JPH0354161B2 - - Google Patents
Info
- Publication number
- JPH0354161B2 JPH0354161B2 JP61100882A JP10088286A JPH0354161B2 JP H0354161 B2 JPH0354161 B2 JP H0354161B2 JP 61100882 A JP61100882 A JP 61100882A JP 10088286 A JP10088286 A JP 10088286A JP H0354161 B2 JPH0354161 B2 JP H0354161B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- magnet
- metal
- coating
- rare earth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000843 powder Substances 0.000 claims description 41
- 229910052751 metal Inorganic materials 0.000 claims description 16
- 239000002184 metal Substances 0.000 claims description 16
- 239000011248 coating agent Substances 0.000 claims description 14
- 238000000576 coating method Methods 0.000 claims description 14
- 238000010438 heat treatment Methods 0.000 claims description 14
- 229910045601 alloy Inorganic materials 0.000 claims description 10
- 239000000956 alloy Substances 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 9
- 239000002245 particle Substances 0.000 claims description 8
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 8
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 claims description 7
- 239000012298 atmosphere Substances 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 6
- 150000002910 rare earth metals Chemical class 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 5
- 238000010298 pulverizing process Methods 0.000 claims description 5
- 229910052796 boron Inorganic materials 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical group [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 229910052723 transition metal Inorganic materials 0.000 claims description 3
- 150000003624 transition metals Chemical group 0.000 claims description 3
- 229910052727 yttrium Inorganic materials 0.000 claims description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims description 2
- 230000001590 oxidative effect Effects 0.000 claims 1
- 239000004033 plastic Substances 0.000 description 19
- 229920003023 plastic Polymers 0.000 description 19
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 239000011261 inert gas Substances 0.000 description 6
- 238000000465 moulding Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 4
- 239000002131 composite material Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000001746 injection moulding Methods 0.000 description 3
- 239000006249 magnetic particle Substances 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910001004 magnetic alloy Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910052703 rhodium Inorganic materials 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- -1 2 to 0.03 wt% Chemical compound 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- JHWNWJKBPDFINM-UHFFFAOYSA-N Laurolactam Chemical compound O=C1CCCCCCCCCCCN1 JHWNWJKBPDFINM-UHFFFAOYSA-N 0.000 description 1
- 229920000299 Nylon 12 Polymers 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229940087654 iron carbonyl Drugs 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000006247 magnetic powder Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
