JPH0917673A - Manufacture of sintered rare earth magnet - Google Patents

Manufacture of sintered rare earth magnet

Info

Publication number
JPH0917673A
JPH0917673A JP7183442A JP18344295A JPH0917673A JP H0917673 A JPH0917673 A JP H0917673A JP 7183442 A JP7183442 A JP 7183442A JP 18344295 A JP18344295 A JP 18344295A JP H0917673 A JPH0917673 A JP H0917673A
Authority
JP
Japan
Prior art keywords
powder
slurry
rare earth
binder
alloy powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7183442A
Other languages
Japanese (ja)
Inventor
Yoshihisa Kishimoto
芳久 岸本
Osamu Yamashita
治 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd, Sumitomo Special Metals Co Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP7183442A priority Critical patent/JPH0917673A/en
Priority to CN96190684A priority patent/CN1122287C/en
Priority to US08/793,368 priority patent/US6187259B1/en
Priority to KR1019970701207A priority patent/KR100300933B1/en
Priority to EP96918894A priority patent/EP0778594B1/en
Priority to DE69633490T priority patent/DE69633490T2/en
Priority to PCT/JP1996/001745 priority patent/WO1997001855A1/en
Publication of JPH0917673A publication Critical patent/JPH0917673A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/083Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together in a bonding agent

Abstract

PURPOSE: To reduce the amounts of residual oxygen and carbon in a sintered product and to improve a dimensional accuracy and productivity of the product by adding a predetermined binder to magnetic powder and stirring them together into a slurry, forming the slurry into powder using a spray drier, and compressing and sintering it. CONSTITUTION: A binder consisting of an organic solvent and at least one type of polymer or an additional plasticizer is added to rare earth alloy powder and kneaded together into a slurry. The slurry is formed into powder by a spray drier, compressed into a compact and sintered to form a sintered permanent magnet. Thereby the fluidity of the powder can be remarkably improved, molding cycle can be improved, and a resultant magnet can have a small-sized shape with an excellent dimensional accuracy, a thin-wall structure and excellent magnetic characteristics.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、流動性の高い球形状
の造粒粉でかつ磁気特性の優れた粉末を得て、該造粒粉
を用いて成形することによりR−Fe−B系合金やR−
Co系合金などの希土類(R)系永久磁石を製造する方
法に係り、該希土類含有合金粉末に有機溶剤と、該有機
溶剤に可溶なポリマー、および必要に応じて可塑剤から
なるバインダーを添加してスラリー状に撹拌した後、ス
プレードライヤー装置のチャンバー内で噴霧して液滴を
作り、そのまま瞬時に乾燥固化させて造粒粉となすこと
により、圧縮成形時の粉体の流動性、潤滑性を向上させ
て、成形サイクルの向上、成形体の寸法精度を向上さ
せ、かつ磁気特性の優れた薄肉形状や複雑形状の焼結永
久磁石を提供することができる希土類系焼結磁石の製造
方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to an R-Fe-B system which is a spherical granulated powder having a high fluidity and which has excellent magnetic properties and is molded using the granulated powder. Alloy and R-
According to a method for producing a rare earth (R) -based permanent magnet such as a Co-based alloy, an organic solvent, a polymer soluble in the organic solvent, and a binder made of a plasticizer, if necessary, are added to the rare earth-containing alloy powder. Then, the mixture is stirred into a slurry and sprayed in the chamber of the spray dryer device to form droplets, which are instantly dried and solidified to form granulated powder, which allows the fluidity and lubrication of the powder during compression molding. Of a rare earth-based sintered magnet capable of improving the molding property, improving the molding cycle, improving the dimensional accuracy of the molded body, and providing a thin-walled or complex-shaped sintered permanent magnet having excellent magnetic properties. Regarding

【0002】[0002]

【従来の技術】今日、家電製品を初めコンピュータの周
辺機器や自動車等の用途に用いられる小型モーターやア
クチュエータ等には、小型化、軽量化とともに高性能化
が求められており、その磁石材料も小型化、軽量化、薄
肉化からさらに磁石材料表面の所定位置に凹凸を設けた
り、貫通孔を設ける等、複雑な形状製品が要求されてい
る。現在の代表的な焼結永久磁石材料としては、フェラ
イト磁石、R−Co系磁石、そして、出願人が先に提案
したR−Fe−B系磁石(特公昭61−34242号
等)が挙げられる。上記の中でも、特に、R−Co系磁
石やR−Fe−B系磁石などの希土類系磁石は、他の磁
石材料に比べて磁気特性が格段にすぐれるために、各種
用途に多用されている。
2. Description of the Related Art Today, small motors and actuators used for home appliances, computer peripherals, automobiles, etc. are required to be small in size and light in weight and have high performance. Due to size reduction, weight reduction, and thinning, a product having a complicated shape is required, such as providing irregularities at predetermined positions on the surface of the magnet material or providing through holes. Ferrite magnets, R-Co based magnets, and R-Fe-B based magnets previously proposed by the applicant (Japanese Patent Publication No. 61-34242, etc.) can be cited as typical current sintered permanent magnet materials. . Among the above, in particular, rare earth magnets such as R—Co magnets and R—Fe—B magnets are remarkably superior in magnetic properties to other magnet materials, and are therefore widely used in various applications. .

【0003】上記の希土類系磁石、例えばR−Fe−B
系焼結永久磁石は、最大エネルギー積((BH)ma
x)が40MGOeを超え、最大では50MGOeを超
える極めて優れた磁気特性を有するが、それを発現させ
るためには、所要組成からなる合金を1〜10μm程度
の平均粒度に粉砕することが必要となる。しかし、合金
粉末の粒度を小さくすると、成形時の粉末の流動性が悪
くなり、成形体密度のバラツキや成形機の寿命を低下さ
せるとともに、焼結後の寸法精度にもバラツキを生じる
こととなり、特に薄肉形状や小型形状の製品を得るのが
困難であった。
The above-mentioned rare earth magnets such as R-Fe-B.
System sintered permanent magnet has the maximum energy product ((BH) ma
x) exceeds 40 MGOe and exceeds 50 MGOe at the maximum, and has extremely excellent magnetic properties, but in order to develop it, it is necessary to pulverize the alloy having the required composition into an average grain size of about 1 to 10 μm. . However, when the particle size of the alloy powder is reduced, the fluidity of the powder during molding deteriorates, which causes variations in the density of the compact and the life of the molding machine, and also causes variations in the dimensional accuracy after sintering. In particular, it has been difficult to obtain a product having a thin shape or a small shape.

【0004】また、希土類系磁石は、大気中で酸化し易
い希土類元素や鉄を主成分として含有するため、合金粉
末の粒度を小さくすると、酸化により磁気特性が劣化す
る問題があり、特にR−Fe−B系焼結永久磁石は、従
来から知られる希土類コバルト磁石等に比べ極めて優れ
た磁気特性を発現するという特徴を有するが、その磁気
特性の発源となる希土類やBとの新たな組織の特定の化
合物や化合物相が活性なため、合金粉末の粒度を小さく
すると、酸化により磁気特性が劣化する問題もあった。
Further, since the rare earth magnet contains as a main component a rare earth element or iron which is easily oxidized in the atmosphere, there is a problem that if the grain size of the alloy powder is reduced, the magnetic characteristics are deteriorated by the oxidation. The Fe-B sintered permanent magnet has a characteristic of exhibiting extremely excellent magnetic characteristics as compared with conventionally known rare earth cobalt magnets and the like, but has a new structure with rare earth or B which is a source of the magnetic characteristics. Since the specific compound and the compound phase are active, there is a problem that the magnetic properties are deteriorated by the oxidation when the particle size of the alloy powder is reduced.

【0005】[0005]

【発明が解決しようとする課題】そのため、特に成形性
を改良するために、成形前の合金粉末に、ポリオキシエ
チレンアルキルエーテル等を添加したもの(特公平4−
80961号)、それらにさらにパラフィンやステアリ
ン酸塩を添加したもの(特公平4−80962号、特公
平5−53842号)、またオレイン酸を添加したもの
(特公昭62−36365号)等が提案された。しか
し、ある程度の成形性は向上できるものの、その改善効
果にも限界があり、近年要求される薄肉形状や小型形状
の成形は依然困難であった。
Therefore, in order to improve the moldability in particular, an alloy powder before molding is added with polyoxyethylene alkyl ether or the like (Japanese Patent Publication No. Hei 4-
80961), those to which paraffin or stearate is further added (Japanese Patent Publication No. 4-80962, Japanese Patent Publication No. 5-53842), and those to which oleic acid has been added (Japanese Patent Publication No. 62-36365). Was done. However, although the moldability can be improved to some extent, the effect of the improvement is limited, and it has been still difficult to form a thin or small shape required in recent years.

【0006】また、上記のバインダーや潤滑剤の添加と
ともに、さらに成形性を改良し、薄肉形状品や小型形状
品を製造する方法として、成形前の合金粉末に飽和脂肪
族カルボン酸や不飽和脂肪族カルボン酸にミリスチン酸
エチルやオレイン酸からなる滑剤を添加して混練した
後、造粒を行なって成形する方法(特開昭62−245
604号)、あるいはパラフィン混合物に飽和脂肪族カ
ルボン酸や不飽和脂肪族カルボン酸等添加、混練後、造
粒した後成形する方法(特開昭63−237402号)
も提案されている。
Further, as a method for manufacturing thin-walled shaped products and small-sized shaped products by further improving the moldability together with the addition of the above-mentioned binder and lubricant, saturated alloyed carboxylic acid and unsaturated fat are added to the alloy powder before molding. A method in which a lubricant composed of ethyl myristate or oleic acid is added to an aromatic carboxylic acid, and the mixture is kneaded and then granulated to form a molded product (JP-A-62-245).
No. 604), or a method in which a saturated aliphatic carboxylic acid, an unsaturated aliphatic carboxylic acid or the like is added to a paraffin mixture, kneaded, granulated and then molded (JP-A-63-237402).
Has also been proposed.

【0007】しかし、上記の方法では、粉末粒子の結合
力が十分でなく、造粒粉が壊れやすいために、十分な粉
末の流動性を実現することが困難であった。成形性を向
上させたり、粉末粒子の結合力を高めるためには、種々
バインダーや潤滑剤の添加量を増やすことが考えられる
が、多量に添加すると、希土類系合金粉末中のR成分と
バインダーとの反応により、焼結後の焼結体の残留酸素
量、残留炭素量が増加し、磁気特性の劣化を招くことに
なるので、添加量にも制限があった。
However, in the above method, it was difficult to realize sufficient fluidity of the powder because the binding force of the powder particles was not sufficient and the granulated powder was easily broken. In order to improve the moldability and the binding force of powder particles, it is possible to increase the addition amount of various binders and lubricants, but if added in large amounts, the R component in the rare earth alloy powder and the binder Due to the reaction, the amount of residual oxygen and the amount of residual carbon in the sintered body after sintering increase, leading to deterioration of magnetic properties, so the addition amount was also limited.

