861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6234354A Pending JPH08120393A (en) 1994-08-26 1994-09-02 Production of iron-silicon soft magnetic sintered alloy

Country Status (1)

Country Link
JP (1) JPH08120393A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005095030A1 (en) * 2004-03-30 2005-10-13 Sumitomo Electric Industries, Ltd. Method for producing soft magnetic material, soft magnetic powder and dust core
JP2008503653A (en) * 2004-06-23 2008-02-07 ホガナス アクチボラゲット Lubricant for insulated electromagnetic soft iron-based powder composition
CN105328200A (en) * 2014-07-15 2016-02-17 昆山玛冀电子有限公司 Atomization pelleting method for soft magnetic powder
WO2016199576A1 (en) * 2015-06-08 2016-12-15 住友電気工業株式会社 Granulated powder and method for manufacturing granulated powder
JP2022109954A (en) * 2013-09-30 2022-07-28 パーシモン テクノロジーズ コーポレイション Structure and method for using structured magnetic material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005095030A1 (en) * 2004-03-30 2005-10-13 Sumitomo Electric Industries, Ltd. Method for producing soft magnetic material, soft magnetic powder and dust core
US7674342B2 (en) 2004-03-30 2010-03-09 Sumitomo Electric Industries, Ltd. Method of producing soft magnetic material, soft magnetic powder, and dust core
JP2008503653A (en) * 2004-06-23 2008-02-07 ホガナス アクチボラゲット Lubricant for insulated electromagnetic soft iron-based powder composition
JP2022109954A (en) * 2013-09-30 2022-07-28 パーシモン テクノロジーズ コーポレイション Structure and method for using structured magnetic material
US11975386B2 (en) 2013-09-30 2024-05-07 Persimmon Technologies Corporation Structures utilizing a structured magnetic material and methods for making
CN105328200A (en) * 2014-07-15 2016-02-17 昆山玛冀电子有限公司 Atomization pelleting method for soft magnetic powder
WO2016199576A1 (en) * 2015-06-08 2016-12-15 住友電気工業株式会社 Granulated powder and method for manufacturing granulated powder
CN107708892A (en) * 2015-06-08 2018-02-16 住友电气工业株式会社 The manufacture method of pelletizing and pelletizing

Similar Documents

Publication Publication Date Title
EP0215168B1 (en) Method for making rare-earth element containing permanent magnets
JP3435223B2 (en) Method for producing sendust-based sintered alloy
KR0135209B1 (en) Fabrication method and equipment for granulated powders
JP2587872B2 (en) Method for producing soft magnetic sintered body of Fe-Si alloy
JP3432905B2 (en) Method for producing sendust-based sintered alloy
JP2002285208A (en) Method for preparing rare earth alloy powder material, and method for manufacturing rare earth alloy sintered compact using the same
JPH08120393A (en) Production of iron-silicon soft magnetic sintered alloy
JP4033884B2 (en) Manufacturing method of rare earth sintered magnet
JP2000212679A (en) Raw material granular body for iron-silicon base soft magnetic sintered alloy, its production and production of iron-silicon base soft magnetic sintered alloy member
JP4415374B2 (en) Manufacturing method of rare earth sintered magnet
JP3083963B2 (en) Method and apparatus for producing anisotropic granulated powder
JPH08107034A (en) Manufacture of r-fe-b sintered permanent magnet
JPH1053833A (en) Production of sintered iron-aluminum-silicon alloy
JP3170156B2 (en) Method for producing isotropic granulated powder
JP3459477B2 (en) Production method of raw material powder for rare earth magnet
JP2000087194A (en) Alloy for electromagnet and its manufacture
JP3631330B2 (en) Method for producing rare earth sintered permanent magnet
JPH04298006A (en) Manufacture of fe-si-al alloy sintered soft magnetic substance
JPH0888112A (en) Manufacture of r-fe-b sintered permanent magnet
JP4068857B2 (en) Manufacturing method of sintered rare earth magnet alloy
JPS61127848A (en) Manufacture of sintered alnico magnet
JPH0917674A (en) Manufacture of sintered rare earth magnet
JP3540389B2 (en) Method for producing sintered R-Fe-B permanent magnet
JP2000239702A (en) Fe-Ni ALLOY POWDER AND ITS MANUFACTURE
JP3174442B2 (en) Method for producing R-Fe-B sintered anisotropic permanent magnet