Description
[産業上の利用分野]
本発明は、R2T14B系磁石合金に関し、特にそ
のプラスチツク複合磁石や焼結磁石の製造に用い
る磁石合金粉末の製造方法に関する。
[従来の技術]
プラスチツク磁石は、20〜数μmの磁石合金粉
末とプラスチツクとを混合して射出成形するか、
粉末成形体にプラスチツクを含浸させることによ
つて製造されている。このようなプラスチツク磁
石は複雑な形状のものでも高い寸法精度をもつて
成形できること、軽量で欠けにくい等の利点があ
るが、磁石特性が低いという短所をもつている。
一方、R2T14B系磁石は優れた特性を有するので
プラスチツク磁石への適用が期待されている。
[発明が解決しようとする課題]
しかしながら、R2T14B焼結磁石合金を20〜数
μmに粉砕すると保磁力が急激に低下し、これに
熱処理を施しても回復しない。このためR2T14B
磁石合金を用いて、高性能のプラスチツク磁石を
得ることはできなかつた(Proceeding of
Eighth International Workshop on Rare−
Earth Magnets and Their Application1985年、
705頁参照)。もつとも、粒径を100μm以上とす
ると、一定の保磁力が得られるが、成形金型の寿
命が短くなるなどの欠点がある。また、R2T14B
系合金薄帯を粉砕した粉末を用いてプラスチツク
磁石を製造することも行われているが(IEEE
Trans.Mag.Vol.Mag.−21 1985年1958頁)、磁石
特性は低く、最大磁気エネルギー積でわずかに
9MGOe程度にすぎない。
その上、R2T14B系磁石粉末は、きわめて活性
で、プラスチツク複合磁石の成形後、長時間放置
すると粉末が酸化し、成形体が崩壊する場合もあ
る。
また、R2T14B磁石粉末を成形後焼結して得る
焼結型の磁石は、優れた特性を有するが、
R2T14B磁石粉末は極めて活性であるので、成形
焼結前に長時間保存することが不可能であるとい
う欠点を有する。
また、R2T14B磁石粉末を成形後、焼結して得
る焼結型磁石は、優れた特性を優するが、
R2T14B磁石粉末は極めて活性であるので、成形
前に長時間保存することが不可能であるという欠
点を有する。
そこで、本発明の第1の技術的課題は、高性能
のプラスチツク複合磁石を提供できるような
R2T14B系磁石粉末の製造方法を提供することに
ある。
また、本発明の第2の技術的課題は、耐酸化性
に優れ、長時間の保存でも安定した保磁力を維持
できるR2T14B系磁石粉末の製造方法を提供する
ことにある。
[課題を解決するための手段]
本発明者らは、R2T14B系焼結磁石を粉砕する
ことによる保磁力低下の現象を種々調査したとこ
ろ、次のような結果を得た。
すなわち、R2T14B系焼結磁石においては、そ
の組織中の磁性粒子R2T14Bがこれと組成の異な
る相に含まれていることにより保磁力が発生して
おり、粉砕による保磁力の低下は、この磁性粒子
を含む相が破壊されてしまうことによるものであ
る。そこで、粉砕粉末粒子の表面を種々の金属で
被覆したところ保磁力を回復することができた。
即ち、本発明は、R2T14B(ここでRはイツトリ
ウムを含む希土類元素のうち少なくとも一種、T
は遷移金属、Bはホウ素)を主成分とする焼結合
金を粉砕して微粉末を得る微粉砕工程と、前記微
粉末粒子表面を金属カルボニルM(CO)X(ここ
で、MはV、Cr、Mo、W、Mn、Fe、Co、Niの
少なくとも一種、xはMの金属元素に応じて定ま
る2〜12までの数値)を分解した金属Mで被覆す
る被覆工程と、前記被覆された微粉末粒子を熱処
理する工程とを含むことを特徴とする希土類磁石
合金粉末の製造方法である。
(1) R2T14B系磁石粉末を金属カルボニル液体に
浸漬後100〜800℃還元性または不活性ガス雰囲
気または真空減圧下で1〜60分熱処理によつて
厚さ0.1〜5μmの金属被膜を有するR2T14B系磁
石粉末を得ることができる。
(2) 100〜800℃還元性又は不活性ガス雰囲気又は
真空減圧下に設置したバレルにR2T14B系磁石
粉末を入れ、金属カルボニルを気体状態で導入
し、分解した金属を磁性粒子表面に沈着させる
ことによつて、厚さ0.1〜5μmの金属皮膜を有
するR2T14B系磁石粉末を得ることができる。
(3) 上記(1)、(2)で得られた粉末を300〜800℃1〜
30分真空還元性又は不活性ガス雰囲気で熱処理
を施すことにより、金属皮膜と密着性を増すこ
とができる。なお、金属皮膜には、製造上不可
避の不純物として特に炭素を2〜0.03wt%含む
ことができる。
[実施例]
以下、本発明の実施例について説明する。
実施例 1
組成Fe−34wt%Nd−1.3wt%Bの焼結体を粗
粉砕後、ボールミルにて平均粒径(気体透過法に
よる)約4μmに湿式粉砕した。
粉末を乾燥後鉄カルボニルFe(CO)5液に浸漬
し、不活性ガス中200℃〜30分加熱し、カルボニ
ルを分解させた。
さらに、不活性ガス中600℃20分間熱処理を施
した。各工程で得られた粉末に体積率で40%とな
るようにナイロン12を加え混練した後、約260℃
にて15kOeの磁界を印加しながら金型中に射出成
形し、プラスチツク磁石を得た。
第1表は得られたプラスチツク磁石の磁気特性
である。
本実施例においては、Fe(CO)5について述べた
が、実質上等質のV、Cr、Mo、W、Mn、Co、
Ni、Rhについても同様の効果が可能である金属
被覆により磁気特性が大幅に改善されることがわ
かる。
[Industrial Field of Application] The present invention relates to an R 2 T 14 B magnet alloy, and particularly to a method for producing magnet alloy powder used in producing plastic composite magnets and sintered magnets. [Prior art] Plastic magnets are made by injection molding a mixture of magnetic alloy powder of 20 to several micrometers and plastic, or by injection molding.
It is manufactured by impregnating a powder compact with plastic. Although such plastic magnets have the advantage of being able to be molded with high dimensional accuracy even in complex shapes, being lightweight and not easily chipping, they have the disadvantage of poor magnetic properties.