【0008】また、希土類含有の磁性合金粉末を対象と
するものではないが、Co系スーパーアロイ粉末を対象
とした圧縮成形用のバインダーとして、対象合金粉末に
対して、1.5〜3.5wt%のメチルセルロースとさ
らに所定量の添加物であるグリセリンとほう酸を混合し
た組成が提案(USP4,118,480)され、ま
た、工具用合金粉末の射出成形用のバインダーとして、
特殊組成からなり、対象合金粉末に対して0.5〜2.
5wt%のメチルセルロースに水、グリセリン等の可塑
剤、ワックスエマルジョン等の滑剤、離型剤を添加した
組成が提案(特開昭62−37302号)されている。
しかし、それらはいずれも所定の流動性と成形体強度を
確保するため、いずれも対象合金粉末に対して、上記の
ように例えば0.5wt%以上もの比較的多量のバイン
ダーを使用するもので、しかも種々のバインダー添加剤
の添加、例えばグリセリン等の可塑剤をメチルセルロー
スと同量程度添加することが不可欠であるため、射出成
形や圧縮成形後、脱脂した後、焼結後でもかなりの炭素
と酸素が残留し、特に希土類系磁石の場合、磁気の劣化
を招くので、容易には適用できない。
Although it is not intended for the rare earth-containing magnetic alloy powder, it is used as a binder for compression molding of the Co-based superalloy powder in an amount of 1.5 to 3.5 wt. % Methylcellulose and a composition in which glycerin and boric acid which are predetermined amounts of additives are further mixed (USP 4,118,480) are proposed, and as a binder for injection molding of alloy powder for tools,
It has a special composition and is 0.5-2.
A composition has been proposed in which water, a plasticizer such as glycerin, a lubricant such as a wax emulsion, and a release agent are added to 5 wt% of methyl cellulose (JP-A-62-37302).
However, all of them use a relatively large amount of binder such as 0.5 wt% or more as described above with respect to the target alloy powder in order to ensure a predetermined fluidity and compact strength. Moreover, since it is essential to add various binder additives, for example, plasticizers such as glycerin in the same amount as that of methyl cellulose, after injection molding or compression molding, after degreasing, even after sintering, a considerable amount of carbon and oxygen can be obtained. Remains, and in particular in the case of rare earth magnets, it causes deterioration of magnetism and cannot be easily applied.

【0009】また、フェライトなどの酸化物粉末を対象
として、平均粒度1μm以下の粉末に、バインダーとし
て0.6〜1.0wt%のポリビニルアルコールを添加
したのち、スプレードライヤー装置により造粒粉を製造
し、該造粒粉を成形、焼結する方法が知られている。し
かし、それらはいずれも酸化物粉末に対して0.6wt
%以上もの多量のバインダーを使用するもので、脱脂処
理を施したのちの焼結体にもかなりの炭素及び酸素が残
留するため、非常に酸化及び炭化しやすい性質を有し、
少しの酸化あるいは炭化によっても極端に磁気特性が劣
化するこの発明の対象とする希土類含有合金粉末に、上
記のような酸化物を対象とした方法をそのまま適用する
ことはできない。
Further, for oxide powders such as ferrite, 0.6 to 1.0 wt% of polyvinyl alcohol as a binder is added to powder having an average particle size of 1 μm or less, and then granulated powder is manufactured by a spray dryer device. Then, a method of molding and sintering the granulated powder is known. However, each of them is 0.6 wt% with respect to the oxide powder.
% Using a large amount of binder, and since a considerable amount of carbon and oxygen remain in the sintered body after degreasing treatment, it has the property of being easily oxidized and carbonized,
The above-described method for oxides cannot be applied as it is to the rare earth-containing alloy powder targeted by the present invention, whose magnetic properties are extremely deteriorated by a little oxidation or carbonization.

【0010】特に、酸化物の場合は比較的多量のバイン
ダーを用いても大気中で脱脂、焼結できるため、脱脂、
焼結時にバインダーが燃焼してある程度の残留炭素の抑
制を図ることができるが、この発明の対象とする希土類
含有合金粉末の場合は、酸化により磁気特性が劣化する
ため大気中で脱脂、焼結することができないので、多量
のバインダー添加は得られる焼結磁石の磁気特性に致命
的な悪影響を及ぼすこととなる。このように、成形前の
合金粉末に、種々のバインダーや潤滑剤を添加したり、
さらに造粒を行なって、成形性を改良する試みが種々提
案されてはいるが、いずれの方法によっても、近年要求
されるような、薄肉形状や小型形状でかつ優れた磁気特
性を有する希土類系磁石を製造するのは困難であった。
Particularly, in the case of oxides, even if a relatively large amount of binder is used, it is possible to degrease and sinter in the air.
Although the binder burns during sintering, a certain amount of residual carbon can be suppressed.However, in the case of the rare earth-containing alloy powder, which is the object of the present invention, the magnetic properties are deteriorated due to oxidation, so that degreasing and sintering are performed in air. Therefore, the addition of a large amount of binder has a fatal adverse effect on the magnetic properties of the obtained sintered magnet. In this way, adding various binders and lubricants to the alloy powder before molding,
Although various attempts have been made to further improve the formability by granulating, a rare earth-based material having a thin shape or a small shape and excellent magnetic properties as required in recent years has been proposed by any method. It has been difficult to manufacture magnets.

【0011】この発明は、優れた磁気特性を有する希土
類系磁石を製造するのに必要な造粒粉を容易に製造で
き、希土類含有合金粉末とバインダーとの反応を抑制
し、焼結後の焼結体の残留酸素量、残留炭素量を低減さ
せるとともに、成形時の粉体の流動性、潤滑性を向上さ
せて、成形体の寸法精度の向上及び生産性の向上を図
り、薄肉形状や複雑形状でかつ優れた磁気特性を有する
R−Fe−B系やR−Co系などの希土類系焼結永久磁
石の製造方法の提供を目的とする。
According to the present invention, it is possible to easily produce the granulated powder required for producing a rare earth magnet having excellent magnetic properties, suppress the reaction between the rare earth-containing alloy powder and the binder, and burn after sintering. In addition to reducing the residual oxygen content and residual carbon content of the aggregate, it also improves the fluidity and lubricity of the powder during molding, improving the dimensional accuracy of the compact and improving productivity, and reducing the thin shape and complexity. An object of the present invention is to provide a method for producing a rare earth-based sintered permanent magnet such as an R—Fe—B system or an R—Co system that has a shape and excellent magnetic properties.

【0012】[0012]

【課題を解決するための手段】発明者らは、成形性の良
好な造粒粉を容易に製造できる製造方法について種々検
討した結果、回転ディスク型スプレードライヤー装置に
着目し、磁性粉末と所要のバインダーとを添加、混練し
てスラリー状となして、該スラリーを噴霧、乾燥させる
ことにより、該スラリーを所要の平均粒径の造粒粉とな
すことができ、その後、該造粒粉を用いて成形すると、
造粒粉自体が十分な結合力を有するため、粉体の流動性
が格段に向上し、成形体密度のバラツキや成形機の寿命
を低下させることもなく、焼結後の寸法精度にもすぐ
れ、薄肉形状や複雑形状でかつすぐれた磁気特性を有す
る希土類系焼結永久磁石が効率よく得られることを知見
した。
Means for Solving the Problems As a result of various studies on a manufacturing method capable of easily manufacturing a granulated powder having good moldability, the inventors have paid attention to a rotary disk type spray dryer device, and have investigated a magnetic powder and a required amount. By adding a binder and kneading to form a slurry, and spraying and drying the slurry, the slurry can be made into a granulated powder having a required average particle diameter, and then the granulated powder is used. And molded,
Since the granulated powder itself has a sufficient binding force, the fluidity of the powder is remarkably improved, there is no variation in the density of compacts, the life of the molding machine is not reduced, and the dimensional accuracy after sintering is also excellent. It was found that a rare earth sintered permanent magnet having a thin shape or a complicated shape and excellent magnetic characteristics can be efficiently obtained.

【0013】また、発明者らは、上記の製造方法におい
て、特に希土類含有合金粉末との反応を抑制でき、焼結
体の残留酸素量、残留炭素量を低減させるバインダーに
ついて種々検討した結果、少なくとも1種以上の溶剤系
ポリマーと有機溶剤からなるバインダーを用いることに
より、焼結前の工程における希土類系合金粉末とバイン
ダーとの反応を抑制することができ、次いで通常の粉末
冶金方法を適用することにより、焼結後の焼結体の残留
酸素量、残留炭素量を大幅に低減できるとともに優れた
残留磁束密度を有する焼結磁石が得られることを見い出
した。
In addition, as a result of various investigations by the present inventors, in the above-mentioned manufacturing method, as a result of various studies on binders that can suppress the reaction with the rare earth-containing alloy powder and reduce the residual oxygen content and residual carbon content of the sintered body, at least By using a binder composed of one or more solvent-based polymers and an organic solvent, it is possible to suppress the reaction between the rare earth alloy powder and the binder in the step before sintering, and then apply a normal powder metallurgy method. As a result, it was found that the amount of residual oxygen and the amount of residual carbon of the sintered body after sintering can be significantly reduced and a sintered magnet having an excellent residual magnetic flux density can be obtained.

【0014】また、上記バインダーとして、有機溶剤と
その溶剤に対して可溶なポリマー、可塑剤を混合したも
のを用いて造粒化を行う場合、その添加量を合金粉末1
00重量部に対して0.5重量部以下としても、成形時
に金型へ粉末を供給するためのフィーダー内における振
動にも充分耐えられる程度の一次粒子の粒子間結合力
と、充分な流動性および成形体強度を得ることができる
ことを知見し、この発明を完成した。
When granulating is carried out using a mixture of an organic solvent, a polymer soluble in the solvent, and a plasticizer as the binder, the addition amount of the alloy powder 1
Even if the amount is 0.5 parts by weight or less with respect to 00 parts by weight, the interparticle binding force of the primary particles is sufficient to withstand the vibration in the feeder for supplying the powder to the mold during molding, and the sufficient fluidity. Further, they found that the strength of the molded body can be obtained, and completed the present invention.

