JP3540389B2 - Method for producing sintered R-Fe-B permanent magnet - Google Patents

Method for producing sintered R-Fe-B permanent magnet Download PDF

Info

Publication number
JP3540389B2
JP3540389B2 JP24732994A JP24732994A JP3540389B2 JP 3540389 B2 JP3540389 B2 JP 3540389B2 JP 24732994 A JP24732994 A JP 24732994A JP 24732994 A JP24732994 A JP 24732994A JP 3540389 B2 JP3540389 B2 JP 3540389B2
Authority
JP
Japan
Prior art keywords
powder
binder
magnetic field
granulated powder
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24732994A
Other languages
Japanese (ja)
Other versions
JPH08115839A (en
Inventor
治 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Neomax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neomax Co Ltd filed Critical Neomax Co Ltd
Priority to JP24732994A priority Critical patent/JP3540389B2/en
Publication of JPH08115839A publication Critical patent/JPH08115839A/en
Application granted granted Critical
Publication of JP3540389B2 publication Critical patent/JP3540389B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【0001】
【産業上の利用分野】
この発明は、粉末冶金法によりR−Fe−B系焼結永久磁石を製造する方法に係り、特に、特定の粘結剤と水とからなるバインダーを添加混練してスラリーとなし、これをスプレードライヤー装置により球形状の造粒粉となして、成形時の流動性、潤滑性を向上させた造粒粉を使用するに際し、圧縮成形時の磁場中での配向度を向上させるために、成形時にパルス磁場印加して一次粒子を配向させた後、さらに静磁場中で圧縮成形することにより、磁気特性の高い、寸法精度のすぐれた薄肉形状品や小型形状品を提供することができるR−Fe−B系焼結永久磁石の製造方法に関する。
【0002】
【従来の技術】
今日、家電製品を初めコンピュータの周辺機器や自動車等用途に用いられる小型モーターやアクチュエータ等には、小型化、軽量化とともに高性能化が求められており、その磁石材料も小型化、軽量化、薄肉化が要求されている。
現在の代表的な永久磁石材料としては、アルニコ磁石、フェライト磁石、希土類コバルト磁石、そして、出願人が先に提案したR−Fe−B系磁石(特公昭61−34242号等)が挙げられる。
上記の中でも、特に、R−Fe−B系磁石は、資源的に豊富な軽希土類元素などを主成分とするため、磁石を安定に供給することができ、しかも他の磁石材料に比べて磁気特性が格段にすぐれるために、各種用途に多用されている。
【0003】
R−Fe−B系焼結永久磁石は、最大エネルギー積((BH)max)が40MGOeを超え、最大では50MGOeを超える極めて優れた磁気特性を有するが、その優れた磁気特性を発現させるためには、所要組成からなる合金を1〜10μm程度の平均粒度に粉砕することが必要となる。
合金粉末の粒度を小さくすると、成形時の粉末の流動性が悪くなり、成形体密度のバラツキや成形機の寿命を低下させるとともに、焼結後の寸法精度にもバラツキを生じることとなり、特に薄肉形状や小型形状の製品を得るのが困難であった。
また、R−Fe−B系焼結永久磁石は、大気中で酸化し易い希土類元素や鉄を主成分として含有するため、合金粉末の粒度を小さくすると、酸化により磁気特性が劣化する問題もあった。
【0004】
【発明が解決しようとする課題】
そのため、特に成形性を改良するために、成形前の合金粉末に、ポリオキシエチレンアルキルエーテル等を添加したもの(特公平4−80961号)、それらにさらにパラフィンやステアリン酸塩を添加したもの(特公平4−80962号、特公平5−53842号)、またオレイン酸を添加したもの(特公昭62−36365号)などが提案された。
しかし、ある程度の成形性は向上できるものの、その改善効果にも限界があり、近年要求される薄肉形状や小型形状の成形は依然困難であった。
【0005】
また、上記のバインダーや潤滑剤の添加とともに、さらに成形性を改良し、薄肉形状品や小型形状品を製造する方法として、成形前の合金粉末に飽和脂肪族カルボン酸や不飽和脂肪族カルボン酸にミリスチル酸エチルやオレイン酸からなる滑剤を添加して混練した後、造粒を行なって成形する方法(特開昭62−245604号)、あるいはパラフィン混合物に飽和脂肪族カルボン酸や不飽和脂肪族カルボン酸等を添加、混練後、造粒した後成形する方法(特開昭63−237402号)も提案されている。
【0006】
しかし、上記の方法では、粉末粒子の結合力が十分でなく、造粒粉が壊れやすいために、十分な粉末の流動性を実現することが困難であった。
また、上記の方法により得られる造粒粉はいずれも磁気的に異方性であるために磁気特性の高い異方性の焼結体は得られない。
成形性を向上させたり、粉末粒子の結合力を高めるためには、種々バインダーや潤滑剤の添加量を増やすことが考えられるが、多量に添加すると、R−Fe−B系合金粉末中のR成分とバインダーとの反応により、焼結後の焼結体の残留酸素量、残留炭素量が増加し、磁気特性の劣化を招くことになるので、添加量にも制限があった。
【0007】
また、R−Fe−B系合金粉末を対象とするものではないが、Co系スーパーアロイ粉末を対象とした圧縮成形用のバインダーとして、対象合金粉末に対して、1.5〜3.5wt%のメチルセルロースとさらに所定量の添加物であるグリセリンとほう酸を混合した組成が提案(USP4,118,480)され、また、工具用合金粉末の射出成形用のバインダーとして、特殊組成からなり、対象合金粉末に対して0.5〜2.5wt%のメチルセルロースに水、グリセリン等の可塑剤、ワックスエマルジョン等の滑剤、離型剤を添加した組成が提案(特開昭62−37302)されている。
しかし、それらはいずれも所定の流動性と成形体強度を確保するため、いずれも対象合金粉末に対して、上記のように例えば0.5wt%以上もの比較的多量のバインダーを使用するもので、しかも種々のバインダー添加剤の添加、例えばグリセリン等の可塑剤をメチルセルロースと同量程度添加することが不可欠であるため、射出成形や圧縮成形後、脱脂した後、焼結後でもかなりの炭素と酸素が残留し、特にこの発明の対象とするR−Fe−B系焼結磁石の場合、磁気の劣化を招くので、容易には適用できない。
【0008】
また、フェライトなどの酸化物粉末を対象として、平均粒度1μm以下粉末に、バインダーとして0.6〜1.0wt%のポリビニルアルコールを添加したのち、スプレードライヤー装置により造粒粉を製造し、該造粒粉を成形、焼結する方法が知られている。
しかし、それらはいずれも酸化物粉末に対して0.6wt%以上もの多量のバインダーを使用するもので、脱脂処理を施したのちの焼結体にもかなりの炭素及び酸素が残留するため、非常に酸化及び炭化しやすい性質を有し、少しの酸化あるいは炭化によっても極端に磁気特性が劣化するこの発明の対象とする希土類含有合金粉末に、上記のような酸化物を対象とした方法をそのまま適用することはできない。
【0009】
特に、酸化物の場合は比較的多量のバインダーを用いても大気中で脱脂、焼結できるため、脱脂、焼結時にバインダーが燃焼してある程度の残留炭素の抑制を図ることができるが、この発明の対象とする希土類含有合金粉末の場合は、酸化により磁気特性が劣化するため大気中で脱脂、焼結することができないので、多量のバインダー添加は得られる焼結磁石の磁気特性に致命的な悪影響を及ぼすこととなる。