On the other hand, R 2 T 14 B magnets have excellent properties and are expected to be applied to plastic magnets. [Problems to be Solved by the Invention] However, when the R 2 T 14 B sintered magnet alloy is pulverized to a size of 20 to several μm, the coercive force decreases rapidly and does not recover even if it is subjected to heat treatment. Therefore R 2 T 14 B
It has not been possible to obtain high-performance plastic magnets using magnetic alloys (Proceeding of
Eighth International Workshop on Rare−
Earth Magnets and Their Application1985,
(See page 705). However, if the particle size is 100 μm or more, a certain coercive force can be obtained, but there are drawbacks such as shortening the life of the mold. Also, R 2 T 14 B
Plastic magnets have also been manufactured using powder obtained by pulverizing alloy ribbons (IEEE
(Trans.Mag.Vol.Mag.−21 1985, p. 1958), the magnetic properties are low, and the maximum magnetic energy product is slightly
It is only about 9MGOe. Furthermore, R 2 T 14 B magnet powder is extremely active, and if left for a long time after molding into a plastic composite magnet, the powder may oxidize and the molded product may collapse. In addition, sintered magnets obtained by molding and sintering R 2 T 14 B magnet powder have excellent characteristics, but
R 2 T 14 B magnet powder has the disadvantage that it is not possible to store it for a long time before shaping and sintering, since it is extremely active. In addition, the sintered magnet obtained by molding and sintering R 2 T 14 B magnet powder has excellent characteristics, but
Since R 2 T 14 B magnetic powder is extremely active, it has the disadvantage that it is impossible to store it for a long time before molding. Therefore, the first technical problem of the present invention is to provide a high-performance plastic composite magnet.
An object of the present invention is to provide a method for producing R 2 T 14 B magnet powder. A second technical object of the present invention is to provide a method for producing R 2 T 14 B magnet powder that has excellent oxidation resistance and can maintain stable coercive force even during long-term storage. [Means for Solving the Problems] The present inventors conducted various investigations into the phenomenon of coercive force reduction caused by crushing R 2 T 14 B-based sintered magnets, and obtained the following results. In other words, in R 2 T 14 B-based sintered magnets, coercive force is generated because the magnetic particles R 2 T 14 B in the structure are included in a phase with a different composition, and the coercive force is caused by the coercive force due to crushing. The decrease in magnetic force is due to the phase containing the magnetic particles being destroyed. Therefore, by coating the surface of the crushed powder particles with various metals, we were able to restore the coercive force. That is, the present invention provides R 2 T 14 B (where R is at least one rare earth element including yttrium, T
is a transition metal, B is boron) A pulverization process to obtain a fine powder by pulverizing a sintered alloy mainly composed of a transition metal and B is boron; A coating step of coating with a metal M obtained by decomposing at least one of Cr, Mo, W, Mn, Fe, Co, and Ni (x is a numerical value from 2 to 12 determined depending on the metal element of M); The present invention is a method for producing rare earth magnet alloy powder, the method comprising the step of heat treating fine powder particles. (1) R 2 T 14 B magnet powder is immersed in metal carbonyl liquid and then heat treated at 100 to 800°C in a reducing or inert gas atmosphere or under reduced pressure in vacuum for 1 to 60 minutes to form a metal coating with a thickness of 0.1 to 5 μm. It is possible to obtain R 2 T 14 B-based magnet powder having the following properties. (2) Place R 2 T 14 B magnet powder in a barrel placed in a reducing or inert gas atmosphere or under reduced pressure at 100 to 800°C, introduce metal carbonyl in a gaseous state, and transfer the decomposed metal to the surface of the magnetic particles. By depositing the powder on the powder, it is possible to obtain an R 2 T 14 B magnet powder having a metal film having a thickness of 0.1 to 5 μm. (3) Pour the powder obtained in (1) and (2) above at 300-800℃.
Adhesion to the metal film can be increased by heat treatment in a vacuum reducing or inert gas atmosphere for 30 minutes. Note that the metal film can contain carbon, particularly 2 to 0.03 wt%, as an unavoidable impurity during manufacturing. [Examples] Examples of the present invention will be described below. Example 1 A sintered body having a composition of Fe-34wt%Nd-1.3wt%B was coarsely pulverized and then wet-pulverized in a ball mill to an average particle diameter of about 4 μm (by gas permeation method). After drying, the powder was immersed in 5 liquids of iron carbonyl Fe(CO) and heated at 200°C for 30 minutes in an inert gas to decompose the carbonyl. Furthermore, heat treatment was performed at 600°C for 20 minutes in an inert gas. After adding and kneading nylon 12 to the powder obtained in each step so that the volume ratio is 40%, the powder is heated to approximately 260°C.