【0015】すなわち、この発明は希土類系合金粉末
に、有機溶剤と少なくとも1種以上のポリマー、あるい
はさらに可塑剤とからなるバインダーを添加、混練して
スラリー状となし、該スラリーをスプレードライヤー装
置により造粒粉となし、該造粒粉を用いて成形、焼結す
る粉末冶金法により焼結永久磁石を得ることを特徴とす
る希土類系焼結磁石の製造方法である。
That is, according to the present invention, a binder composed of an organic solvent and at least one polymer or a plasticizer is added to a rare earth alloy powder and kneaded to form a slurry, and the slurry is sprayed with a spray dryer. A method for producing a rare earth-based sintered magnet, which is characterized in that a sintered permanent magnet is obtained by a powder metallurgy method of forming granulated powder and molding and sintering the granulated powder.

【0016】希土類含有合金粉末 この発明において、対象とする希土類含有合金粉末は、
希土類元素Rを含有するいずれの組成のものも適用可能
であるが、中でもR−Fe−B系合金粉末や、R−Co
系合金粉末あるいはそれらの合金粉末中の希土類元素以
外の元素を別の元素で置換したもの、例えば、R−Fe
−B系のFeをCo等の遷移金属で、BをCやSi等の
半金属で置換したものなどが最も適している。特に、希
土類含有合金粉末としては、所要組成からなる単一の合
金を粉砕した粉末や、異なる組成の合金を粉砕した後、
混合して所要組成に調整した粉末、保磁力の向上や製造
性を改善するため添加元素を加えたものなど、公知のR
−Fe−B系合金粉末、R−Co系合金粉末を用いるこ
とができる。
Rare Earth-Containing Alloy Powder In the present invention, the target rare earth-containing alloy powder is
Any composition containing the rare earth element R is applicable, but among them, R-Fe-B based alloy powder and R-Co.
Alloy powders or alloy powders thereof in which an element other than the rare earth element is replaced with another element, for example, R-Fe
It is most suitable to replace —B type Fe with a transition metal such as Co and replace B with a semi-metal such as C or Si. In particular, as the rare earth-containing alloy powder, a powder obtained by pulverizing a single alloy having the required composition, or an alloy having a different composition,
Known powders such as powders that have been mixed and adjusted to the required composition, those that have added additional elements to improve coercive force and manufacturability
-Fe-B type alloy powder and R-Co type alloy powder can be used.

【0017】また、その製造方法も、溶解・粉化法、超
急冷法、直接還元拡散法、水素含有崩壊法、アトマイズ
法等の公知の方法を適宜選定することができ、その粒度
も特に限定しないが、合金粉末の平均粒度が1μm未満
では大気中の酸素あるいはバインダー及び溶媒と反応し
て酸化しやすくなり、焼結後の磁気特性を低下させる恐
れがあるため好ましくなく、また、10μmを超える平
均粒径では粒径が大きすぎて焼結密度が95%程度で飽
和し、該密度の向上が望めないため好ましくない。よっ
て1〜10μmの平均粒度が好ましい範囲である。特に
好ましくは1〜6μmの範囲である。
As the manufacturing method, known methods such as dissolution / pulverization method, ultra-quenching method, direct reduction diffusion method, hydrogen-containing disintegration method, atomizing method and the like can be appropriately selected, and the particle size thereof is also particularly limited. However, if the average particle size of the alloy powder is less than 1 μm, it is not preferable because it reacts easily with oxygen in the atmosphere or with a binder and a solvent to easily oxidize, which may deteriorate the magnetic properties after sintering, and exceeds 10 μm. The average particle size is not preferable because the particle size is too large and the sintered density is saturated at about 95%, and improvement in the density cannot be expected. Therefore, the average particle size of 1 to 10 μm is a preferable range. Particularly preferably, it is in the range of 1 to 6 μm.

【0018】この発明において、合金粉末をスラリー状
にするために添加するバインダー成分は、1種以上の有
機溶剤と該有機溶剤に可溶な1種以上のポリマーおよび
必要に応じて1種以上の可塑剤からなるものを用いる。
この発明のバインダーにおいて用いるポリマーは、その
化学構造、分子量等は特に限定されるものではないが、
次のような特性が必要となる。 1)化学的安定性 用いる合金粉末に対して化学的に安定であり、スラリー
混練時および造粒粉末の状態で合金粉末と容易に反応し
ないのみならず、用いる有機溶剤や、可塑剤等の添加剤
に対して、酸化、分解、架橋等の化学反応を起こし物理
的、化学的物性に変化をきたさないことが必要である。
In the present invention, the binder component added to make the alloy powder into a slurry has at least one organic solvent, at least one polymer soluble in the organic solvent, and optionally at least one polymer. A plasticizer is used.
The polymer used in the binder of the present invention is not particularly limited in its chemical structure, molecular weight, etc.,
The following characteristics are required. 1) Chemical stability Not only does it chemically react with the alloy powder to be used and does not easily react with the alloy powder during slurry kneading and in the state of granulated powder, it also adds an organic solvent and a plasticizer to be used. It is necessary that chemicals such as oxidation, decomposition and cross-linking do not occur in the agent to cause changes in physical and chemical properties.

【0019】2)有機溶剤可溶性 有機溶剤に対して容易に溶解し、しかも造粒工程におい
てスラリーをスプレードライヤーに供給する過程におい
て、安定に供給するために必要な粘度範囲であることが
必要である。例えば、20℃、1重量%濃度において、
その溶液の粘度が100cps以下程度が好適である。
この粘度を越えるポリマーを用いた場合、スラリーの供
給が不安定となり、安定に供給するためにはスラリー濃
度を著しく低減する必要が生じて非効率的である。
2) Soluble in organic solvent It is necessary that the viscosity range is such that the organic solvent is easily dissolved in an organic solvent and that the slurry is stably supplied in the process of supplying the slurry to the spray dryer in the granulating step. . For example, at 20 ° C. and 1% by weight concentration,
The viscosity of the solution is preferably about 100 cps or less.
When a polymer having a viscosity exceeding this range is used, the slurry supply becomes unstable, and it is inefficient because the slurry concentration must be remarkably reduced for stable supply.

【0020】3)高い粒子間結合力 合金粉末の造粒化を容易に行うためには、ポリマー自身
が合金粉末に対して高い粒子間結合力を有することが必
要である。すなわち、ポリマー自体が強靭な機械的性質
を有すると同時に、合金粉末に対して高い密着性を有す
ることが必要である。この粒子間結合力を直接定量的に
測定することは困難であるが、その目安として、ポリマ
ー単体を熱プレス、溶媒キャスト等の方法でフィルム化
し、そのポリマー単体フィルムの破断強度を測定するこ
とによりある程度把握することが可能である。このよう
にして測定される破断強度としては、20℃において、
0.5kgf/mm2以上であることが好まく、かかる
強度未満では、造粒性が不十分で未造粒の原料微粉が混
入したり、造粒性を向上させるためにはポリマー添加量
を増大させる必要があり、その結果得られる焼結体に大
量の炭素が残存し、磁気特性の低下を招く。
3) High interparticle binding force In order to easily granulate the alloy powder, it is necessary that the polymer itself has a high interparticle binding force with respect to the alloy powder. That is, it is necessary that the polymer itself has strong mechanical properties and, at the same time, has high adhesion to the alloy powder. Although it is difficult to directly measure this interparticle binding force quantitatively, as a guideline, a polymer simple substance is formed into a film by a method such as hot pressing or solvent casting, and the breaking strength of the polymer simple substance film is measured. It is possible to understand to some extent. The breaking strength measured in this way is as follows:
0.5 kgf / mm 2 or more is preferable, and if it is less than such strength, the granulation property is insufficient and un-granulated raw material fine powder is mixed, or the polymer addition amount is increased in order to improve the granulation property. It is necessary to increase the amount, and as a result, a large amount of carbon remains in the resulting sintered body, resulting in deterioration of magnetic properties.

【0021】4)軟化温度 上述の粒子間結合力とも関連するが、得られる造粒粉末
は、通常室温で保管し、さらに室温においてプレス成形
するため、室温において必要とする粒子間結合力を保持
するには、その軟化温度が室温以上であることが必要で
ある。実際には、後述のごとく磁場配合性を向上させる
ために、可塑剤を添加する場合には、その添加効果によ
り、若干軟化温度が低下することを考慮に入れると、フ
ィルム単体の軟化温度は30℃以上、さらに好ましくは
50℃以上である。軟化温度の上限は特にないが、プレ
ス成形工程において、例えば、超音波を印加して成形す
る場合、超音波印加により造粒粉末を熱的エネルギーに
より軟化させて、磁場配合性を向上させる観点から、2
00℃以下であることが好ましい。
4) Softening temperature Although related to the above-mentioned interparticle bonding force, the obtained granulated powder is usually stored at room temperature and press-molded at room temperature, so that the required interparticle bonding force is maintained at room temperature. Therefore, the softening temperature needs to be room temperature or higher. In practice, in the case of adding a plasticizer in order to improve the magnetic field blending property as described below, the softening temperature of the film alone is 30%, considering that the softening temperature is slightly lowered due to the effect of the addition. C. or higher, more preferably 50.degree. C. or higher. Although there is no particular upper limit of the softening temperature, in the press molding step, for example, when molding is performed by applying ultrasonic waves, the granulated powder is softened by thermal energy by applying ultrasonic waves, and from the viewpoint of improving the magnetic field blending property. Two
It is preferably 00 ° C or lower.

【0022】この発明において用いるポリマーは、上述
の必要特性を満たしていれば、その化学構造、分子量等
は特に制限されるものではないが、上述の観点から具体
的に好適なポリマーを例示すると、ポリメタクリル酸メ
チル、ポリメタクリル酸ブチル、アクリル酸シクロヘキ
シル等のアクリル系樹脂、ポリスチレン樹脂、ポリ酢酸
ビニル樹脂、ポリビニルアセタール樹脂、ポリビニルブ
チラール樹脂、メチルセルロース、ヒドロキシプロピル
セルロース等のセルロースエーテル類、ポリカーボネー
ト樹脂、ポリアリレート樹脂等のホモポリマーの他、エ
チレン酢酸ビニル共重合体、エチレン−アクリレート共
重合体、スチレン−メチルタクリレート共重合体等のコ
ポリマーを挙げることができる。
The polymer used in the present invention is not particularly limited in its chemical structure, molecular weight and the like as long as it satisfies the above-mentioned required characteristics. Acrylic resins such as polymethyl methacrylate, polybutyl methacrylate, cyclohexyl acrylate, polystyrene resins, polyvinyl acetate resins, polyvinyl acetal resins, polyvinyl butyral resins, cellulose ethers such as methyl cellulose and hydroxypropyl cellulose, polycarbonate resins, poly In addition to homopolymers such as arylate resins, copolymers such as ethylene vinyl acetate copolymers, ethylene-acrylate copolymers, styrene-methyl tacrylate copolymers can be mentioned.