【0010】
このように、R−Fe−B系焼結永久磁石の製造方法において、成形前の合金粉末に、種々のバインダーや潤滑剤を添加したり、さらに造粒を行なって、成形性を改良する試みが種々提案されてはいるが、いずれの方法によっても、近年要求されるような、磁気特性が高く、寸法精度のすぐれた薄肉形状や小型形状のR−Fe−B系焼結永久磁石を製造するのは困難であった。
【0011】
この発明は、粉末冶金法によりR−Fe−B系焼結永久磁石を製造する方法において、合金粉末とバインダーとの反応を抑制し、焼結体の残留酸素量、残留炭素量を低減させるとともに、成形時の粉体の流動性、潤滑性を向上させて、さらに、1次粒子のC軸の十分な配向が得られ、磁気特性が高く、寸法精度のすぐれた薄肉形状や小型形状のR−Fe−B系焼結永久磁石の製造方法の提供を目的とする。
【0012】
【課題を解決するための手段】
発明者らは、R−Fe−B系合金粉末とバインダーとの反応を抑制でき、焼結体の残留酸素量、残留炭素量を低減させる方法を種々検討した結果、バインダーとして、メチルセルロース、ポリアクリルアミド、ポリビニルアルコールのうち少なくとも1種と水とからなるバインダーを用いることにより、焼結前の工程におけるR−Fe−B系合金粉末とバインダーとの反応を抑制することができ、焼結後の焼結体の残留酸素量、残留炭素量を大幅に低減できることを知見した。
【0013】
また、上記バインダーが、メチルセルロース、ポリアクリルアミド、ポリビニルアルコールをそれぞれ単独で用いる場合、その添加量を0.5wt%以下としても、成形時に金型へ粉末を供給するためのフィーダー内における振動にも十分耐えられる程度の一次粒子の粒子間結合力と、十分な流動性及び成形体強度を得ることができること、メチルセルロース、ポリアクリルアミド、ポリビニルアルコールをそれぞれ複合した場合には、その量を0.4wt%以下としても上記と同様な作用効果が得られること、さらに、必要に応じて使用する滑剤も0.3wt%以下と極少量でよく、総バインダー中の炭素含有量を大幅低減できることを知見した。
【0014】
さらに、R−Fe−B系合金粉末と上記のバインダーとを添加、混練したスラリーをスプレードライヤー装置によって造粒した造粒粉を、圧縮成形前にパルス磁場を印加して一次粒子に崩壊させるとともに配向した後、さらに静磁場中で圧縮成形することにより、該造粒粉の一次粒子のC軸の十分な配向が得られるとともに、バインダー自体のすぐれた流動性とも相まって、粉体の流動性が格段に向上し、成形体密度のバラツキや成形機の寿命を低下させることもなく、焼結後の寸法精度にもすぐれる、薄肉形状や小型形状でかつ優れた磁気特性を有するR−Fe−B系焼結磁石が効率よく得られることを知見し、この発明を完成した。
【0015】
すなわち、この発明はR-Fe-B系合金粉末(RはYを含む希土類元素の少なくとも1種)に、
メチルセルロース、ポリアクリルアミド、ポリビニルアルコールのうち少なくとも1種0.05 0.5wt% と水 20 50wt%とからなるバインダー添加、混練してスラリー状となし、
該スラリーをスプレードライヤー装置により造粒粉となした後、
該造粒粉にパルス磁場を印加して一次粒子に崩壊させかつ配向させた後、
静磁場中で圧縮成形し、水素流気中での脱バインダー処理を行った後、焼結、熱処理することにより焼結永久磁石を得ることを特徴とするR-Fe-B系焼結永久磁石の製造方法である。
【0016】
R−Fe−B系合金粉末
この発明において、R−Fe−B系合金粉末(但しRはYを含む希土類元素のうち少なくとも1種)としては、所要組成からなる単一の合金を粉砕した粉末や、異なる組成の合金を粉砕した後、混合して所要組成に調整した粉末、保磁力の向上や製造性を改善するために添加元素を加えたものなど、公知のR−Fe−B系合金粉末を用いることができる。
R−Fe−B系合金粉末の製造方法も、溶解・粉化法、超急冷法、直接還元拡散法、水素含有崩壊法、アトマイズ法などの公知の方法を適宜選定することができる。
【0017】
R−Fe−B系合金粉末の粒度は特に限定しないが、合金粉末の平均粒度が1μm未満では大気中の酸素あるいはバインダー内の水と反応して酸化しやすくなり、焼結後の磁気特性を低下させる恐れがあるため好ましくなく、また、10μmを超える平均粒径では粒径が大きすぎて焼結密度が95%程度で飽和し、該密度の向上が望めないため好ましくない。よって1〜10μmの平均粒度が好ましい範囲である。特に好ましくは1〜6μmの範囲である。
【0018】
バインダー成分
この発明において、合金粉末をスラリー状にするために添加するバインダーには、メチルセルロース、ポリアクリルアミド、ポリビニルアルコールのうち少なくとも1種と水とからなるものを用いる。
上記メチルセルロース、ポリアクリルアミド、ポリビニルアルコールは少量の添加でスラリーの粘度を向上させることができるとともに、乾燥後においても高い結合力を保持することができ、また添加量が少量でよいため、粉末中の残留酸素量、炭素量を低減することができる。
【0019】
メチルセルロース、ポリアクリルアミド、ポリビニルアルコールをそれぞれを単独で用いる場合の含有量は、0.05wt%未満では造粒粉内の粒子間の結合力が弱く、成形前の給粉時に造粒粉が壊れるとともに粉体の流動性が著しく低下し、また、0.5wt%を越えると、焼結体における残留炭素量と酸素量が増加して保磁力が下がり磁気特性が劣化するので、0.05wt%〜0.5wt%の含有量がこれらの点で好ましい。
また、メチルセルロース、ポリアクリルアミド、ポリビニルアルコールを複合して用いる場合の含有量も、上記の単独で用いる場合と同様に、0.05wt%未満では造粒粉内の粒子間の結合力が弱く、成形前の給粉時に造粒粉が壊れるとともに粉体の流動性が著しく低下し、また、0.4wt%を越えると、焼結体における残留炭素量と酸素量が増加して保磁力が下がり磁気特性が劣化するので、0.05wt%〜0.4wt%の含有量が好ましい範囲である。
【0020】
この発明において、上述のバインダーに添加する水の含有量は、20wt%未満では合金粉末とバインダーとを混練したスラリーの濃度が高くなって、粘度が増加しすぎるため、該スラリーを後述する撹拌機からスプレードライヤー装置まで供給することができず、また、50wt%を超えるとスラリーの濃度が低くなりすぎ、撹拌機内及び撹拌機のスラリー供給パイプ内で沈殿が起こり、供給量が不安定になるとともにスプレードライヤー装置によって得られる造粒粉の平均粒度が20μm未満となり、さらに粒度にバラツキを生じるため、20wt%〜50wt%が好ましい範囲である。さらに好ましくは30wt%〜40wt%の範囲である。
水としては、R−Fe−B系合金粉末のR成分との反応を極力抑制するために、脱酸素処理した純水、あるいは窒素などの不活性ガスをバブリング処理した水を用いることが望ましい。
【0021】
また、合金粉末へのバインダーの添加、撹拌は、0℃〜15℃の温度範囲内で行うことが好ましく、合金粉末と水との酸化反応をより抑制することができる。逆に、15℃を超える温度での撹拌は合金粉末と水との酸化反応を促進されるため好ましくない。0℃〜15℃の温度範囲内に保持するには、予め該温度に冷却した水を用いたり、撹拌容器を冷却水などによって冷却する手段などを採用することができる。
【0022】
また、上述したバインダーにグリセリン、ワックスエマルジョン、ステアリン酸、フタール酸エステル、ペトリオール、グライコール等の分散剤、潤滑剤のうち少なくとも1種を添加するか、あるいはさらに、n−オクチルアルコール、ポリアルキレン誘導体、ポリエーテル系誘導体等の消泡剤を添加すると、スラリーの分散性、均一性の向上及びスプレードライヤー装置での粉化状態が良好になり、気泡が少なく、滑り性、流動性にすぐれる球形状の造粒粉をより容易に得ることが可能になる。
なお、添加する場合は、0.03wt%未満の含有量では造粒粉を成形後の離型性改善に効果がなく、また0.3wt%を超えると焼結体における残留炭素量と酸素量が増加して保磁力が下がり磁気特性が劣化するので、0.03wt%〜0.3wt%の含有量が好ましい。
【0023】
造粒方法
この発明において、合金粉末スラリーに上述したバインダーを添加、混練したスラリーは、スプレードライヤー装置によって造粒粉にする。
まず、スプレードライヤー装置を用いた造粒粉の製造方法を説明すると、スラリー撹拌機からスラリーをスプレードライヤー装置に供給する、例えば、回転ディスクの遠心力で噴霧したり、加圧ノズル先端部で霧状に噴霧され、噴霧された液滴は、加熱された不活性ガスの熱風によって瞬時に乾燥されて造粒粉となり、回収部内の下部に自然落下する。
