JPH0713241B2 - Method for producing rare earth magnet alloy powder - Google Patents

Method for producing rare earth magnet alloy powder

Info

Publication number
JPH0713241B2
JPH0713241B2 JP2410798A JP41079890A JPH0713241B2 JP H0713241 B2 JPH0713241 B2 JP H0713241B2 JP 2410798 A JP2410798 A JP 2410798A JP 41079890 A JP41079890 A JP 41079890A JP H0713241 B2 JPH0713241 B2 JP H0713241B2
Authority
JP
Japan
Prior art keywords
rare earth
magnet
alloy powder
powder
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2410798A
Other languages
Japanese (ja)
Other versions
JPH04136103A (en
Inventor
悦夫 大槻
努 大塚
欣也 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP2410798A priority Critical patent/JPH0713241B2/en
Publication of JPH04136103A publication Critical patent/JPH04136103A/en
Publication of JPH0713241B2 publication Critical patent/JPH0713241B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0572Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes with a protective layer

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,R14B系磁石合金
に関し,特にそのプラスチック複合磁石や焼結磁石の製
造に用いる磁石合金粉末の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an R 2 T 14 B type magnet alloy, and more particularly to a method for producing a magnet alloy powder used for producing a plastic composite magnet or a sintered magnet thereof.

【0002】[0002]

【従来の技術】プラスチック磁石は,20〜数μmの磁
石合金粉末とプラスチックとを混合して射出成形する
か、粉末成形体にプラスチックを含浸させることによっ
て製造されている。このようなプラスチック磁石は複雑
な形状のものでも高い寸法精度をもって成形できるこ
と,軽量で欠けにくい等の利点があるが,磁石特性が低
いという短所をもっている。一方,R14B系磁石は
優れた特性を有するのでプラスチック磁石への適用が期
待されている。
2. Description of the Related Art Plastic magnets are manufactured by mixing magnet alloy powder of 20 to several .mu.m and plastic and injection molding or by impregnating a powder compact with plastic. Such plastic magnets have the advantage that they can be molded with high dimensional accuracy even if they have complicated shapes, and they are lightweight and resistant to chipping, but they have the disadvantage of poor magnet characteristics. On the other hand, R 2 T 14 B-based magnets have excellent properties and are expected to be applied to plastic magnets.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、R
14B焼結磁石合金を20〜数μmに粉砕すると保磁力が
急激に低下し,これに熱処理を施しても回復しない。こ
のためR14B磁石合金を用いて,高性能のプラスチ
ック磁石を得ることはできなかった(Proceeding of Eig
hth International Workshop on Rare-Earth Magnets a
nd Their Application 1985年,705頁 参
照)。もっとも,粒径を100μm以上とすると,一定
の保磁力が得られるが,成形金型の寿命が短くなるなど
の欠点がある。
However, R 2 T
When the 14B sintered magnet alloy is pulverized to 20 to several μm, the coercive force is drastically reduced, and even if it is heat-treated, it cannot be recovered. For this reason, it was not possible to obtain a high-performance plastic magnet using the R 2 T 14 B magnet alloy (Proceeding of Eig
hth International Workshop on Rare-Earth Magnets a
nd Their Application, 1985, p. 705). However, if the particle size is 100 μm or more, a certain coercive force can be obtained, but there is a drawback that the life of the molding die is shortened.

【0004】また,R14B系合金薄帯を粉砕した粉
末を用いてプラスチック磁石を製造することも行われて
いるが(IEEE Trans.Mag.Vol.Mag.-21 1985年1
958頁),磁石特性は低く,最大磁気エネルギー積で
わずかに9MGOe程度にすぎない。
In addition, a plastic magnet is also manufactured by using a powder obtained by crushing an R 2 T 14 B type alloy ribbon (IEEE Trans.Mag.Vol.Mag.-21 1985 1
958), the magnet characteristics are low, and the maximum magnetic energy product is only about 9 MGOe.