【0023】この発明において用いる有機溶剤は、上述
から選択された1種以上のポリマーに対して、適宜選択
することができる。すなわち、用いるポリマーに対して
充分な溶解性を有し、かつポリマーおよび合金粉末に対
して化学的に安定であれば、特に制限されるものではな
い。しかしながら、工業的に安定に造粒粉を製造するた
めには、常圧での沸点が30℃〜150℃程度の有機溶
剤を選択することが好ましい。すなわち、沸点が30℃
未満では、スラリーの混練中における有機溶剤の揮発が
著しく、スラリー濃度を一定に保つのが困難であるのみ
ならず、不均一なスラリーとなりやすい。また、逆に1
50℃を越える沸点を有する有機溶剤を用いた場合、ス
プレードライ工程において、造粒粉末を乾燥するために
は非常に高温の雰囲気に保持する必要があり、また乾燥
に長時間要するため、造粒の処理能力が著しく低下する
ことになる。
The organic solvent used in the present invention can be appropriately selected for one or more polymers selected from the above. That is, it is not particularly limited as long as it has sufficient solubility in the polymer used and is chemically stable in the polymer and alloy powder. However, in order to industrially stably produce the granulated powder, it is preferable to select an organic solvent having a boiling point of about 30 ° C. to 150 ° C. under normal pressure. That is, the boiling point is 30 ° C
When the amount is less than the above, the volatilization of the organic solvent during the kneading of the slurry is remarkable, it is difficult to keep the slurry concentration constant, and the slurry tends to be non-uniform. On the contrary, 1
When an organic solvent having a boiling point of more than 50 ° C. is used, it is necessary to keep the granulated powder in a very high temperature atmosphere in the spray drying process, and it takes a long time to dry the granulated powder. The processing capacity of will be significantly reduced.

【0024】この発明において、上記バインダーに可塑
剤を添加することが好ましい。可塑剤は、造粒化した粉
末を用いてプレス成形する際に、少しの力で粉末の形態
を永久変形するために添加するものである。この発明に
おけるポリマー類は、造粒化を容易にするために高い粒
子間結合力を有するため、保形性は優れているものの、
プレス成形時において一定加圧下でも、その保形性を保
持するため、圧粉体密度が下がったり、時には磁場中成
形時において印加磁場に対して、その優れた粒子間結合
力のため完全に配向せず、その結果得られる焼結体の残
留磁束密度が低下し、磁気特性が劣化する原因となる。
そこで、ポリマー鎖の分子間相互作用を低下させ、ガラ
ス転移温度を低くするために可塑剤を添加する。
In the present invention, it is preferable to add a plasticizer to the binder. The plasticizer is added in order to permanently deform the powder morphology with a small force when press-molding the granulated powder. The polymers in the present invention have a high interparticle binding force for facilitating granulation, so that the shape retention is excellent,
It retains its shape-retaining property even under constant pressure during press molding, so that the green compact density decreases, and sometimes it is perfectly oriented due to its excellent interparticle bonding force against the applied magnetic field during magnetic field molding. Otherwise, the resulting residual magnetic flux density of the sintered body is reduced, which causes deterioration of magnetic characteristics.
Therefore, a plasticizer is added to lower the intermolecular interaction of polymer chains and lower the glass transition temperature.

【0025】用いる可塑剤は、ポリマーに対する可塑効
果、ポリマーとの相溶性、化学的安定性、物理特性(沸
点、蒸気圧等)、合金粉末との反応性等を考慮して、一
般に公知の可塑剤を用いることができ、本発明のごとく
有機溶剤系スラリーの場合には、ジブチルフタレート、
ジオクチルフタレート、ジデシルフタレート、ブチルベ
ンジルフタレート等のフタル酸エステル系可塑剤、トリ
クレジルホスフェート、トリオクチルホスフェート、ト
リフェニルホスフェート、オクチルジジフェニルホスフ
ェート、クレジルジフェニルホスフェート等のリン酸エ
ステル系可塑剤、ジオクチルアジペート、ジイソデシル
アジペート等のアジピン酸エステル系可塑剤、ジブチル
セバケート、ジオクチルセバケート等のセバチン酸エス
テル系可塑剤、ジオクチルアゼレート、ジヘキシルアゼ
レート等のアゼライン酸エステル系可塑剤、クエン酸ト
リエチル、アセチルクエン酸トリエチル、クエン酸トリ
ブチル等のクエン酸エステル系可塑剤、メチルフタリル
エチルグリコレート、エチルフタリルエチルグリコレー
ト、ブチルフタリルブチルグリコレート等のグリコール
酸エステル系可塑剤、トリブチルトリメリテート、トリ
オクチルトリメリテート等のトリメリット酸エステル系
可塑剤等を採用することができる。
The plasticizer to be used is a generally known plasticizer in consideration of the plasticizing effect on the polymer, compatibility with the polymer, chemical stability, physical properties (boiling point, vapor pressure, etc.), reactivity with alloy powder, and the like. Agents can be used, in the case of an organic solvent-based slurry as in the present invention, dibutyl phthalate,
Dioctyl phthalate, didecyl phthalate, phthalate ester plasticizers such as butylbenzyl phthalate, tricresyl phosphate, trioctyl phosphate, triphenyl phosphate, octyl didiphenyl phosphate, cresyl diphenyl phosphate and other phosphate ester plasticizers, Dioctyl adipate, adipate plasticizers such as diisodecyl adipate, dibutyl sebacate, sebacate ester plasticizers such as dioctyl sebacate, dioctyl azelate, azelaic ester plasticizers such as dihexyl azelate, triethyl citrate, Acetyl triethyl citrate, citric acid ester-based plasticizers such as tributyl citrate, methylphthalylethyl glycolate, ethylphthalylethyl glycolate, butylphthali Can be employed glycolic acid ester plasticizers butyl glycolate and the like, tributyl trimellitate, trimellitic acid ester plasticizers such as trioctyl trimellitate.

【0026】これら可塑剤の添加量は、可塑剤の上記特
性により適宜選択できるが、通常スラリーに添加するポ
リマー100重量部に対して、2〜100重量部、好ま
しくは5〜70重量部である。添加量が2重量部未満で
は可塑効果が充分でなく、磁場を印加中成形における粉
末の配合性が充分に向上せず、得られる焼結体の磁気特
性(残留磁束密度)が低下する。一方、100重量部を
越える添加では、得られる造粒粉末の粒子間結合力が低
下し、造粒性が低下するため良好な流動性が得られな
い。
The addition amount of these plasticizers can be appropriately selected depending on the above-mentioned characteristics of the plasticizer, but is usually 2 to 100 parts by weight, preferably 5 to 70 parts by weight, relative to 100 parts by weight of the polymer added to the slurry. . If the added amount is less than 2 parts by weight, the plasticizing effect is not sufficient, the compoundability of the powder during the application of a magnetic field is not sufficiently improved, and the magnetic properties (residual magnetic flux density) of the obtained sintered body deteriorate. On the other hand, if it is added in excess of 100 parts by weight, the intergranular binding force of the obtained granulated powder is lowered and the granulating property is lowered, so that good fluidity cannot be obtained.

【0027】この発明は、合金粉末に上記ポリマーおよ
び有機溶剤、必要に応じて可塑剤からなるバインダーを
添加し、撹拌、混練することによりスラリーを作製する
が、この際、スラリー濃度はスラリー粘度、合金粉末の
分散性、スプレー造粒工程における処理量等の観点から
適宜選択することができる。スラリー中の合金粉末濃度
を40〜80重量%とすることが望ましく、40重量%
未満では、撹拌混練工程において固液分離が生じ、スラ
リーの分散性が低下し、不均一なスラリーとなるのみな
らず、撹拌混練槽からスプレードライヤー装置への供給
中に供給パイプ内で沈降が起こり、得られる造粒粉に造
粒化されていない微粉が混入したり、球状でない造粒粉
になり、また、80重量%を越えるとスラリー粘度が著
しく上昇し、均一な撹拌混練ができないのみならず、撹
拌混練槽からスプレードライヤー装置まで該スラリーを
供給できない。
According to the present invention, a slurry is prepared by adding the above-mentioned polymer, an organic solvent and, if necessary, a binder made of a plasticizer to alloy powder, and stirring and kneading the slurry. It can be appropriately selected from the viewpoints of dispersibility of the alloy powder, the amount of treatment in the spray granulation step, and the like. The alloy powder concentration in the slurry is preferably 40 to 80% by weight, and 40% by weight
If less than, solid-liquid separation occurs in the stirring and kneading step, the dispersibility of the slurry is reduced, not only becomes a non-uniform slurry, but also sedimentation occurs in the supply pipe during the supply from the stirring and kneading tank to the spray dryer device. If the obtained granulated powder is mixed with non-granulated fine powder or becomes a non-spherical granulated powder, and if it exceeds 80% by weight, the slurry viscosity increases remarkably and only uniform stirring and kneading cannot be performed. Therefore, the slurry cannot be supplied from the stirring and kneading tank to the spray dryer device.

【0028】この発明において、スプレードライヤーに
供給するスラリーは、少なくとも合金粉末、上記ポリマ
ー類、有機溶剤、および必要に応じて添加する可塑剤か
らなるが、添加するポリマー類の添加量は、該合金粉末
100重量部に対して、0.05重量部〜0.7重量
部、好ましくは0.05〜0.5重量部である。添加量
が0.05重量部未満では得られる造粒粉中の合金粉末
の粒子間の結合力が弱く、得られる造粒粉末中に未造粒
の原料微粉が混入したり、成形前の給粉時に造粒粉が壊
れるとともに粉体の流動性が著しく低下する。また、
0.7重量部を越えると、得られる焼結体中の残留酸素
量と残留炭素量が増加して保磁力が低下し磁気特性が劣
化する。さらに必要に応じて、解膠剤(分散剤)、滑
剤、消泡剤、表面処理剤等の添加剤を、焼結体の残留炭
素濃度が大きく増加しない範囲で添加することが可能で
ある。
In the present invention, the slurry supplied to the spray dryer comprises at least alloy powder, the above-mentioned polymers, an organic solvent, and a plasticizer to be added if necessary. The amount of the added polymers is the alloy. The amount is 0.05 to 0.7 parts by weight, preferably 0.05 to 0.5 parts by weight, based on 100 parts by weight of the powder. If the addition amount is less than 0.05 parts by weight, the bonding force between the particles of the alloy powder in the obtained granulated powder is weak, and the ungranulated raw material fine powder is mixed in the obtained granulated powder, The granulated powder is broken during powdering and the fluidity of the powder is significantly reduced. Also,
If it exceeds 0.7 parts by weight, the amount of residual oxygen and the amount of residual carbon in the obtained sintered body increase, the coercive force decreases, and the magnetic properties deteriorate. Further, if necessary, additives such as a deflocculant (dispersant), a lubricant, a defoaming agent, and a surface treatment agent can be added within a range in which the residual carbon concentration of the sintered body does not significantly increase.