【0024】
スプレードライヤー装置の構成としては、上記のディスク回転型、加圧ノズル型のいずれでもよいが、造粒するR−Fe−B系合金粉末は非常に酸化し易いために、装置のスラリー収納部内あるいは造粒粉の回収部内を不活性ガスなどで置換でき、かつその酸素濃度を常時3%以下に保持できる密閉構造であることが好ましい。
また、スプレードライヤー装置の回収部内の構成としては、回転ディスクあるいは加圧ノズルより噴霧された液滴を瞬時に乾燥させるために、回転ディスクの近傍あるいは加圧ノズルの上方に加熱された不活性ガスを噴射する噴射口を配置し、また回収部内の下部に、噴射されたガスを回収部外へ排出する排出口を設けるが、その際、予め装置外部あるいは装置に付属された加熱器で所要温度に加熱された不活性ガスの温度を低下させないように、上記噴射口を不活性ガスの温度に応じた温度、例えば60〜150℃に保持することが好ましい。
【0025】
すなわち、不活性ガスの温度が低下すると、噴霧された液滴を短時間で十分乾燥することができなくなるため、スラリーの供給量を減少させなければならず能率が低下してしまう。また、比較的大きな粒径の造粒粉を作る場合は、回転ディスクの回転数あるいは加圧ノズルの圧力を低下させるが、その際に不活性ガスの温度が低下していると、噴霧された液滴を十分乾燥することができないので、結果としてスラリーの供給量を減少させることにより、大きな粒径の造粒粉を得る場合には極端に能率が低下することになる。従って、予め加熱された不活性ガスの温度をそのまま維持しながら回収部内へ送り込むには、噴射口の温度を60〜150℃に保持することが好ましく、特に100℃前後が最も好ましい。
【0026】
また、不活性ガスの噴射口と排出口の温度差が小さい場合も処理能率が低下する傾向があるので、排出口の温度は50℃以下、好ましくは40℃以下、特に好ましくは常温に設定することが望ましい。
不活性ガスとしては、窒素ガスやアルゴンガスが好ましく、加熱温度は60〜150℃が好ましい。
【0027】
造粒粉の粒度は、スプレードライヤー装置へ供給するスラリーの濃度や、その供給量、あるいは回転ディスクの回転数または加圧ノズルの圧力によって制御することができるが、平均粒径が20μm未満では、造粒粉の流動性がほとんど向上せず、また、平均粒径が400μmを超えると、粒径が大きすぎて成形時の金型内への充填密度が低下するとともに成形体密度も低下し、ひいては、焼結後の焼結体密度の低下をきたすこととなるため好ましくなく、よって、造粒粉の平均粒径は20〜400μmが好ましい。特に好ましくは50〜200μmである。また、ふるいによりアンダーカット、オーバーカットを行なうことにより、さらに極めて流動性に富んだ造粒粉を得ることができる。
さらに、得られた造粒粉にステアリン酸亜鉛、ステアリン酸マグネシウム、ステアリン酸カルシウム、ステアリン酸アルミニウム、ポリエチレングリコール等の潤滑剤を少量添加すると、さらに流動性を向上させることができ有効である。
【0028】
スプレー造粒粉は、バインダー添加量を増やすに従い粉体の流動性はよくなるが、1次粒子同士の結合力は高まり、2次粒子である造粒粉は硬いものになる。この2次粒子は磁気的には等方性であるためにプレスの圧縮応力若しくは磁場強度の高い磁場でこれを壊して1次粒子のC軸を揃えなければ、高い磁気特性の焼結体は得られない。
従って、バインダー添加量の比較的多い、0.3wt%〜0.5wt%のバインダー添加量で、すぐれた磁気特性の焼結体を得るには、磁場強度30kOe以上の磁場中で圧縮成形しなければならないが、30kOe以上の大きさの磁場強度の発生は量産レベルでは非常に難しい。
そこでこの発明では、圧縮成形時に瞬間的に30kOe以上のパルス磁場で磁場配向させた後、8kOe〜15kOe静磁場中で圧縮成形して成形体の配向度を向上させるもので、かかる方法によれば配向度は向上し、また、工業的な量産規模に最適な工程である。
【0029】
造粒後の工程、すなわち、成形、焼結、熱処理など条件、方法は公知のいずれの粉末冶金的手段を採用することができるが、高磁気特性の焼結体を得るには、以下の圧縮成形の方法により成形体の配向度を向上させる必要がある。
成形は、公知のいずれの成形方法も採用できが、圧縮成形で行なうことが最も好ましく、その圧力は、0.3〜2.0Ton/cm2が好ましい。
【0030】
焼結前には、真空中で加熱する一般的な方法や、水素流気中で100〜200℃/時間で昇温し、300〜600℃で1〜2時間程度保持する方法などにより脱バインダー処理を行なうことが好ましい。脱バインダー処理を施すことにより、バインダー中のほぼ全炭素が脱炭され、磁気特性の向上に繋がる。
なお、R元素を含む合金粉末は、水素を吸蔵しやすいために、水素流気中での脱バインダー処理後には脱水素処理を行なうことが好ましい。脱水素処理は、真空中で昇温速度は、50〜200℃/時間で昇温し、500〜800℃で1〜2時間程度保持することにより、吸蔵されていた水素はほぼ完全に除去される。
また、脱水素処理後は、引き続いて昇温加熱して焼結を行うことが好ましく、500℃を超えてからの昇温速度は任意に選定すればよく、例えば100〜300℃/時間など、焼結に際して取られる公知の昇温方法を採用できる。
【0031】
脱バインダー処理後の成形品の焼結並びに焼結後の熱処理条件は、選定した合金粉末組成に応じて適宜選定されるが、焼結並びに焼結後の熱処理条件としては、1000〜1180℃、1〜2時間保持する焼結工程、450〜800℃、1〜8時間保持する時効処理工程などが好ましい。
【0032】
【作用】
この発明は、R−Fe−B系合金粉末に、メチルセルロース、ポリアクリルアミド、ポリビニルアルコールの単独あるいは複合したものと水とからなるバインダーを添加、混練してスラリー状となし、該スラリーをスプレードライヤー装置により造粒粉となし、該造粒粉をパルス磁場中で磁場配向した後、静磁場中で成形し、焼結、熱処理することにより、該造粒粉の一次粒子のC軸の十分な配向が可能となり、磁気特性が向上するとともにバインダー自体の優れた潤滑性とも相まって、粉体の流動性が格段に向上し、成形サイクルが向上するとともに、成形体密度のバラツキや成形機の寿命を低下させることもなく、焼結後の寸法精度にも優れる、薄肉形状や小型形状でかつ優れた磁気特性を有するR−Fe−B系焼結永久磁石が得られる。
なお、この発明における造粒粉は、バインダーによって被覆されているため、大気中において酸化し難いので、成形工程における作業性が向上するという利点も有する。
【0033】
【実施例】
実施例1
Rとして、Nd13.3原子%、Pr0.31原子%、Dy0.28原子%、Co3.4原子%、B6.5原子%、残部Fe及び不可避的不純物からなる原料を、Arガス雰囲気中で高周波溶解して、ボタン状溶製合金を得た。次に、該合金を粗粉砕した後、ジョークラッシャーなどにより平均粒度約15μmに粉砕し、さらに、ジェットミルにより平均粒度3μmの粉末を得た。
該粉末に表1に示す種類及び添加量のバインダー、水、滑剤を添加して室温で混練してスラリー状となし、該スラリーをディスク回転型スプレードライヤー装置により、不活性ガスを窒素で、熱風入口温度を100℃、出口温度を40℃に設定して造粒を行った。
【0034】
該造粒粉を金型に充填した後、造粒粉に30kOeのパルス磁場を印加し、さらに10kOeの静磁場中で、圧力1ton/cm2で10mm×15mm×厚み10mmの形状に圧縮成形した後、水素雰囲気中で室温から300℃までを昇温速度100℃/時で加熱する脱バインダー処理を行ない、引き続いて真空中で1100℃まで昇温し1時間保持する焼結を行ない、さらに焼結完了後、Arガスを導入して7℃/分の速度で800℃まで冷却し、その後100℃/時の速度で冷却して550℃で2時間保持して時効処理を施して異方性の焼結体を得た。
成形時の造粒粉の成形体の寸法及び密度並びに得られた焼結磁石の残留酸素量、残留炭素量、磁気特性を表2のNo.1〜7に示す。
なお、流動性は、内径8mmのロートの管を100gの原料粉が自然落下し通過するまでに要した時間で測定した。
また、得られた全ての焼結体には、ワレ、ヒビ、変形などは全く見られなかった。
【0035】
比較例1
実施例1の造粒粉を、そのまま10kOeと15kOeの静磁場中で圧力1ton/cm2で10mm×15mm×厚み10mmの形状に圧縮成形した。成形後の処理条件は実施例1の条件と同一である。
焼結後の残留酸素量、残留炭素量、磁気特性を表2のNo.8〜10に示す。この時の測定方法は実施例1と同一条件である。
また、得られた焼結体には、ワレ、ヒビ、変形などはまったく見られなかった。
【0036】
【表1】