【0005】その上,R14B系磁石粉末は,きわめ
て活性で,プラスチック複合磁石の成形後,長時間放置
すると粉末が酸化し,成形帯が崩壊する場合もある。ま
た,R14B磁石粉末を成形後焼結して得る焼結型の
磁石は,優れた特性を有するが,R14B磁石粉末は
極めて活性であるので,成形焼結前に長時間保存するこ
とが不可能であるという欠点を有する。
In addition, the R 2 T 14 B type magnet powder is extremely active, and after molding the plastic composite magnet, if left for a long time, the powder may oxidize and the molding zone may collapse. Further, a sintered magnet obtained by compacting and sintering R 2 T 14 B magnet powder has excellent characteristics, but since R 2 T 14 B magnet powder is extremely active, it should be treated before compaction and sintering. It has a drawback that it cannot be stored for a long time.

【0006】また,R14B磁石粉末を成形後、焼結
して得る焼結型磁石は,優れた特性を有するが,R
14B磁石粉末は極めて活性であるので,成形前に長時間
保存することが不可能であるという欠点を有する。
Further, after forming the R 2 T 14 B magnetic powder sintered magnet obtained by sintering, it has excellent characteristics, R 2 T
Since 14 B magnet powder is extremely active, it has the drawback that it cannot be stored for a long time before molding.

【0007】そこで,本発明の第1の技術的課題は,高
性能のプラスチック複合磁石を提供できるようなR
14B系磁石粉末を提供することにある。
Therefore, the first technical problem of the present invention is to provide R 2 T which can provide a high performance plastic composite magnet.
14 It is to provide a B type magnet powder.

【0008】また,本発明の第2の技術的課題は,耐酸
化性に優れ,長時間の保存でも安定した保磁力を維持で
きるR14B系磁石粉末を提供することにある。
A second technical object of the present invention is to provide an R 2 T 14 B based magnet powder which is excellent in oxidation resistance and can maintain a stable coercive force even when stored for a long time.

【0009】[0009]

【課題を解決するための手段】本発明によれば,R
14B(ここでRはイットリウムを含む希土類元素のうち
少なくとも一種,Tは遷移金属,Bはホウ素)を主成分
とする溶製合金を粉砕して微粉末を得る微粉砕工程と,
前記微粉末粒子表面を金属カルボニルM(CO)x(こ
こで,MはV,Cr,Mo,W,Mn,Fe,Co,N
iの少なくとも一種、xはMの金属元素に応じて定まる
2〜12までの数値)を分解した金属Mで被覆する被覆
工程とを含むことを特徴とする希土類磁石合金粉末の製
造方法が得られる。本発明によれば,前記希土類磁石合
金粉末の製造方法において,前記被覆工程の後、被覆さ
れた微粉末を熱処理する熱処理工程を含むことを特徴と
する希土類磁石合金粉末の製造方法が得られる。本発明
によれば,前記希土類磁石合金粉末の製造方法におい
て,前記熱処理工程は,非酸化性雰囲気中300〜80
0℃で1〜30分行われることを特徴とする希土類磁石
合金粉末の製造方法が得られる。
According to the present invention, R 2 T
14 A fine pulverization step of pulverizing a molten alloy containing B (where R is at least one of rare earth elements including yttrium, T is a transition metal, and B is boron) as a main component to obtain fine powder,
Metal carbonyl M (CO) x (where M is V, Cr, Mo, W, Mn, Fe, Co, N) is formed on the surface of the fine powder particles.
At least one kind of i, x is a numerical value from 2 to 12 determined depending on the metal element of M) is coated with a decomposed metal M, and a method for producing a rare earth magnet alloy powder is obtained. . According to the present invention, there is provided a method for producing a rare earth magnet alloy powder, which comprises a heat treatment step of heat treating the coated fine powder after the coating step in the method for producing a rare earth magnet alloy powder. According to the present invention, in the method for producing the rare earth magnet alloy powder, the heat treatment step is performed in a non-oxidizing atmosphere at 300-80.
A method for producing a rare earth magnet alloy powder is obtained which is performed at 0 ° C. for 1 to 30 minutes.