【0029】スプレードライヤー装置 この発明において、合金粉末に前述したバインダーを添
加、混練したスラリーは、スプレードライヤー装置によ
って造粒粉にする。まず、スプレードライヤー装置を用
いた造粒粉の製造方法を説明すると、スラリー撹拌機か
らスラリーをスプレードライヤー装置に供給する、例え
ば、回転ディスクの遠心力で噴霧したり、加圧ノズル先
端部で霧状に噴霧され、噴霧された液滴は、加熱された
不活性ガスの熱風によって瞬時に乾燥されて造粒粉とな
り、回収部内の下部に自然落下する。
Spray Dryer Device In the present invention, the slurry obtained by adding the above-mentioned binder to the alloy powder and kneading the mixture into granulated powder by a spray dryer device. First, a method for producing granulated powder using a spray drier will be described. A slurry is supplied from a slurry stirrer to a spray drier, for example, sprayed by centrifugal force of a rotating disk, or atomized by a pressure nozzle tip. The sprayed droplets are instantaneously dried by hot air of the heated inert gas to become granulated powder, and fall naturally to the lower part in the collection unit.

【0030】この発明において、スプレードライヤー装
置として回転ディスク型には、ベーン型、ケスナー型、
ピン型等種々のタイプがあるが、原理的にはどのタイプ
でも、上下2枚のディスクから構成され、そのディスク
が回転する構造となっている。スプレードライヤー装置
全体の構成としては、公知の開放型スプレードライヤー
装置を用いることも可能であるが、有機溶剤が環境に悪
影響を及ぼすのみならず、造粒する磁性粉末が希土類含
有合金粉末は非常に酸化し易いために、装置のスラリー
収納部内あるいは造粒粉の回収部内を不活性ガスなどで
置換でき、かつその酸素濃度を常時3%以下に保持でき
る密閉構造であることが好ましい。
In the present invention, the rotary disk type as a spray dryer device is a vane type, a Kessner type,
Although there are various types such as a pin type, in principle, each type is configured by two upper and lower disks, and the disks are configured to rotate. As the configuration of the entire spray dryer device, it is possible to use a known open type spray dryer device, but not only the organic solvent has an adverse effect on the environment, but the magnetic powder to be granulated is a rare earth-containing alloy powder. Since it is easily oxidized, it is preferable to have a closed structure in which the inside of the slurry storage section of the apparatus or the collection section of the granulated powder can be replaced with an inert gas and the oxygen concentration thereof can be constantly maintained at 3% or less.

【0031】また、スプレードライヤー装置の回収部内
の構成としては、上述した回転ディスクにより噴霧され
た液滴を瞬時に乾燥させるために、回転ディスクの上方
に加熱された不活性ガスを噴射する噴射口を配置し、ま
た回収部内の下部に、噴射されたガスを回収部外へ排出
する排出口を設けるが、その際、予め装置外部あるいは
装置に付属された加熱器で所要温度に加熱された不活性
ガスの温度を低下させないように、上記噴射口を不活性
ガスの温度に応じた温度、例えば60〜150℃に保持
することが好ましい。
Further, as a structure in the recovery part of the spray dryer device, an injection port for injecting a heated inert gas above the rotating disk in order to instantly dry the droplets sprayed by the rotating disk. In addition, a discharge port for discharging the injected gas to the outside of the recovery unit is provided in the lower part of the recovery unit, but at that time, it is not possible to heat it to the required temperature outside the device or with a heater attached to the device in advance. It is preferable to maintain the injection port at a temperature corresponding to the temperature of the inert gas, for example, 60 to 150 ° C. so as not to lower the temperature of the active gas.

【0032】すなわち、不活性ガスの温度が低下する
と、噴霧された液滴を短時間で十分乾燥することができ
なくなるため、スラリーの供給量を減少させなければな
らず能率が低下してしまう。また、比較的大きな粒径の
造粒粉を作る場合は、回転ディスクの回転数を低下させ
るが、その際に不活性ガスの温度が低下していると、噴
霧された液滴を十分乾燥することができないので、結果
としてスラリーの供給量を減少させることにより、大き
な粒径の造粒粉を得る場合には極端に能率が低下するこ
とになる。従って、予め加熱された不活性ガスの温度を
そのまま維持しながら回収部内へ送り込むには、噴射口
の温度を60〜150℃に保持することが好ましく、特
に100℃前後に保持することが最も好ましい。
That is, when the temperature of the inert gas decreases, the sprayed droplets cannot be dried sufficiently in a short time, so that the slurry supply amount must be reduced and the efficiency decreases. Also, when making a granulated powder with a relatively large particle size, the rotation speed of the rotating disk is lowered, but if the temperature of the inert gas is lowered at that time, the sprayed droplets are sufficiently dried. Since it is not possible, as a result, by reducing the supply amount of the slurry, the efficiency becomes extremely low when a granulated powder having a large particle size is obtained. Therefore, in order to feed the preheated inert gas into the recovery unit while maintaining the temperature as it is, it is preferable to maintain the temperature of the injection port at 60 to 150 ° C, and most preferably about 100 ° C. .

【0033】また、不活性ガスの噴射口と排出口の温度
差が小さい場合も処理能率が低下する傾向があるので、
排出口の温度は50℃以下、好ましくは40℃以下、特
に好ましくは常温に設定することが望ましい。不活性ガ
スとしては、窒素ガスやアルゴンガスが好ましく、加熱
温度は60〜150℃が好ましい。
Further, when the temperature difference between the injection port and the discharge port of the inert gas is small, the processing efficiency tends to decrease, so that
The temperature of the outlet is desirably set at 50 ° C. or lower, preferably 40 ° C. or lower, and particularly preferably at room temperature. As the inert gas, nitrogen gas or argon gas is preferable, and the heating temperature is preferably 60 to 150 ° C.

【0034】得られる造粒粉の粒度は、スプレードライ
ヤー装置へ供給するスラリーの濃度やその供給量、ある
いは回転ディスクの回転数によって制御することができ
るが、例えば、希土類含有合金造粒粉の平均粒径が10
μm未満では、造粒粉の流動性がほとんど向上せず、ま
た、平均粒径が400μmを超えると、粒径が大きすぎ
て成形時の金型内への充填密度が低下するとともに成形
体密度も低下し、ひいては、焼結後の焼結体密度の低下
を来たすこととなるため好ましくなく、よって、造粒粉
の平均粒径は10〜400μmが好ましい。さらに好ま
しくは40〜200μmである。また、得られる造粒粉
にふるいによりアンダーカット、オーバーカットを行う
ことにより、さらに極めて流動性に富んだ造粒粉を得る
ことができる。さらに、造粒粉にステアリン酸亜鉛、ス
テアリン酸マグネシウム、ステアリン酸カルシウム、ス
テアリン酸アルミニウム、ほう酸エステル類等の潤滑剤
を少量添加することにより、さらに流動性を高めること
も可能である。
The particle size of the obtained granulated powder can be controlled by the concentration of the slurry supplied to the spray dryer device, the amount of the slurry supplied, or the rotation speed of the rotating disk. Particle size is 10
If it is less than μm, the fluidity of the granulated powder is hardly improved, and if the average particle size exceeds 400 μm, the particle size is too large, the packing density in the mold during molding is reduced, and the density of the compact is reduced. This is not preferable because the density of the sintered body after sintering is lowered. Therefore, the average particle size of the granulated powder is preferably 10 to 400 μm. More preferably, it is 40 to 200 μm. Further, by performing undercutting and overcutting on the obtained granulated powder with a sieve, it is possible to obtain a granulated powder having an extremely high fluidity. Further, the fluidity can be further enhanced by adding a small amount of a lubricant such as zinc stearate, magnesium stearate, calcium stearate, aluminum stearate, and borate esters to the granulated powder.

【0035】焼結永久磁石の製造方法 この発明による造粒粉を用いて焼結永久磁石を製造する
工程、すなわち、成形、焼結、熱処理など条件、方法は
公知のいずれの粉末冶金的手段を採用することができ
る。以下に好ましい条件の一例を示す。成形は、公知の
いずれの成形方法も採用できるが、圧縮成形で行なうこ
とが最も好ましく、その圧力は、0.3〜2.0ton
/cm2が好ましい。また、磁場を印加して成形する場
合の磁場強度としては10〜20kOeが好ましい範囲
である。焼結前には、真空中で加熱する一般的な方法
や、水素流気中で100〜200℃/時間で昇温し、3
00〜600℃で1〜2時間程度保持する方法などによ
り脱バインダー処理を行なうことが好ましい。脱バイン
ダー処理を施すことにより、バインダー中のほぼ全炭素
が脱炭され、磁気特性の向上に繋がる。
Manufacturing Method of Sintered Permanent Magnet The process of manufacturing a sintered permanent magnet using the granulated powder according to the present invention, that is, the conditions such as molding, sintering and heat treatment, and the method may be any known powder metallurgical means. Can be adopted. An example of preferable conditions is shown below. The molding can be carried out by any known molding method, but compression molding is most preferable, and the pressure is 0.3 to 2.0 ton.
/ Cm 2 is preferred. A preferable range of the magnetic field strength when molding by applying a magnetic field is 10 to 20 kOe. Before sintering, a general method of heating in a vacuum or a temperature increase of 100 to 200 ° C./hour in flowing hydrogen for 3
The binder removal treatment is preferably performed by a method such as holding at 00 to 600 ° C. for about 1 to 2 hours. By performing the binder removal treatment, almost all carbon in the binder is decarburized, which leads to improvement in magnetic properties.