Figure 0003540389
【0037】
【表2】
Figure 0003540389
【0038】
【発明の効果】
この発明は、R−Fe−B系合金粉末に、少量のメチルセルロース、ポリアクリルアミド、ポリビニルアルコールの単独あるいは複合したものと水とからなるバインダーと水を添加、混練してスラリー状となし、該スラリーをスプレードライヤー装置により造粒することにより、バインダーを特定してR−Fe−B系合金粉末とバインダーとの反応を抑制するとともに、造粒粉の形状をできるだけ球形にして造粒粉に高い流動性を付与した、平均粒径20μm〜400μmの造粒粉が得られ、この造粒粉を用いることによって粉体の流動性が格段に向上し、また、磁場による造粒粉の配向度を向上させるために、金型に充填後、パルス磁場を印加し、さらに静磁場中で圧縮成形することにより配向度の高い成形体を作製でき、また、水素中で脱脂焼結、熱処理することにより、焼結後の残留酸素量と炭素量が低減するので、造粒粉の流動性の向上に必要なバインダー添加量(0.3wt%〜0.5wt%)まで添加量を増加させても焼結後の残留酸素量と炭素量は比較的少なく、配向度が高く磁気特性が優れているだけでなく、成形体の密度のバラツキが少なく、また焼結後の寸法精度にも優れる、薄肉形状や複雑形状を有するR−Fe−B系焼結永久磁石が効率よく得られる。[0001]
[Industrial applications]
The present invention relates to a method for producing an R-Fe-B sintered permanent magnet by a powder metallurgy method, and in particular, a binder comprising a specific binder and water is added and kneaded to form a slurry, which is then sprayed. In order to improve the degree of orientation in the magnetic field at the time of compression molding, when using granulated powder with improved fluidity and lubricity during molding into spherical granulated powder with a dryer device, molding is performed. Occasionally, by applying a pulsed magnetic field to orient the primary particles, and then compression-molding in a static magnetic field, it is possible to provide thin-walled products and small-sized products with high magnetic properties and excellent dimensional accuracy. The present invention relates to a method for producing a Fe-B based sintered permanent magnet.
[0002]
[Prior art]
Today, small motors and actuators used for home appliances, computer peripherals, automobiles, and other applications are required to be smaller and lighter and have higher performance, and their magnet materials are also smaller and lighter. Thinning is required.
Typical representative permanent magnet materials at present include alnico magnets, ferrite magnets, rare earth cobalt magnets, and R-Fe-B-based magnets proposed by the applicant earlier (Japanese Patent Publication No. 61-34242).
Among the above, in particular, R-Fe-B-based magnets can provide a stable supply of magnets because they mainly contain light rare earth elements and the like, which are abundant in resources. Because of its excellent characteristics, it is widely used for various purposes.
[0003]
R-Fe-B based sintered permanent magnets have extremely excellent magnetic properties with a maximum energy product ((BH) max) exceeding 40 MGOe and a maximum of 50 MGOe at the maximum. Requires that an alloy having a required composition be ground to an average particle size of about 1 to 10 μm.
If the particle size of the alloy powder is reduced, the fluidity of the powder during molding becomes poor, and the dispersion of the compact density and the life of the compacting machine are reduced, and the dimensional accuracy after sintering also varies. It was difficult to obtain a product having a small shape and a small shape.
Further, since the R-Fe-B sintered permanent magnet contains a rare earth element or iron which is easily oxidized in the atmosphere as a main component, there is also a problem that when the particle size of the alloy powder is reduced, the magnetic characteristics are deteriorated due to oxidation. Was.
[0004]
[Problems to be solved by the invention]
Therefore, especially in order to improve the formability, alloy powder before molding is added with polyoxyethylene alkyl ether or the like (Japanese Patent Publication No. 4-80961), and those further added with paraffin or stearate ( Japanese Patent Publication No. 4-80962 and Japanese Patent Publication No. 5-53842), and those containing oleic acid (Japanese Patent Publication No. 62-36365) have been proposed.
However, although the moldability can be improved to some extent, the effect of the improvement is limited, and it has been still difficult to form a thin or small shape required in recent years.
[0005]
Further, with the addition of the above-mentioned binder and lubricant, the moldability is further improved, and as a method for producing a thin-walled product or a small-sized product, a saturated aliphatic carboxylic acid or an unsaturated aliphatic carboxylic acid is added to the alloy powder before molding. After adding a lubricant consisting of ethyl myristylate or oleic acid to the mixture, kneading and granulating (JP-A-62-245604), or adding a saturated aliphatic carboxylic acid or unsaturated aliphatic to a paraffin mixture. A method in which carboxylic acid and the like are added, kneaded, granulated, and then molded (Japanese Patent Laid-Open No. 63-237402) has also been proposed.
[0006]
However, in the above-mentioned method, it is difficult to realize sufficient fluidity of the powder because the bonding force of the powder particles is not sufficient and the granulated powder is easily broken.
Further, since all of the granulated powders obtained by the above method are magnetically anisotropic, an anisotropic sintered body having high magnetic properties cannot be obtained.
In order to improve the formability and to increase the bonding force of the powder particles, it is conceivable to increase the amount of various binders and lubricants. However, if a large amount is added, R in the R-Fe-B-based alloy powder may be increased. The reaction between the components and the binder increases the amount of residual oxygen and the amount of residual carbon of the sintered body after sintering, which leads to deterioration of magnetic properties.
[0007]
Although not intended for R-Fe-B-based alloy powders, as a binder for compression molding for Co-based superalloy powders, 1.5 to 3.5 wt% based on the target alloy powders. (US Pat. No. 4,118,480), a mixture of methylcellulose and a predetermined amount of additives, glycerin and boric acid, has been proposed. Also, as a binder for injection molding of alloy powder for tools, it has a special composition. A composition has been proposed in which 0.5 to 2.5 wt% of methylcellulose based on powder is added with a plasticizer such as water and glycerin, a lubricant such as a wax emulsion, and a release agent (JP-A-62-37302).
However, all of them use a relatively large amount of binder, for example, 0.5 wt% or more with respect to the target alloy powder as described above, in order to ensure predetermined fluidity and strength of the compact. In addition, since it is essential to add various binder additives, for example, a plasticizer such as glycerin in the same amount as methyl cellulose, considerable carbon and oxygen can be obtained even after injection molding, compression molding, degreasing, and sintering. Remains, and in particular, in the case of the R—Fe—B based sintered magnet which is the object of the present invention, it causes deterioration of the magnetism and cannot be easily applied.
[0008]
Further, for an oxide powder such as ferrite, a powder having an average particle size of 1 μm or less is added with polyvinyl alcohol of 0.6 to 1.0 wt% as a binder, and then a granulated powder is produced by a spray drier apparatus. A method of molding and sintering granular powder is known.
However, all of them use a binder as much as 0.6 wt% or more with respect to the oxide powder, and a considerable amount of carbon and oxygen remains in the sintered body after the degreasing treatment. It has the property of easily oxidizing and carbonizing, and the magnetic properties are extremely deteriorated by a little oxidation or carbonization. Not applicable.
[0009]
In particular, in the case of oxides, even if a relatively large amount of binder is used, degreasing and sintering can be performed in the air, so that binder can be burned during degreasing and sintering to suppress some residual carbon. In the case of the rare earth-containing alloy powder, which is the object of the present invention, the magnetic properties deteriorate due to oxidation, so that degreasing and sintering cannot be performed in the air. Therefore, the addition of a large amount of binder is fatal to the magnetic properties of the obtained sintered magnet. Would have an adverse effect.
[0010]
As described above, in the method of manufacturing the R—Fe—B based sintered permanent magnet, an attempt to improve the formability by adding various binders and lubricants to the alloy powder before forming, and further performing granulation. Although various methods have been proposed, any method can produce a thin-walled or small-sized sintered R-Fe-B permanent magnet with high magnetic properties and excellent dimensional accuracy, as required in recent years. It was difficult to do.
[0011]
The present invention relates to a method of producing an R-Fe-B sintered permanent magnet by powder metallurgy, in which a reaction between an alloy powder and a binder is suppressed, and a residual oxygen amount and a residual carbon amount of a sintered body are reduced. In addition, by improving the fluidity and lubricity of the powder at the time of molding, a sufficient orientation of the C-axis of the primary particles can be obtained, the magnetic properties are high, and the thin or small R shape having excellent dimensional accuracy is obtained. An object of the present invention is to provide a method for producing a Fe-B based sintered permanent magnet.
[0012]
[Means for Solving the Problems]
The inventors have studied various methods for suppressing the reaction between the R-Fe-B-based alloy powder and the binder and reducing the residual oxygen content and the residual carbon content of the sintered body. As a result, methylcellulose and polyacrylamide were used as the binder. By using a binder comprising at least one of polyvinyl alcohol and water, the reaction between the R-Fe-B-based alloy powder and the binder in the step before sintering can be suppressed, and the firing after sintering can be suppressed. It has been found that the amount of residual oxygen and the amount of residual carbon in the solidified product can be significantly reduced.
[0013]
Also, when the above-mentioned binder uses methylcellulose, polyacrylamide, and polyvinyl alcohol alone, even if the addition amount is 0.5 wt% or less, it is sufficient for vibration in a feeder for supplying powder to a mold at the time of molding. It is possible to obtain a bond strength between primary particles that can withstand sufficient fluidity and strength of the molded body. When methyl cellulose, polyacrylamide, and polyvinyl alcohol are respectively combined, the amount is 0.4 wt% or less. It has been found that the same effects can be obtained as described above, and that the amount of the lubricant used as needed can be as small as 0.3 wt% or less, and the carbon content in the total binder can be significantly reduced.