【0010】(1)R14B系磁石粉末を金属カルボ
ニル液体に浸漬後100〜800℃還元性または不活性
ガス雰囲気または真空減圧下で1〜60分熱処理によっ
て厚さ0.1〜5μmの金属皮膜を有するR14B系
磁石粉末を得ることができる。
(1) R 2 T 14 B-based magnet powder is immersed in a metal carbonyl liquid and then heat-treated at 100 to 800 ° C. for 1 to 60 minutes in a reducing or inert gas atmosphere or vacuum reduced pressure to a thickness of 0.1 to 5 μm. It is possible to obtain R 2 T 14 B based magnet powder having the metal coating of

【0011】(2)100〜800℃還元性又は不活性
ガス雰囲気又は真空減圧下に設置したバレルにR14
B系磁石粉末を入れ、金属カルボニルを気体状態で導入
し,分解した金属を磁性粒子表面に沈着させることによ
って,厚さ0.1〜5μmの金属皮膜を有するR14
B系磁石粉末を得ることができる。
(2) R 2 T 14 in a barrel placed under a reducing or inert gas atmosphere or vacuum reduced pressure at 100 to 800 ° C.
R 2 T 14 having a metal coating with a thickness of 0.1 to 5 μm was prepared by adding B-based magnet powder, introducing metal carbonyl in a gaseous state, and depositing decomposed metal on the surface of magnetic particles.
B-based magnet powder can be obtained.

【0012】(3)上記(1),(2)で得られた粉末
を300〜800℃,1〜30分真空還元性又は不活性
ガス雰囲気で熱処理を施すことにより,金属皮膜と密着
性を増すことができる。なお,金属皮膜には、製造上不
可避の不純物として特に炭素を2〜0.03wt%含む
ことができる。
(3) By subjecting the powders obtained in (1) and (2) above to heat treatment in a vacuum reducing atmosphere or an inert gas atmosphere at 300 to 800 ° C. for 1 to 30 minutes, the adhesion to the metal film is improved. Can be increased. It should be noted that the metal film may contain carbon in an amount of 2 to 0.03 wt% as an unavoidable impurity in manufacturing.

【0013】[0013]

【実施例】以下,本発明の実施例について説明する。 (実施例1) 純度95%のNd,フェロボロン,電解鉄を用い,アル
ゴン雰囲気中で高周波加熱しFe−34%Nd−1.1
wt%Bインゴットを得た。このインゴットを粗粉砕し
た後,ボールミルにて平均粒径(気体透過法)約3μm
に粉砕した。粉末を乾燥後鉄カルボニルFe(Co)
液に浸漬し,不活性ガス中に200℃30分加熱し,カ
ルボニルを分解させた。さらに,不活性ガス中600℃
20分熱処理を施した。表面にFe層が形成された粉末
を印加磁界約20kOeの下,圧力1トン/cmで金
型成形した。成形体を1080℃2時間真空焼結後炉冷
した。さらに,550℃30分熱処理した。また,成形
体をAr雰囲気中20日保管後,上述と同様に焼結,熱
処理を施し,成形体保管の効果を見た。表1は焼結体の
磁気特性を示す。金属被覆により,保存中の特性劣化を
防止することができた。
EXAMPLES Examples of the present invention will be described below. (Example 1) Nd, ferroboron, and electrolytic iron having a purity of 95% were used, and high-frequency heating was performed in an argon atmosphere to produce Fe-34% Nd-1.1.
A wt% B ingot was obtained. After roughly crushing this ingot, average particle size (gas permeation method) of about 3 μm with a ball mill
Crushed into After drying the powder, iron carbonyl Fe (Co) 5
It was immersed in the liquid and heated in an inert gas at 200 ° C. for 30 minutes to decompose carbonyl. Furthermore, 600 ℃ in inert gas
Heat treatment was performed for 20 minutes. The powder on the surface of which the Fe layer was formed was molded under an applied magnetic field of about 20 kOe at a pressure of 1 ton / cm 2 . The molded body was vacuum-sintered at 1080 ° C. for 2 hours and then furnace-cooled. Further, it was heat-treated at 550 ° C. for 30 minutes. After the molded body was stored in an Ar atmosphere for 20 days, it was sintered and heat-treated in the same manner as above, and the effect of storing the molded body was examined. Table 1 shows the magnetic properties of the sintered body. With the metal coating, we were able to prevent the deterioration of characteristics during storage.