【0036】なお、R元素を含む合金粉末は、水素を吸
蔵しやすいために、水素流気中での脱バインダー処理後
には脱水素処理工程を行なうことが好ましい。脱水素処
理は、真空中で昇温速度は、50〜200℃/時間で昇
温し、500〜800℃で1〜2時間程度保持すること
により、吸蔵されていた水素はほぼ完全に除去される。
また、脱水素処理後は、引き続いて昇温加熱して焼結を
行うことが好ましく、500℃を超えてからの昇温速度
は任意に選定すればよく、例えば100〜300℃/時
間など、焼結に際して取られる公知の昇温方法を採用で
きる。
Since the alloy powder containing the R element easily absorbs hydrogen, it is preferable to carry out the dehydrogenation treatment step after the binder removal treatment in flowing hydrogen. In the dehydrogenation treatment, the stored hydrogen is almost completely removed by raising the temperature in a vacuum at a rate of 50 to 200 ° C./hour and maintaining the temperature at 500 to 800 ° C. for about 1 to 2 hours. You.
Further, after the dehydrogenation treatment, it is preferable to subsequently perform heating and heating to perform sintering, and the temperature rising rate after the temperature exceeds 500 ° C. may be arbitrarily selected, for example, 100 to 300 ° C./hour. A publicly known temperature raising method taken during sintering can be adopted.

【0037】脱バインダー処理後の成形品の焼結並びに
焼結後の熱処理条件は、選定した合金粉末組成に応じて
適宜選定されるが、例えばR−Fe−B系磁石の場合で
あれば、焼結並びに焼結後の熱処理条件としては、10
00〜1200℃、1〜6時間保持する焼結工程、45
0〜800℃、1〜8時間保持する時効処理工程などが
好ましい。
Sintering of the molded product after the binder removal treatment and heat treatment conditions after the sintering are appropriately selected according to the selected alloy powder composition. For example, in the case of R-Fe-B magnets, Sintering and heat treatment conditions after sintering are 10
Sintering process of holding at 0 to 1200 ° C. for 1 to 6 hours, 45
An aging treatment step of holding at 0 to 800 ° C. for 1 to 8 hours is preferable.

【0038】さらに、希土類含有合金粉末がR−Fe−
B系合金粉末の場合、該粉末中のR成分とバインダー及
び有機溶媒との反応を抑制するために、従来の粉末冶金
法で一般的に使用されている所要の単一組成のR−Fe
−B系合金原料粉末の代わりに、R2Fe14B相を主相
とする平均粒径1〜10μmの主相系合金粉末と、R3
Co相を含むCoまたはFeとRとの金属間化合物相に
一部R2(FeCo)14B相等を含みかつ希土類含有量
が多く、極力有機バインダーとの反応を抑えるように主
相系合金より平均粒径の大きい平均粒径8〜40μmの
液相系化合物粉末の2種類の原料粉末を用いることによ
り、焼結後の残留酸素量を低減できる。
Further, the rare earth-containing alloy powder is R-Fe-
In the case of B-based alloy powder, in order to suppress the reaction of the R component in the powder with the binder and the organic solvent, R-Fe having a required single composition generally used in the conventional powder metallurgy method.
In place of the B-based alloy raw material powder, a main phase-based alloy powder having an R 2 Fe 14 B phase as a main phase and an average particle size of 1 to 10 μm, and R 3
The intermetallic compound phase of Co or Fe and R, including the Co phase, contains a part of R 2 (FeCo) 14 B phase, etc. and has a large amount of rare earth elements, so as to suppress the reaction with the organic binder as much as possible than the main phase alloy. The amount of residual oxygen after sintering can be reduced by using two kinds of raw material powders having a large average particle diameter and having an average particle diameter of 8 to 40 μm.

【0039】[0039]

【作用】この発明による焼結永久磁石の製造方法の作用
を図面に基づいて詳述する。図1はこの発明で用いる回
転ディスク型スプレードライヤー装置のディスク部を示
す部分説明図である。図1に示す回転ディスク1は、一
対のディスク2,2を、複数の所要長さの非磁性材ピン
3を円周部に所定間隔で立設配置しナット4で固定し
て、所定の対向距離を保持させてあり、この回転ディス
ク1の中心に回転シャフト5を配置してその周辺部をス
ラリー供給口となした構成のピン型回転ディスクであ
る。
The operation of the method for producing a sintered permanent magnet according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a partial explanatory view showing a disc portion of a rotary disc type spray dryer used in the present invention. The rotating disk 1 shown in FIG. 1 is such that a pair of disks 2 and 2 are provided with a plurality of non-magnetic material pins 3 of a required length vertically arranged at a predetermined interval on a circumferential portion and fixed by a nut 4 so as to face each other. This is a pin-type rotating disk having a structure in which a distance is maintained, a rotating shaft 5 is arranged at the center of the rotating disk 1, and a peripheral portion thereof serves as a slurry supply port.

【0040】密閉構造からなる図示しないチャンバー内
に回転ディスク1が回転駆動可能に水平配置され、回転
ディスク1上方の所要位置には不活性ガスのノズルが下
方に噴霧可能に配置され、チャンバーの下方が造粒粉の
回収部となっている。磁性粉末に所定のバインダーを添
加、撹拌したスラリーは、スラリー撹拌機から当該スプ
レードライヤー装置に供給され、スラリーは回転ディス
ク1の遠心力により噴霧される。噴霧された液滴は、加
熱された不活性ガスの熱風によって瞬時に乾燥されて造
粒粉となり、回収部内の下部に自然落下する。
A rotary disc 1 is horizontally arranged in a chamber (not shown) having a closed structure so as to be rotatable, and an inert gas nozzle is sprayed downward at a predetermined position above the rotary disc 1 so that it can be sprayed downward. Is the part for collecting granulated powder. The slurry obtained by adding and stirring a predetermined binder to the magnetic powder is supplied from the slurry stirrer to the spray dryer device, and the slurry is sprayed by the centrifugal force of the rotating disk 1. The sprayed droplets are instantly dried by the heated hot air of the inert gas to become granulated powder, and spontaneously drop to the lower part in the recovery section.

【0041】すなわち、R−Fe−B系合金粉末やR−
Co系合金粉末等の希土類含有合金粉末に、有機溶剤と
その溶剤に対して可溶なポリマー、さらに必要に応じて
添加する可塑剤とからなるバインダーを、添加、混練し
てスラリー状となし、該スラリーを上記構成からなるス
プレードライヤー装置により流動性の高い球状の造粒粉
となすことにより、バインダー自体のすぐれた流動性と
も相まって、粉体の流動性が格段に向上し、成形サイク
ルが向上するとともに、成形体密度のバラツキや成形機
の寿命を低下させることもなく、焼結後の寸法精度にも
すぐれる、薄肉形状や複雑形状でかつ優れた磁気特性を
有する希土類系焼結磁石が得られる。
That is, R-Fe-B type alloy powder and R-
A rare earth-containing alloy powder such as a Co-based alloy powder is added with a binder comprising an organic solvent and a polymer soluble in the solvent, and a plasticizer to be added if necessary, and kneaded to form a slurry, By forming the slurry into a spherical granulated powder having high fluidity by the spray dryer device having the above-mentioned structure, the fluidity of the powder is remarkably improved in combination with the excellent fluidity of the binder itself, and the molding cycle is improved. In addition, a rare-earth sintered magnet with a thin shape and a complicated shape and excellent magnetic characteristics, which has excellent dimensional accuracy after sintering without variation in the density of the molded body and shortening the life of the molding machine, can get.

【0042】なお、この発明における造粒粉は、それ自
体は等方性であるので、磁場を印加せずに成形した場合
は当然のことながら等方性の成形体になるが、磁場を印
加しながら成形すると、圧縮応力と磁場の作用によっ
て、造粒粉が壊れて元の一次粒子となり、該一次粒子が
磁場によって配向し、異方性の成形体が得られるので、
用途に応じて等方性磁石と異方性磁石の両方を製造する
ことができるという利点も有する。さらに、この発明に
おける造粒粉は、バインダーによって被覆されているた
め、大気中において酸化し難いので、成形工程における
作業性が向上するという利点も有する。
Since the granulated powder in the present invention is isotropic in itself, it naturally becomes an isotropic molded product when molded without applying a magnetic field, but a magnetic field is applied. However, when molded, the granulated powder is broken into the original primary particles by the action of the compressive stress and the magnetic field, and the primary particles are oriented by the magnetic field, so that an anisotropic molded body is obtained.
It also has the advantage that both isotropic magnets and anisotropic magnets can be manufactured depending on the application. Further, since the granulated powder according to the present invention is coated with the binder, it is difficult to oxidize in the air, and thus there is an advantage that workability in the molding process is improved.

【0043】[0043]

【実施例】【Example】

実施例1 Nd:13.3原子%、Pr:0.31原子%、Dy:
0.28原子%、Co:3.4原子%、B:6.5原子
%、残部:Feおよび不可避的不純物からなる原料をA
rガス雰囲気中で高周波溶解して、ボタン状溶製合金を
得た。次に、該合金を粗粉砕した後、ジョークラッシャ
ーなどにより平均粒度15μmに粉砕し、さらにジェッ
トミルにより平均粒度3μmの粉末を得た。得られた粉
末に、ポリマーとして、ポリメチルメタクリレート(破
断強度:0.65kgf/mm2)を用い、有機溶剤と
してトルエンを用い、合金粉末100重量部に対して表
1に示す組成で配合し、室温で撹拌混練を行うことによ
りスラリーを作製し、該スラリーをディスク回転型スプ
レードライヤー装置により、不活性ガスとして窒素を用
い、熱風入口温度を100℃、出口温度を40℃に設定
して造粒を行った。
Example 1 Nd: 13.3 atomic%, Pr: 0.31 atomic%, Dy:
A raw material consisting of 0.28 atomic%, Co: 3.4 atomic%, B: 6.5 atomic%, balance: Fe and unavoidable impurities
High-frequency melting was performed in an r gas atmosphere to obtain a button-shaped ingot alloy. Next, the alloy was roughly pulverized, then pulverized with a jaw crusher or the like to have an average particle size of 15 μm, and further jet-milled to obtain a powder having an average particle size of 3 μm. Polymethylmethacrylate (breaking strength: 0.65 kgf / mm 2 ) was used as a polymer, toluene was used as an organic solvent in the obtained powder, and the composition shown in Table 1 was added to 100 parts by weight of the alloy powder. A slurry is prepared by stirring and kneading at room temperature, and the slurry is granulated by a disk rotary spray dryer using nitrogen as an inert gas, setting the hot air inlet temperature to 100 ° C and the outlet temperature to 40 ° C. I went.