[0014]
Further, the granulated powder obtained by adding the R-Fe-B-based alloy powder and the above-mentioned binder and granulating the kneaded slurry by a spray drier device is applied with a pulse magnetic field before compression molding to disintegrate into primary particles. After the orientation, the powder is further subjected to compression molding in a static magnetic field, whereby a sufficient orientation of the C-axis of the primary particles of the granulated powder can be obtained, and the fluidity of the powder can be improved due to the excellent fluidity of the binder itself. R-Fe-, which is excellent in dimensional accuracy after sintering and has excellent magnetic properties in a thin-walled and small-sized shape, without significantly improving the density of the compact and reducing the life of the molding machine. The inventors have found that a B-based sintered magnet can be efficiently obtained, and have completed the present invention.
[0015]
That is, the present invention relates to R-Fe-B based alloy powder (R is at least one rare earth element including Y),
At least one of methylcellulose, polyacrylamide, and polyvinyl alcohol0.05 ~ 0.5wt% And water 20 ~ 50wt%Binder consisting ofToAddition and kneading to make a slurry,
After turning the slurry into granulated powder with a spray dryer,
After applying a pulsed magnetic field to the granulated powder to disintegrate and orient primary particles,
Compression molding in a static magnetic field,Sintering and heat treatment after debinding in a stream of hydrogenA method for producing an R-Fe-B-based sintered permanent magnet, characterized in that a sintered permanent magnet is obtained by the following method.
[0016]
R-Fe-B alloy powder
In the present invention, as the R-Fe-B-based alloy powder (where R is at least one of rare earth elements including Y), a powder obtained by pulverizing a single alloy having a required composition or an alloy having a different composition is pulverized. After that, a known R-Fe-B-based alloy powder such as a powder adjusted to a required composition by mixing and a powder to which an additional element is added for improving coercive force and improving productivity can be used.
A known method such as a melting / pulverizing method, a super-quenching method, a direct reduction / diffusion method, a hydrogen-containing decay method, and an atomizing method can be appropriately selected as a method for producing the R-Fe-B-based alloy powder.
[0017]
The particle size of the R-Fe-B-based alloy powder is not particularly limited. However, if the average particle size of the alloy powder is less than 1 µm, the powder easily reacts with oxygen in the air or water in the binder to be easily oxidized, and the magnetic properties after sintering are reduced. An average particle diameter exceeding 10 μm is not preferable because the particle diameter is too large and the sintering density is saturated at about 95%, and improvement of the density cannot be expected. Therefore, an average particle size of 1 to 10 μm is a preferable range. Particularly preferably, it is in the range of 1 to 6 μm.
[0018]
Binder component
In the present invention, as a binder added to make the alloy powder into a slurry, a binder comprising at least one of methyl cellulose, polyacrylamide, and polyvinyl alcohol and water is used.
The above-mentioned methyl cellulose, polyacrylamide, and polyvinyl alcohol can improve the viscosity of the slurry by adding a small amount, can maintain a high binding force even after drying, and can be added in a small amount. The amount of residual oxygen and the amount of carbon can be reduced.
[0019]
When the content of each of methylcellulose, polyacrylamide, and polyvinyl alcohol alone is less than 0.05% by weight, the bonding force between the particles in the granulated powder is weak, and the granulated powder is broken at the time of powder supply before molding. If the fluidity of the powder is significantly reduced, and if it exceeds 0.5 wt%, the residual carbon content and the oxygen content in the sintered body increase, the coercive force decreases, and the magnetic characteristics deteriorate. A content of 0.5 wt% is preferred in these respects.
When the content of methylcellulose, polyacrylamide, and polyvinyl alcohol is used in combination, if the content is less than 0.05 wt%, the bonding force between the particles in the granulated powder is weak, as in the case of using the above alone. The granulated powder is broken at the time of the previous feeding, and the fluidity of the powder is remarkably reduced. If it exceeds 0.4 wt%, the residual carbon content and the oxygen content in the sintered body increase, and the coercive force decreases to decrease the magnetic force. Since the characteristics deteriorate, the content of 0.05 wt% to 0.4 wt% is a preferable range.
[0020]
In the present invention, if the content of water to be added to the above-mentioned binder is less than 20 wt%, the concentration of the slurry obtained by kneading the alloy powder and the binder becomes too high to increase the viscosity too much. Cannot be supplied to the spray dryer, and if it exceeds 50 wt%, the concentration of the slurry becomes too low, precipitation occurs in the agitator and the slurry supply pipe of the agitator, and the supply amount becomes unstable. Since the average particle size of the granulated powder obtained by the spray dryer is less than 20 μm and the particle size varies, the preferred range is 20 wt% to 50 wt%. More preferably, it is in the range of 30 wt% to 40 wt%.
As water, it is desirable to use pure water that has been deoxidized or water that has been subjected to bubbling with an inert gas such as nitrogen in order to minimize the reaction with the R component of the R-Fe-B-based alloy powder.
[0021]
The addition and stirring of the binder to the alloy powder is preferably performed within a temperature range of 0 ° C. to 15 ° C., and the oxidation reaction between the alloy powder and water can be further suppressed. Conversely, stirring at a temperature exceeding 15 ° C. is not preferable because the oxidation reaction between the alloy powder and water is promoted. In order to maintain the temperature within the range of 0 ° C. to 15 ° C., it is possible to use water cooled to the temperature in advance, or to employ means for cooling the stirring vessel with cooling water or the like.
[0022]
Further, at least one of a dispersant and a lubricant such as glycerin, wax emulsion, stearic acid, phthalic acid ester, petriol, and glycol is added to the binder described above, or n-octyl alcohol, polyalkylene is further added. When a defoaming agent such as a derivative or a polyether derivative is added, the dispersibility and uniformity of the slurry are improved, and the pulverized state in a spray drier is improved. It becomes possible to obtain spherical granulated powder more easily.
When added, the content of less than 0.03% by weight has no effect on improving the releasability after molding the granulated powder, and the content of more than 0.3% by weight results in the residual carbon content and oxygen content in the sintered body. Increases, the coercive force decreases, and the magnetic properties deteriorate, so that a content of 0.03 wt% to 0.3 wt% is preferable.
[0023]
Granulation method
In the present invention, the slurry obtained by adding and kneading the above-described binder to the alloy powder slurry is formed into granulated powder by a spray dryer.
First, a method for producing granulated powder using a spray drier will be described. The slurry is supplied from a slurry stirrer to the spray drier, for example, sprayed by centrifugal force of a rotating disk, or atomized by a pressure nozzle tip. The sprayed droplets are instantaneously dried by hot air of a heated inert gas to become granulated powder, and fall naturally to the lower part in the collection unit.
[0024]
As the configuration of the spray dryer device, any of the above-described disk rotating type and pressure nozzle type may be used, but since the R-Fe-B-based alloy powder to be granulated is very easily oxidized, the spray drying device may be used in the slurry storage section of the device or It is preferable that the inside of the collection portion of the granulated powder be replaced with an inert gas or the like, and the hermetic structure be such that the oxygen concentration can always be maintained at 3% or less.
In addition, in the configuration of the recovery part of the spray drier device, in order to instantaneously dry droplets sprayed from the rotating disk or the pressure nozzle, heated inert gas is provided near the rotating disk or above the pressure nozzle. And an outlet for discharging the injected gas to the outside of the recovery unit is provided at the lower part of the recovery unit. In order not to lower the temperature of the inert gas heated to above, it is preferable that the injection port is maintained at a temperature corresponding to the temperature of the inert gas, for example, 60 to 150 ° C.
[0025]
That is, when the temperature of the inert gas is reduced, the sprayed droplets cannot be sufficiently dried in a short time, so that the supply amount of the slurry must be reduced, and the efficiency is reduced. When making granulated powder having a relatively large particle size, the number of revolutions of the rotating disk or the pressure of the pressurizing nozzle is reduced, but when the temperature of the inert gas is lowered, the spraying is performed. Since the droplets cannot be dried sufficiently, as a result, the efficiency of obtaining granulated powder having a large particle diameter is extremely reduced by reducing the supply amount of the slurry. Therefore, in order to feed the preheated inert gas into the recovery section while maintaining the temperature, the temperature of the injection port is preferably maintained at 60 to 150 ° C, and most preferably about 100 ° C.
[0026]
Further, even when the temperature difference between the injection port and the discharge port of the inert gas is small, the processing efficiency tends to decrease. Therefore, the temperature of the discharge port is set to 50 ° C. or lower, preferably 40 ° C. or lower, particularly preferably room temperature. It is desirable.