A plastic magnet was obtained by injection molding into a mold while applying a magnetic field of 15 kOe. Table 1 shows the magnetic properties of the plastic magnets obtained. In this example, Fe(CO) 5 was described, but substantially equivalent V, Cr, Mo, W, Mn, Co,
It can be seen that magnetic properties are significantly improved by metal coating, which can achieve the same effect with Ni and Rh.
【表】
実施例 2
実施例1と同様にFe−35wt%Nd−1.1wt%B
の組成を有する焼結体を平均粒径約90μmに粉砕
の後、鉄カルボニル液に浸漬し、不活性ガス中
200℃30分加熱し、カルボニルを分解させた。更
に、不活性ガス雰囲気中200〜900℃30分熱処理を
施した。これらの粉末に約2wt%のエポキシ樹脂
を混合後、15kOeの磁場を印加しながら約6ト
ン/cm2の圧力で成形した。さらに、成形体を150
℃でキユアした。第1図は得られた成形体の磁石
特性と熱処理温度の関係を示す。600℃〜900℃の
範囲で高特性が得られることが判明した。
実施例 3
実施例2と同様にして、Feを被覆した粉末を
700℃1〜2時間の範囲の時間で急熱急冷の熱処
理し、実施例1と同様の方法でプラスチツク磁石
を得た。第2図に実施例2で得られた磁石特性と
熱処理時間の関係を示した。磁石特性は1分の熱
処理でも回復するが、好ましくは10分から30分の
範囲が適当でありことが分かつた。
実施例 4
実施例1に示したFe−Nd−B焼結体を平均粒
径90〜100μmに粉砕後、アルゴン雰囲気中200℃
に加熱したところNiまたはCoカルボニルをバブ
リングしたアルゴンを約10分吹き込んだ、尚、こ
の際、粉末を撹拌することにより、粉末への均一
被覆を図つた。さらに、これらの粉末を700℃、
20分、熱処理した。得られた粉末を用いて実施例
2と同様に成形し、プラスチツク磁石を得た。第
2表に、得られたプラスチツク磁石の磁気特性を
示した。実施例1と同様にNiまたはCo被覆によ
り実用レベルの磁石を得られることが分かる。[Table] Example 2 Same as Example 1, Fe-35wt%Nd-1.1wt%B
A sintered body having the composition of
The carbonyl was decomposed by heating at 200°C for 30 minutes. Furthermore, heat treatment was performed at 200 to 900°C for 30 minutes in an inert gas atmosphere. After mixing about 2 wt% of epoxy resin with these powders, they were molded at a pressure of about 6 tons/cm 2 while applying a magnetic field of 15 kOe. Furthermore, 150 molded bodies
It was cured at ℃. FIG. 1 shows the relationship between the magnetic properties of the obtained compact and the heat treatment temperature. It was found that high properties can be obtained in the range of 600°C to 900°C. Example 3 In the same manner as in Example 2, Fe-coated powder was
A plastic magnet was obtained in the same manner as in Example 1 by heat treatment at 700° C. for 1 to 2 hours. FIG. 2 shows the relationship between the magnetic properties obtained in Example 2 and the heat treatment time. It has been found that although the magnetic properties can be recovered by heat treatment for 1 minute, a heat treatment of 10 minutes to 30 minutes is preferable. Example 4 The Fe-Nd-B sintered body shown in Example 1 was crushed to an average particle size of 90 to 100 μm, and then heated at 200°C in an argon atmosphere.
Argon bubbled with Ni or Co carbonyl was blown into the solution for about 10 minutes. At this time, the powder was stirred to ensure uniform coating of the powder. Furthermore, these powders were heated to 700℃,
Heat treated for 20 minutes. The obtained powder was molded in the same manner as in Example 2 to obtain a plastic magnet. Table 2 shows the magnetic properties of the obtained plastic magnets. It can be seen that, as in Example 1, a practical level magnet can be obtained by coating with Ni or Co.