【0014】[0014]

【表1】 [Table 1]

【0015】 (実施例2) 実施例1と同様の方法により,磁石材料を作製するにあ
たり,カルボニル金属皮膜としてV,Cr,Mo,W,
Mn,Co,Niを選び粉砕成形後1日未満および20
日保存し焼結した磁石の特性を表2に示した。磁石表面
に被覆処理していない従来のものは,経時変化が大き
い。特に,lHcは4.5%位の減少である。これに対
し,本発明によれば,経時変化は皆無が変化があっても
僅少である。金属皮膜により特性が安定することが分か
る。
(Example 2) In producing a magnet material by the same method as in Example 1, V, Cr, Mo, W, and
Select Mn, Co, Ni less than 1 day after crush molding and 20
Table 2 shows the characteristics of the magnets which were stored and sintered for a day. Conventional magnets whose surface is not coated have a large change over time. In particular, lHc is decreased by about 4.5%. On the other hand, according to the present invention, even if there is no change with time, there is little change. It can be seen that the characteristics are stabilized by the metal film.

【0016】[0016]

【表2】 [Table 2]

【0017】以上の実施例では,Nd−Fe−B磁石に
ついて述べたが,等質なR2T14B系磁石についても同
様の効果が得られる。
In the above embodiments, the Nd-Fe-B magnet has been described, but the same effect can be obtained with a homogenous R2T14B system magnet.

【0018】[0018]

【発明の効果】本発明の希土類磁石用合金粉末の製造方
法について,以上詳細に説明したが,R14B系磁石
材料原料として溶製合金を微粉砕したR14B系磁石
粉末の粒子表面に金属カルボニルの分解による金属を被
覆することにより,また更に熱処理を加えることにより
高い磁石特性のプラスチック磁石を提供することができ
る耐酸化性の磁石粉末が得られるので,工業上非常に有
益である。
The method for producing the alloy powder for rare earth magnets of the present invention has been described in detail above. R 2 T 14 B-based magnet powder obtained by finely pulverizing an ingot alloy as a raw material for R 2 T 14 B-based magnet material By coating the surface of the particles with a metal by decomposition of metal carbonyl, and by further heat treatment, it is possible to obtain an oxidation-resistant magnet powder that can provide a plastic magnet with high magnet characteristics. Be beneficial.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮城県仙台市太白区郡山六丁目7香1号 株式会社トーキン内 (56)参考文献 特開 昭62−213208(JP,A) 特開 昭59−27505(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor, 6-7 Kaori, Koriyama, Taichiro-ku, Sendai-shi, Miyagi Tokin Co., Ltd. (56) References JP 62-213208 (JP, A) JP 59- 27505 (JP, A)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】R14B(ここでRはイットリウムを含
む希土類元素のうち少なくとも一種,Tは遷移金属,B
はホウ素)を主成分とする溶製合金を粉砕して微粉末を
得る微粉砕工程と,前期微粉末粒子表面を金属カルボニ
ルM(CO)(ここで,MはV,Cr,Mo,W,M
n,Fe,Co,Niの少なくとも一種、xはMの金属
元素に応じて定まる2〜12までの数値)を分解した金
属Mで被覆する被覆工程とを含むことを特徴とする希土
類磁石合金粉末の製造方法。
1. R 2 T 14 B (wherein R is at least one rare earth element including yttrium, T is a transition metal, and B is a transition metal).
Is a pulverization step for pulverizing a molten alloy containing boron as a main component to obtain fine powder, and the metal carbonyl M (CO) x (where M is V, Cr, Mo, W , M
at least one of n, Fe, Co and Ni, x is a numerical value of 2 to 12 determined depending on the metal element of M), and a coating step of coating with decomposed metal M. Manufacturing method.
【請求項2】請求項1の希土類磁石合金粉末の製造方法
において,前記被覆工程の後、被覆された微粉末を熱処
理する熱処理工程を含むことを特徴とする希土類磁石合
金粉末の製造方法。
2. The method for producing a rare earth magnet alloy powder according to claim 1, further comprising a heat treatment step of heat treating the coated fine powder after the coating step.
【請求項3】請求項2の希土類磁石合金粉末の製造方法
において,前記熱処理工程は,非酸化性雰囲気中300
〜800℃で1〜30分行われることを特徴とする希土
類磁石合金粉末の製造方法。
3. The method for producing a rare earth magnet alloy powder according to claim 2, wherein the heat treatment step is performed in a non-oxidizing atmosphere at 300
A method for producing a rare earth magnet alloy powder, which is performed at ˜800 ° C. for 1 to 30 minutes.
JP2410798A 1990-12-15 1990-12-15 Method for producing rare earth magnet alloy powder Expired - Fee Related JPH0713241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2410798A JPH0713241B2 (en) 1990-12-15 1990-12-15 Method for producing rare earth magnet alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2410798A JPH0713241B2 (en) 1990-12-15 1990-12-15 Method for producing rare earth magnet alloy powder