As the inert gas, nitrogen gas or argon gas is preferable, and the heating temperature is preferably 60 to 150 ° C.
[0027]
The particle size of the granulated powder can be controlled by the concentration of the slurry to be supplied to the spray dryer device, the supply amount thereof, or the number of revolutions of the rotating disk or the pressure of the pressure nozzle, but if the average particle size is less than 20 μm, When the fluidity of the granulated powder is hardly improved, and when the average particle size exceeds 400 μm, the particle size is too large, the packing density in the mold at the time of molding decreases, and the compact density also decreases, As a result, the density of the sintered body after sintering is lowered, which is not preferable. Therefore, the average particle size of the granulated powder is preferably 20 to 400 μm. Particularly preferably, it is 50 to 200 μm. Further, by performing undercut and overcut with a sieve, it is possible to obtain a granulated powder having much more fluidity.
Furthermore, when a small amount of a lubricant such as zinc stearate, magnesium stearate, calcium stearate, aluminum stearate, or polyethylene glycol is added to the obtained granulated powder, the fluidity can be further improved, which is effective.
[0028]
In the spray granulated powder, the fluidity of the powder increases as the amount of the binder added increases, but the bonding force between the primary particles increases, and the granulated powder as the secondary particles becomes hard. Since the secondary particles are magnetically isotropic, if the compressive stress of the press or the magnetic field having a high magnetic field strength is broken and the C-axis of the primary particles is not aligned, a sintered body having high magnetic properties can be obtained. I can't get it.
Therefore, in order to obtain a sintered body having excellent magnetic properties with a relatively large amount of binder added, that is, 0.3 wt% to 0.5 wt% of binder, compression molding must be performed in a magnetic field having a magnetic field strength of 30 kOe or more. However, it is very difficult to generate a magnetic field strength of 30 kOe or more at a mass production level.
Therefore, in the present invention, the magnetic field is instantaneously oriented by a pulse magnetic field of 30 kOe or more during compression molding, and then compression molded in a static magnetic field of 8 kOe to 15 kOe to improve the degree of orientation of the molded body. The degree of orientation is improved, and it is an optimal process for industrial mass production.
[0029]
The steps after granulation, that is, conditions and methods such as molding, sintering, and heat treatment, can employ any known powder metallurgical means, but in order to obtain a sintered body having high magnetic properties, the following compression is required. It is necessary to improve the degree of orientation of the molded article by a molding method.
Any known molding method can be used for molding.ToIs most preferably performed by compression molding, and the pressure is 0.3 to 2.0 Ton / cm.TwoIs preferred.
[0030]
Before sintering, the binder is removed by a general method of heating in a vacuum or a method of raising the temperature in a stream of hydrogen at 100 to 200 ° C./hour and maintaining the temperature at 300 to 600 ° C. for about 1 to 2 hours. Preferably, a treatment is performed. By performing the binder removal treatment, almost all the carbon in the binder is decarburized, which leads to an improvement in magnetic properties.
In addition, since the alloy powder containing the R element easily absorbs hydrogen, it is preferable to perform a dehydrogenation treatment after the debinding treatment in a hydrogen stream. In the dehydrogenation treatment, the stored hydrogen is almost completely removed by raising the temperature at a rate of 50 to 200 ° C./hour in vacuum and maintaining the temperature at 500 to 800 ° C. for about 1 to 2 hours. You.
In addition, after the dehydrogenation treatment, it is preferable to perform sintering by heating and subsequently heating, and the heating rate after exceeding 500 ° C. may be arbitrarily selected, for example, 100 to 300 ° C./hour. A known temperature raising method used for sintering can be adopted.
[0031]
The sintering of the molded article after the binder removal treatment and the heat treatment conditions after the sintering are appropriately selected according to the selected alloy powder composition, and the sintering and the heat treatment conditions after the sintering are 1000 to 1180 ° C. A sintering step of holding for 1 to 2 hours, an aging step of holding at 450 to 800 ° C. for 1 to 8 hours, and the like are preferable.
[0032]
[Action]
The present invention relates to an R-Fe-B-based alloy powder, which is added with a binder composed of methylcellulose, polyacrylamide or polyvinyl alcohol alone or in combination with water and kneaded to form a slurry, and the slurry is spray-dried. After the granulated powder is magnetically oriented in a pulsed magnetic field, it is molded in a static magnetic field, sintered, and heat-treated, whereby the C-axis of the primary particles of the granulated powder is sufficiently oriented. In addition to the improved magnetic properties and the excellent lubricity of the binder itself, the fluidity of the powder is significantly improved, the molding cycle is improved, and the variation in the compact density and the life of the molding machine are reduced. An R-Fe-B sintered permanent magnet having excellent thin film shape and small shape and excellent magnetic properties, which is excellent in dimensional accuracy after sintering, can be obtained without causing sintering.
In addition, since the granulated powder in the present invention is coated with the binder, it is not easily oxidized in the air, and thus has an advantage that workability in the molding step is improved.
[0033]
【Example】
Example 1
As R, a raw material consisting of 13.3 atomic% of Nd, 0.31 atomic% of Pr, 0.28 atomic% of Dy, 3.4 atomic% of Co, 6.5 atomic% of B, and the balance Fe and unavoidable impurities was subjected to high-frequency irradiation in an Ar gas atmosphere. By melting, a button-shaped ingot was obtained. Next, after roughly pulverizing the alloy, it was pulverized with a jaw crusher or the like to an average particle size of about 15 μm, and further, a powder having an average particle size of 3 μm was obtained by a jet mill.
Binders, water, and lubricants of the types and amounts shown in Table 1 were added to the powder, and the mixture was kneaded at room temperature to form a slurry. Granulation was performed with the inlet temperature set to 100 ° C and the outlet temperature set to 40 ° C.
[0034]
After filling the granulated powder into a mold, a pulse magnetic field of 30 kOe was applied to the granulated powder, and further, in a static magnetic field of 10 kOe, a pressure of 1 ton / cm.TwoAfter compression molding into a shape of 10 mm x 15 mm x 10 mm in thickness, a debinding treatment is performed in a hydrogen atmosphere from room temperature to 300 ° C at a heating rate of 100 ° C / hour, and then the temperature is raised to 1100 ° C in a vacuum. After sintering by heating and maintaining for 1 hour, after sintering is completed, Ar gas is introduced and cooled to 800 ° C. at a rate of 7 ° C./min, and then cooled at a rate of 100 ° C./hour to 550 ° C. After holding for 2 hours, aging treatment was performed to obtain an anisotropic sintered body.
Table 2 shows the dimensions and density of the compact of the granulated powder at the time of compaction, and the residual oxygen content, residual carbon content, and magnetic properties of the obtained sintered magnet. 1 to 7.
The fluidity was measured by the time required for 100 g of the raw material powder to fall and pass through a funnel tube having an inner diameter of 8 mm.
In addition, cracks, cracks, deformation, and the like were not found in any of the obtained sintered bodies.
[0035]
Comparative Example 1
The granulated powder of Example 1 was directly subjected to a pressure of 1 ton / cm in a static magnetic field of 10 kOe and 15 kOe.TwoWas compression molded into a shape of 10 mm × 15 mm × 10 mm in thickness. The processing conditions after molding are the same as those in Example 1.
Table 2 shows the residual oxygen content, residual carbon content, and magnetic properties after sintering. 8 to 10. The measuring method at this time is the same as that in Example 1.
Also, no cracks, cracks, deformations, etc. were observed in the obtained sintered body.
[0036]
[Table 1]
Figure 0003540389
[0037]
[Table 2]
Figure 0003540389
[0038]
【The invention's effect】
The present invention relates to an R-Fe-B-based alloy powder, a small amount of a binder consisting of methyl cellulose, polyacrylamide or polyvinyl alcohol alone or in combination with water, and water, and kneading to form a slurry. Is granulated by a spray drier to suppress the reaction between the R-Fe-B-based alloy powder and the binder by specifying the binder, and to make the shape of the granulated powder as spherical as possible so that the granulated powder has a high fluidity. A granulated powder having an average particle diameter of 20 μm to 400 μm with added properties is obtained. By using this granulated powder, the fluidity of the powder is remarkably improved, and the degree of orientation of the granulated powder by a magnetic field is improved. After filling in the mold, a pulse magnetic field is applied, and compression molding is performed in a static magnetic field to produce a molded body with a high degree of orientation. Since the amount of residual oxygen and the amount of carbon after sintering are reduced by performing fat sintering and heat treatment, the amount of binder added (0.3 wt% to 0.5 wt%) necessary for improving the fluidity of the granulated powder is reduced. Even if the added amount is increased, the residual oxygen content and the carbon content after sintering are relatively small, not only the orientation degree is high and the magnetic properties are excellent, but also the dispersion of the density of the compact is small, and An R-Fe-B-based sintered permanent magnet having excellent dimensional accuracy and having a thin or complicated shape can be obtained efficiently.