【表】
実施例 5
実施例2と同様な方法により、V、Cr、Mo、
W、Rhの被覆を試み、プラスチツク磁石を作製
した。第3表にこのプラスチツク磁石の磁気特性
を示した。第3表から各元素の被覆により一定の
磁石特性が得られることが分かつた。[Table] Example 5 V, Cr, Mo,
We tried coating with W and Rh and produced plastic magnets. Table 3 shows the magnetic properties of this plastic magnet. From Table 3, it was found that certain magnetic properties could be obtained by coating with each element.
【表】
実施例 6
実施例2で得られたプラスチツク磁石を60℃95
%相対湿度雰囲気中24時間耐食試験行つた。
比較例として、鉄被覆なしの粉末を実施例2と
同様の方法にて成形して得たサンプルを用いた。
第4表に示すように鉄被覆により湿度中保持に伴
う保磁力の低下を防ぐことができた。[Table] Example 6 The plastic magnet obtained in Example 2 was heated at 60℃95
% relative humidity atmosphere for 24 hours. As a comparative example, a sample obtained by molding powder without iron coating in the same manner as in Example 2 was used.
As shown in Table 4, the iron coating was able to prevent the decrease in coercive force caused by holding in humidity.
【表】
[発明の効果]
本発明の希土類磁石用合金粉末の製造方法につ
いて、以上詳細に説明したが、R2T14B系磁石材
料原料として焼結体を微粉砕したR2T14B系磁石
粉末の粒子表面に金属カルボニルの分解による金
属を被覆することにより、また更に熱処理を加え
ることにより高い磁石特性のプラスチツク磁石を
提供することができる耐酸化性の磁石粉末が得ら
れるので、工業上非常に有益である。[Table ] [Effects of the Invention] The method for producing the alloy powder for rare earth magnets of the present invention has been explained in detail above. By coating the particle surface of the magnet powder with metal by decomposing metal carbonyl or by further applying heat treatment, an oxidation-resistant magnet powder that can provide plastic magnets with high magnetic properties can be obtained, making it suitable for industrial use. The above is very informative.
第1図は本発明の実施例2に係る希土類磁石粉
末を用いた成形体の磁石特性と熱処理の関係を示
す図、第2図は本発明の実施例3に係る希土類磁
石粉末を用いたプラスチツク磁石の磁石特性と熱
処理温度との関係を示す図である。
FIG. 1 is a diagram showing the relationship between the magnetic properties and heat treatment of a molded body using rare earth magnet powder according to Example 2 of the present invention, and FIG. FIG. 3 is a diagram showing the relationship between the magnetic characteristics of a magnet and the heat treatment temperature.
Claims (1)
類元素のうち少なくとも一種、Tは遷移金属、B
はホウ素)を主成分とする焼結合金を粉砕して微
粉末を得る微粉砕工程と、前記微粉末粒子表面を
金属カルボニルM(CO)X(ここで、MはV、
Cr、Mo、W、Mn、Fe、Co、Niの少なくとも一
種、xはMの金属元素に応じて定まる2〜12まで
の数値)を分解した金属Mで被覆する被覆工程
と、前記被覆された微粉末粒子を熱処理する工程
とを含むことを特徴とする希土類磁石合金粉末の
製造方法。 2 特許請求の範囲第1項記載の希土類磁石合金
粉末の製造方法において、前記熱処理すること
は、非酸化性雰囲気中300〜800℃で1〜30分行わ
れることを特徴とする希土類磁石合金粉末の製造
方法。[Claims] 1 R 2 T 14 B (where R is at least one rare earth element including yttrium, T is a transition metal, B
A pulverization process to obtain a fine powder by crushing a sintered alloy whose main component is boron), and a pulverization process in which the surface of the fine powder particles is treated with a metal carbonyl M(CO)X (where M is V,
A coating step of coating with a metal M obtained by decomposing at least one of Cr, Mo, W, Mn, Fe, Co, and Ni (x is a numerical value from 2 to 12 determined depending on the metal element of M); 1. A method for producing rare earth magnet alloy powder, the method comprising the step of heat treating fine powder particles. 2. The method for producing rare earth magnet alloy powder according to claim 1, wherein the heat treatment is carried out at 300 to 800°C for 1 to 30 minutes in a non-oxidizing atmosphere. Production method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61100882A JPS62284002A (en) | 1986-05-02 | 1986-05-02 | Magnetic alloy powder consisting of rare earth element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61100882A JPS62284002A (en) | 1986-05-02 | 1986-05-02 | Magnetic alloy powder consisting of rare earth element |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2410798A Division JPH0713241B2 (en) | 1990-12-15 | 1990-12-15 | Method for producing rare earth magnet alloy powder |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62284002A JPS62284002A (en) | 1987-12-09 |
JPH0354161B2 true JPH0354161B2 (en) | 1991-08-19 |
Family
ID=14285699