【0044】上記造粒粉を圧縮磁場成形機を用いて、磁
場強度15kOe、圧力1ton/cm2で10mm×
15mm×10mmの形状に成形した後、水素雰囲気中
で100℃/時間の昇温速度で、室温から300℃まで
加熱し脱バインダー処理を行った。引き続いて真空中で
1100℃まで昇温し1時間保持する焼結を行い、さら
に焼結完了後、Arガスを導入して7℃/分の速度で8
00℃まで冷却し、その後100℃/時間の速度で冷却
して550℃で2時間保持することにより時効処理を施
し、異方性の焼結体を得た。成形時の造粒粉の流動性、
および得られた焼結磁石の残留酸素量、残留炭素量、磁
気特性を表1に示す。なお、流動性は、内径5mmのロ
ートの管を50gの粉末が自然落下し通過するまでに要
した時間で測定した。また、得られた焼結体には、割
れ、ヒビ、変形などは全く見られなかった。
Using a compression magnetic field molding machine, the above granulated powder was subjected to a magnetic field strength of 15 kOe and a pressure of 1 ton / cm 2 and a pressure of 10 mm ×.
After forming into a shape of 15 mm × 10 mm, the binder was removed by heating from room temperature to 300 ° C. at a heating rate of 100 ° C./hour in a hydrogen atmosphere. Sequentially, the temperature is raised to 1100 ° C. in vacuum and the sintering is performed for 1 hour, and after the sintering is completed, Ar gas is introduced and the sintering is performed at a rate of 7 ° C./min.
Aging was performed by cooling to 00 ° C., then cooling at a rate of 100 ° C./hour, and holding at 550 ° C. for 2 hours to obtain an anisotropic sintered body. Fluidity of granulated powder during molding,
Table 1 shows the residual oxygen content, the residual carbon content, and the magnetic properties of the obtained sintered magnet. The fluidity was measured by the time required for 50 g of the powder to spontaneously drop and pass through a funnel tube having an inner diameter of 5 mm. In addition, cracks, cracks, and deformation were not observed in the obtained sintered body at all.

【0045】実施例2 ポリマーとしてポリメチルメタクリレートにかえて、ポ
リビニルブチラール(破断強度:1.0kgf/m
2)を用い、また有機溶剤としてトルエンにかえてジ
オキサンを用いた点を除いて実施例1と同様に造粒粉を
作製し、この造粒粉を用いて焼結体を得た。実施例1と
同様の試験結果を表1に示す。
Example 2 Instead of polymethylmethacrylate as the polymer, polyvinyl butyral (breaking strength: 1.0 kgf / m
m 2 ) was used, and granulated powder was prepared in the same manner as in Example 1 except that dioxane was used instead of toluene as the organic solvent, and a sintered body was obtained using this granulated powder. The test results similar to those in Example 1 are shown in Table 1.

【0046】実施例3 ポリマーとしてエチレン−メチルメタクリレート共重合
体(破断強度:0.55kgf/mm2)を用い、有機
溶剤としてジクロロエタンとキシレンの混合溶剤(1/
1:重量比)を用い、合金粉末100重量部に対して表
1に示す組成で配合した以外は実施例1と同様に造粒粉
を作製し、この造粒粉を用いて焼結体を得た。実施例1
と同様の試験結果を表1に示す。
Example 3 An ethylene-methyl methacrylate copolymer (breaking strength: 0.55 kgf / mm 2 ) was used as the polymer, and a mixed solvent of dichloroethane and xylene (1/1) was used as the organic solvent.
1: weight ratio), and except that the composition shown in Table 1 was added to 100 parts by weight of the alloy powder, a granulated powder was prepared in the same manner as in Example 1, and a sintered body was prepared using this granulated powder. Obtained. Example 1
The test results similar to the above are shown in Table 1.

【0047】実施例4 ポリマーとしてポリカーボネート(破断強度:3.5k
gf/mm2)、有機溶剤としてジクロロエタンを用
い、また、可塑剤としてジブチルフタレートを用い、合
金粉末100重量部に対して表1に示す組成で配合した
以外は実施例1と同様に造粒粉を作製し、この造粒粉を
用いて焼結体を得た。実施例1と同様の試験結果を表1
に示す。
Example 4 Polycarbonate as a polymer (breaking strength: 3.5 k
gf / mm 2 ), dichloroethane as the organic solvent, dibutyl phthalate as the plasticizer, and the composition shown in Table 1 with respect to 100 parts by weight of the alloy powder. Was produced, and a sintered body was obtained using this granulated powder. The test results similar to those of Example 1 are shown in Table 1.
Shown in

【0048】実施例5 ポリマーとしてポリビニルブチラール(破断強度:4.
0kgf/mm2)、有機溶剤としてジオキサンを用
い、また、可塑剤としてジオクチルアジペートを用い、
合金粉末100重量部に対して表1に示す組成で配合し
た以外は実施例1と同様に造粒粉を作製し、この造粒粉
を用いて焼結体を得た。実施例1と同様の試験結果を表
1に示す。
Example 5 Polyvinyl butyral (breaking strength: 4.
0 kgf / mm 2 ), using dioxane as the organic solvent and dioctyl adipate as the plasticizer,
Granulated powder was produced in the same manner as in Example 1 except that 100 parts by weight of the alloy powder was mixed with the composition shown in Table 1, and a sintered body was obtained using this granulated powder. The test results similar to those in Example 1 are shown in Table 1.

【0049】実施例6 ポリマーとしてポリアリレート(破断強度:4.5kg
f/mm2)、有機溶剤としてベンゼンを用い、また、
可塑剤としてブチルフタリルブチルグリコールを用い、
合金粉末100重量部に対して表1に示す組成で配合し
た以外は実施例1と同様に造粒粉を作製し、この造粒粉
を用いて焼結体を得た。実施例1と同様の試験結果を表
1に示す。
Example 6 Polyarylate as a polymer (breaking strength: 4.5 kg
f / mm 2 ), using benzene as an organic solvent,
Using butylphthalyl butyl glycol as a plasticizer,
Granulated powder was produced in the same manner as in Example 1 except that 100 parts by weight of the alloy powder was mixed with the composition shown in Table 1, and a sintered body was obtained using this granulated powder. The test results similar to those in Example 1 are shown in Table 1.

【0050】比較例1 実施例1で得られた平均粒度3μmの粉を用い、造粒を
行わずにそのまま実施例1と同様にプレス成形、焼結、
時効処理を行い焼結体を得た。その試験結果を表1に示
す。
Comparative Example 1 The powder having an average particle size of 3 μm obtained in Example 1 was used, as it was in the same manner as in Example 1, without granulation, by press molding, sintering,
Aging treatment was performed to obtain a sintered body. Table 1 shows the test results.

【0051】[0051]

【表1】 [Table 1]

【0052】実施例7〜実施例12 Sm11.9at%、Cu8.8at%、Fe12.6
at%、Zr1.2at%、残部Co及び不可避的不純
物からなる原料を、Arガス雰囲気中で高周波溶解し
て、ボタン状溶製合金を得た。次に、該合金を粗粉砕し
た後、ジョークラッシャーなどにより平均粒度約15μ
mに粉砕し、さらにジェットミルにより平均粒度3μm
の粉末を得た。該粉末に表2に示す添加量のポリマー、
有機溶媒、可塑剤を添加して室温で混練、撹拌してスラ
リー状となし、該スラリーをディスク回転型スプレード
ライヤー装置により、不活性ガスに窒素を用い、熱風入
口温度を100℃、出口温度を40℃に設定して造粒を
行なった。
Examples 7 to 12 Sm 11.9 at%, Cu 8.8 at%, Fe 12.6
A raw material comprising at%, Zr1.2 at%, balance Co and unavoidable impurities was subjected to high frequency melting in an Ar gas atmosphere to obtain a button-shaped ingot alloy. Next, after coarsely pulverizing the alloy, the average particle size is about 15 μm with a jaw crusher or the like.
m, and average particle size 3 μm by jet mill
Was obtained. The amount of the polymer shown in Table 2 added to the powder,
An organic solvent and a plasticizer are added, and the mixture is kneaded at room temperature and stirred to form a slurry, and the slurry is heated by a disk rotary spray dryer using nitrogen as an inert gas, a hot air inlet temperature of 100 ° C., and an outlet temperature of 100 ° C. Granulation was performed by setting the temperature to 40 ° C.

【0053】該造粒粉を圧縮磁場プレス機を用いて、磁
場強度15kOe、圧力1ton/cm2で10mm×
15mm×厚み10mmの形状に成形した後、水素雰囲
気中で室温から300℃までを昇温速度100℃/時で
加熱する脱バインダー処理を行ない、引き続いて真空中
で1200℃まで昇温し1時間保持する焼結を行ない、
さらに焼結完了後、1160℃にて溶体化処理を施し、
Arガスを導入して800℃から400℃まで多段時効
処理を施した。成形時の造粒粉の流動性、及び得られた
焼結磁石の残留酸素量、残留炭素量、磁気特性を表2に
示す。なお、流動性は、内径5mmのロートの管を50
gの原料粉が自然落下し通過するまでに要した時間で測
定した。また、得られた焼結体には、ワレ、ヒビ、変形
などは全く見られなかった。
Using a compression magnetic field press, the granulated powder was 10 mm × with a magnetic field strength of 15 kOe and a pressure of 1 ton / cm 2.
After being formed into a shape of 15 mm × 10 mm in thickness, debinding treatment is performed in a hydrogen atmosphere from room temperature to 300 ° C. at a heating rate of 100 ° C./hour, followed by heating to 1200 ° C. in vacuum for 1 hour Perform sintering to hold,
After completion of sintering, a solution treatment is performed at 1160 ° C.
A multi-stage aging treatment was performed from 800 ° C. to 400 ° C. by introducing Ar gas. Table 2 shows the fluidity of the granulated powder at the time of molding, the residual oxygen content, the residual carbon content, and the magnetic properties of the obtained sintered magnet. In addition, the fluidity of a funnel tube with an inner diameter of 5 mm is 50
It was measured by the time required for the raw material powder of g to fall naturally and pass. Moreover, cracks, cracks, deformation, etc. were not observed at all in the obtained sintered body.

【0054】比較例2 実施例7と同じ3μm粉末を用いて、造粒を行なわず、
そのまま実施例と同一の磁場プレス機により、磁場強度
15kOe、圧力1ton/cm2で10mm×15m
m×厚み10mmの形状に成形した後、真空中で120
0℃で1時間保持する焼結を行ない、さらに焼結完了
後、1160℃にて溶体化処理を施し、Arガスを導入
して800℃から400℃まで多段時効処理を施した。
成形時の造粒粉の流動性及び密度及び得られた焼結磁石
の残留酸素量、残留炭素量、磁気特性を実施例と共に表
2に示す。
Comparative Example 2 Using the same 3 μm powder as in Example 7, without granulation,
As it is, the same magnetic field pressing machine as in the example was used, with a magnetic field strength of 15 kOe and a pressure of 1 ton / cm 2, 10 mm × 15 m.
After molding into a shape of m × thickness 10 mm, 120 in vacuum
Sintering was carried out at 0 ° C. for 1 hour, and after completion of sintering, solution treatment was performed at 1160 ° C., Ar gas was introduced, and multi-step aging treatment was performed from 800 ° C. to 400 ° C.
Table 2 shows the fluidity and density of the granulated powder at the time of molding, the residual oxygen content, the residual carbon content, and the magnetic characteristics of the obtained sintered magnet together with the examples.

【0055】表1、表2から明らかなように、この発明
によれば、有機溶剤、および該有機溶剤に可溶なポリマ
ーと必要に応じて添加する可塑剤からなるバインダーを
用いてR−Fe−B系合金粉末、R−Co系合金粉末な
どの希土類系合金粉末をスラリー化し、スプレードライ
ヤー装置で造粒化することにより、流動性に優れた造粒
粉末が得られ、該造粒粉末を用いてプレス成形、脱バイ
ンダー、焼結、時効処理を施すことにより、優れた流動
性により連続プレス成形性に優れるとともに、寸法精度
が向上し、非水系スラリーとすることから、合金粉末の
酸化反応が大幅に抑制でき、焼結後の磁気特性に優れた
焼結磁石を得ることができる。
As is apparent from Tables 1 and 2, according to the present invention, R-Fe is used by using an organic solvent and a binder comprising a polymer soluble in the organic solvent and a plasticizer added as necessary. A rare earth alloy powder such as —B alloy powder or R—Co alloy powder is slurried and granulated with a spray dryer to obtain a granulated powder having excellent fluidity. By performing press molding, debinding, sintering, and aging treatment, it has excellent fluidity and excellent continuous press moldability, as well as improved dimensional accuracy and a non-aqueous slurry. Can be significantly suppressed, and a sintered magnet having excellent magnetic properties after sintering can be obtained.

【0056】[0056]

【表2】 [Table 2]

【0057】[0057]

【発明の効果】この発明による希土類系焼結永久磁石の
製造方法は、R−Fe−B系合金粉末またはR−Co系
合金粉末などの希土類含有合金粉末に、有機溶剤と、該
有機溶剤に可溶なポリマー、および必要に応じて可塑剤
からなるバインダーを添加、混練してスラリー状とな
し、該スラリーをスプレードライヤー装置により流動性
の高い球状の造粒粉となし、該造粒粉を用いて、圧縮成
形し、脱バインダー、焼結、時効処理するため、水を用
いないことから合金粉末の酸化反応が大幅に抑制され、
得られる焼結体の磁気特性が大幅に向上するとともに、
造粒粉のバインダー自体の優れた流動性とも相まって、
粉体の流動性が格段に向上し、成形サイクルが向上する
とともに、成形体の密度のばらつきや成形機の寿命を低
下させることもなく、寸法精度にも優れる小型形状や薄
肉形状でかつ優れた磁気特性を有する希土類系焼結磁石
が効率よく得られる。
The method for producing a rare earth-based sintered permanent magnet according to the present invention uses a rare earth-containing alloy powder such as an R—Fe—B alloy powder or an R—Co alloy powder, an organic solvent, and the organic solvent. A soluble polymer and, if necessary, a binder made of a plasticizer are added and kneaded to form a slurry, and the slurry is formed into a highly fluid spherical granulated powder by a spray dryer device. Since it is used for compression molding, debinding, sintering, and aging treatment, the oxidation reaction of the alloy powder is greatly suppressed because water is not used,
The magnetic properties of the obtained sintered body are greatly improved,
Combined with the excellent fluidity of the granulated powder binder itself,
The fluidity of the powder has been remarkably improved, the molding cycle has been improved, and the compact shape and thin wall shape have excellent dimensional accuracy without reducing the density variation of the molded body or shortening the life of the molding machine. A rare earth-based sintered magnet having magnetic characteristics can be efficiently obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明に用いる回転ディスク型スプレードラ
イヤー装置の回転ディスク部を示す部分説明図である。
FIG. 1 is a partial explanatory view showing a rotary disk portion of a rotary disk type spray dryer device used in the present invention.

【符号の説明】[Explanation of symbols]

1 回転ディスク 2 ディスク 3 非磁性材ピン 4 ナット 5 回転シャフト 1 rotating disk 2 disk 3 non-magnetic material pin 4 nut 5 rotating shaft

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 希土類系合金粉末に、有機溶剤と少なく
とも1種以上のポリマーからなるバインダーを添加、混
練してスラリー状となし、該スラリーをスプレードライ
ヤー装置により造粒粉となし、該造粒粉を用いて成形、
焼結する粉末冶金法により焼結永久磁石を得ることを特
徴とする希土類系焼結磁石の製造方法。
1. A rare earth alloy powder, a binder comprising an organic solvent and at least one or more polymers are added and kneaded to form a slurry, and the slurry is formed into granulated powder by a spray dryer device, and the granulated powder is formed. Molding with powder,
A method for producing a rare earth-based sintered magnet, characterized in that a sintered permanent magnet is obtained by a powder metallurgy method of sintering.
【請求項2】 希土類系合金粉末に、有機溶剤と少なく
とも1種以上のポリマーおよび可塑剤からなるバインダ
ーを添加、混練してスラリー状となし、該スラリーをス
プレードライヤー装置により造粒粉となし、該造粒粉を
用いて成形、焼結する粉末冶金法により焼結永久磁石を
得ることを特徴とする希土類系焼結磁石の製造方法。
2. A rare earth alloy powder is added with an organic solvent and a binder comprising at least one polymer and a plasticizer and kneaded to form a slurry, and the slurry is formed into granulated powder by a spray dryer device. A method for producing a rare earth-based sintered magnet, characterized in that a sintered permanent magnet is obtained by a powder metallurgy method of molding and sintering the granulated powder.
JP7183442A 1995-06-26 1995-06-26 Manufacture of sintered rare earth magnet Pending JPH0917673A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP7183442A JPH0917673A (en) 1995-06-26 1995-06-26 Manufacture of sintered rare earth magnet
CN96190684A CN1122287C (en) 1995-06-26 1996-06-25 Process for producing sintered earth magnet
US08/793,368 US6187259B1 (en) 1995-06-26 1996-06-25 Method for preparing rare-earth system sintered magnet
KR1019970701207A KR100300933B1 (en) 1995-06-26 1996-06-25 Manufacturing method of rare earth sintered magnet
EP96918894A EP0778594B1 (en) 1995-06-26 1996-06-25 Process for producing sintered rare earth magnet
DE69633490T DE69633490T2 (en) 1995-06-26 1996-06-25 MANUFACTURING METHOD FOR RARE-SINTERED MAGNETS
PCT/JP1996/001745 WO1997001855A1 (en) 1995-06-26 1996-06-25 Process for producing sintered earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7183442A JPH0917673A (en) 1995-06-26 1995-06-26 Manufacture of sintered rare earth magnet

Publications (1)

Publication Number Publication Date
JPH0917673A true JPH0917673A (en) 1997-01-17

Family

ID=16135848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7183442A Pending JPH0917673A (en) 1995-06-26 1995-06-26 Manufacture of sintered rare earth magnet

Country Status (1)

Country Link
JP (1) JPH0917673A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007088206A (en) * 2005-09-22 2007-04-05 Tdk Corp Manufacturing method of rare earth sintered magnet
JP2007184389A (en) * 2006-01-06 2007-07-19 Tdk Corp Method of manufacturing rare earth sintered magnet
EP3113198A1 (en) * 2015-06-24 2017-01-04 JTEKT Corporation Manufacturing method for magnet and magnet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007088206A (en) * 2005-09-22 2007-04-05 Tdk Corp Manufacturing method of rare earth sintered magnet
JP4662046B2 (en) * 2005-09-22 2011-03-30 Tdk株式会社 Manufacturing method of rare earth sintered magnet
JP2007184389A (en) * 2006-01-06 2007-07-19 Tdk Corp Method of manufacturing rare earth sintered magnet
JP4687895B2 (en) * 2006-01-06 2011-05-25 Tdk株式会社 Manufacturing method of rare earth sintered magnet
EP3113198A1 (en) * 2015-06-24 2017-01-04 JTEKT Corporation Manufacturing method for magnet and magnet

Similar Documents

Publication Publication Date Title
KR100300933B1 (en) Manufacturing method of rare earth sintered magnet
JP3393018B2 (en) Method for producing thin R-Fe-B sintered magnet
JP3435223B2 (en) Method for producing sendust-based sintered alloy
JPH09312229A (en) Manufacturing sintered rare earth magnet
KR102345075B1 (en) Method for manufacturing a sintered body for forming sintered magnets and a method for manufacturing a permanent magnet using the sintered body for forming sintered magnets
CN100449658C (en) Magnetic field gel injection molding method for large scale rare-earth sintering magnet
JPH0917673A (en) Manufacture of sintered rare earth magnet
JP3432905B2 (en) Method for producing sendust-based sintered alloy
JPH08107034A (en) Manufacture of r-fe-b sintered permanent magnet
JP3170156B2 (en) Method for producing isotropic granulated powder
JP3631330B2 (en) Method for producing rare earth sintered permanent magnet
JPH0917674A (en) Manufacture of sintered rare earth magnet
JPH0974036A (en) Method for manufacturing rare-earth sintered permanent magnet
JPH0917672A (en) Manufacture of sintered rare-earth magnet
JP3540389B2 (en) Method for producing sintered R-Fe-B permanent magnet
JPH0888111A (en) Manufacture of r-fe-b sintered permanent magnet
JP3527337B2 (en) Method for manufacturing metal or alloy articles
JPH0917671A (en) Manufacture of sintered rare-earth permanent magnet
JP3083963B2 (en) Method and apparatus for producing anisotropic granulated powder
JPH0917670A (en) Manufacture of sintered rare-earth magnet
JPH0372011A (en) Manufacture of rare earth metal-ion-boron series alloy powder for sintered magnet
JPH0917675A (en) Manufacture of sintered rare earth permanent magnet
JPH0888112A (en) Manufacture of r-fe-b sintered permanent magnet
JPH08120393A (en) Production of iron-silicon soft magnetic sintered alloy
JP3174442B2 (en) Method for producing R-Fe-B sintered anisotropic permanent magnet

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040414

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040803