Claims (2)

R-Fe-B系合金粉末(RはYを含む希土類元素の少なくとも1種)に、メチルセルロース、ポリアクリルアミド、ポリビニルアルコールのうち少なくとも1種0.05 0.5wt% と水 20 50wt%とからなるバインダー添加、混練してスラリー状となし、該スラリーをスプレードライヤー装置により造粒粉となした後、該造粒粉の圧縮成形前に、該造粒粉にパルス磁場を印加して一次粒子に崩壊させかつ配向させた後、静磁場中で圧縮成形し、水素流気中での脱バインダー処理を行った後、焼結、熱処理することにより焼結永久磁石を得ることを特徴とするR-Fe-B系焼結永久磁石の製造方法。R-Fe-B-based alloy powder (R is at least one of rare earth elements including Y), a binder comprising methyl cellulose, polyacrylamide, at least one of polyvinyl alcohol 0.05 to 0.5 wt% and water 20 to 50 wt% addition, after no granulated powder by kneading with a slurry and without, the slurry spray dryer apparatus, prior to compression molding of the granulated powder, the primary particles by applying a pulsed magnetic field to the granulated powder After collapsing and orienting, compression molding in a static magnetic field, debinding treatment in a hydrogen stream, sintering, heat treatment to obtain a sintered permanent magnet Manufacturing method of Fe-B sintered permanent magnet. 30kOe以上のパルス磁場で磁場配向させた後、8kOe〜15kOe静磁場中で圧縮成形するとを特徴とする請求項1に記載のR-Fe-B系焼結永久磁石の製造方法。After magnetic field orientation above the pulsed magnetic field 30kOe, R-Fe-B based sintered manufacturing method of sintered permanent magnets according to claim 1, wherein the this compression molding with in a static magnetic field in 8KOe~15kOe.
JP24732994A 1994-09-14 1994-09-14 Method for producing sintered R-Fe-B permanent magnet Expired - Lifetime JP3540389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24732994A JP3540389B2 (en) 1994-09-14 1994-09-14 Method for producing sintered R-Fe-B permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24732994A JP3540389B2 (en) 1994-09-14 1994-09-14 Method for producing sintered R-Fe-B permanent magnet

Publications (2)

Publication Number Publication Date
JPH08115839A JPH08115839A (en) 1996-05-07
JP3540389B2 true JP3540389B2 (en) 2004-07-07

Family

ID=17161788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24732994A Expired - Lifetime JP3540389B2 (en) 1994-09-14 1994-09-14 Method for producing sintered R-Fe-B permanent magnet

Country Status (1)

Country Link
JP (1) JP3540389B2 (en)

Also Published As

Publication number Publication date
JPH08115839A (en) 1996-05-07

Similar Documents

Publication Publication Date Title
KR100300933B1 (en) Manufacturing method of rare earth sintered magnet
JPH1064746A (en) Method of manufacturing r-fe-b sintered magnet having thin thickness
JP3435223B2 (en) Method for producing sendust-based sintered alloy
JP2002285208A (en) Method for preparing rare earth alloy powder material, and method for manufacturing rare earth alloy sintered compact using the same
JPH09312229A (en) Manufacturing sintered rare earth magnet
JPH08107034A (en) Manufacture of r-fe-b sintered permanent magnet
JP3170156B2 (en) Method for producing isotropic granulated powder
JP3540389B2 (en) Method for producing sintered R-Fe-B permanent magnet
JP3432905B2 (en) Method for producing sendust-based sintered alloy
JP3631330B2 (en) Method for producing rare earth sintered permanent magnet
JP3083963B2 (en) Method and apparatus for producing anisotropic granulated powder
JPH0888111A (en) Manufacture of r-fe-b sintered permanent magnet
JPH0917674A (en) Manufacture of sintered rare earth magnet
JP3556786B2 (en) Method and apparatus for producing anisotropic granulated powder
JP3174442B2 (en) Method for producing R-Fe-B sintered anisotropic permanent magnet
JPH0917670A (en) Manufacture of sintered rare-earth magnet
JPH0888112A (en) Manufacture of r-fe-b sintered permanent magnet
JPH0917673A (en) Manufacture of sintered rare earth magnet
JPH08120393A (en) Production of iron-silicon soft magnetic sintered alloy
JPH0974036A (en) Method for manufacturing rare-earth sintered permanent magnet
JPH0897021A (en) Rare-earth magnet powder and rare-earth magnet
JPH0917672A (en) Manufacture of sintered rare-earth magnet
JP4057563B2 (en) Granule, sintered body
JPH0917671A (en) Manufacture of sintered rare-earth permanent magnet
JPH08111309A (en) Production of r-fe-b based sintered magnet

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040325

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080402

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 10

EXPY Cancellation because of completion of term