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP61100882A Division JPS62284002A (en) 1986-05-02 1986-05-02 Magnetic alloy powder consisting of rare earth element

Publications (2)

Publication Number Publication Date
JPH04136103A JPH04136103A (en) 1992-05-11
JPH0713241B2 true JPH0713241B2 (en) 1995-02-15

Family

ID=18519903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2410798A Expired - Fee Related JPH0713241B2 (en) 1990-12-15 1990-12-15 Method for producing rare earth magnet alloy powder

Country Status (1)

Country Link
JP (1) JPH0713241B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103903826A (en) * 2014-04-04 2014-07-02 北京工业大学 Corrosion-resistant neodymium, iron and boron permanent magnet

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6519419B2 (en) * 2015-09-10 2019-05-29 Tdk株式会社 Iron nitride based magnetic powder and bonded magnet using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103903826A (en) * 2014-04-04 2014-07-02 北京工业大学 Corrosion-resistant neodymium, iron and boron permanent magnet

Also Published As

Publication number Publication date
JPH04136103A (en) 1992-05-11

Similar Documents

Publication Publication Date Title
US5049203A (en) Method of making rare earth magnets
JPS60254708A (en) Manufacture of permanent magnet
WO1988006797A1 (en) Rare earth element-iron base permanent magnet and process for its production
JP3540438B2 (en) Magnet and manufacturing method thereof
JPH01219143A (en) Sintered permanent magnet material and its production
US5201963A (en) Rare earth magnets and method of producing same
US5536334A (en) Permanent magnet and a manufacturing method thereof
JPH0320046B2 (en)
JPS62284002A (en) Magnetic alloy powder consisting of rare earth element
JPS62177158A (en) Permanent magnet material and its production
JPH0713241B2 (en) Method for producing rare earth magnet alloy powder
JP3101798B2 (en) Manufacturing method of anisotropic sintered magnet
JP2745042B2 (en) Rare earth-iron-boron alloy thin plate, alloy powder and method for producing permanent magnet
JPS60257107A (en) Manufacture of permanent magnet powder and permanent magnet
JPS61295342A (en) Manufacture of permanent magnet alloy
JPH045739B2 (en)
JPH044386B2 (en)
JPH044383B2 (en)
JP2868062B2 (en) Manufacturing method of permanent magnet
JPS60254707A (en) Manufacture of permanent magnet
JP2591845B2 (en) Manufacturing method of bonded magnet
JP2577373B2 (en) Sintered permanent magnet
JP3101800B2 (en) Manufacturing method of anisotropic sintered permanent magnet
JP2002088451A (en) Rare earth magnet and its manufacturing method
JP2739329B2 (en) Method for producing alloy powder for polymer composite type rare earth magnet

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960130