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61100882A Granted JPS62284002A (en) | 1986-05-02 | 1986-05-02 | Magnetic alloy powder consisting of rare earth element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62284002A (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2828978B2 (en) * | 1987-11-27 | 1998-11-25 | 株式会社東芝 | Cold storage material and method for producing the same |
US5147447A (en) * | 1988-06-03 | 1992-09-15 | Mitsubishi Materials Corporation | Sintered rare earth metal-boron-iron alloy magnets and a method for their production |
JPH02194184A (en) * | 1989-01-23 | 1990-07-31 | Fujitsu Ltd | Production of oxide superconducting thin film |
JPH04209505A (en) * | 1990-12-07 | 1992-07-30 | Seiko Instr Inc | Manufacture of rare-earth iron magnet |
JP5266523B2 (en) | 2008-04-15 | 2013-08-21 | 日東電工株式会社 | Permanent magnet and method for manufacturing permanent magnet |
JP5266522B2 (en) | 2008-04-15 | 2013-08-21 | 日東電工株式会社 | Permanent magnet and method for manufacturing permanent magnet |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56116801A (en) * | 1980-02-13 | 1981-09-12 | Matsushita Electric Ind Co Ltd | Production of fine powder coated by nickel |
JPS5927505A (en) * | 1982-08-09 | 1984-02-14 | Hitachi Maxell Ltd | Ferromagnetic metal powder |
JPS62213208A (en) * | 1986-03-14 | 1987-09-19 | Seiko Epson Corp | Manufacture of rare earth magnet |
-
1986
- 1986-05-02 JP JP61100882A patent/JPS62284002A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56116801A (en) * | 1980-02-13 | 1981-09-12 | Matsushita Electric Ind Co Ltd | Production of fine powder coated by nickel |
JPS5927505A (en) * | 1982-08-09 | 1984-02-14 | Hitachi Maxell Ltd | Ferromagnetic metal powder |
JPS62213208A (en) * | 1986-03-14 | 1987-09-19 | Seiko Epson Corp | Manufacture of rare earth magnet |
Also Published As
Publication number | Publication date |
---|---|
JPS62284002A (en) | 1987-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3822031B2 (en) | Method for producing replacement spring magnet powder | |
JPH0354161B2 (en) | ||
JPS6181606A (en) | Preparation of rare earth magnet | |
US5536334A (en) | Permanent magnet and a manufacturing method thereof | |
JPS6181603A (en) | Preparation of rare earth magnet | |
JPS62177158A (en) | Permanent magnet material and its production | |
JP3028337B2 (en) | Rare earth magnet alloy powder, method for producing the same, and polymer composite rare earth magnet using the same | |
JPS62229803A (en) | Nd-fe-b alloy powder for plastic magnet | |
JP3201428B2 (en) | Manufacturing method of powder for permanent magnet | |
JPS62177150A (en) | Permanent magnet material and its production | |
JPS59140335A (en) | Manufacture of rare earth-cobalt sintered magnet of different shape | |
JPS6318602A (en) | Manufacture of permanent magnet of rare earth-iron system | |
JPH04136103A (en) | Production of rare earth metal magnet alloy powder | |
JPS60257107A (en) | Manufacture of permanent magnet powder and permanent magnet | |
JPS5848608A (en) | Production of permanent magnet of rare earths | |
JPH07122414A (en) | Rare earth permanent magnet and manufacture thereof | |
JP2960629B2 (en) | Method for producing sintered R-Fe-B magnet by injection molding method | |
EP0549149A1 (en) | Rare-earth bonded magnet, material therefor and method for manufacturing a bonded magnet | |
JPH04116101A (en) | Magnetic powder for high-coercive-force anisotropic bond magnet and its production | |
JPH03153852A (en) | Magnetic material, magnet composed of the same, and their production | |
JPS58108711A (en) | Manufacture of rare earth permanent magnet | |
JPS6351606A (en) | Manufacture of rear earth permanent magnet | |
JPH0645832B2 (en) | Rare earth magnet manufacturing method | |
JPS6398107A (en) | Manufacture of rare earth permanent magnet | |
JP2739329B2 (en) | Method for producing alloy powder for polymer composite type rare earth magnet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |