JP6519419B2 - Iron nitride based magnetic powder and bonded magnet using the same - Google Patents

Iron nitride based magnetic powder and bonded magnet using the same Download PDF

Info

Publication number
JP6519419B2
JP6519419B2 JP2015178814A JP2015178814A JP6519419B2 JP 6519419 B2 JP6519419 B2 JP 6519419B2 JP 2015178814 A JP2015178814 A JP 2015178814A JP 2015178814 A JP2015178814 A JP 2015178814A JP 6519419 B2 JP6519419 B2 JP 6519419B2
Authority
JP
Japan
Prior art keywords
covering layer
iron nitride
magnetic powder
based magnetic
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015178814A
Other languages
Japanese (ja)
Other versions
JP2017054982A (en
Inventor
竜二 藤澤
竜二 藤澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2015178814A priority Critical patent/JP6519419B2/en
Publication of JP2017054982A publication Critical patent/JP2017054982A/en
Application granted granted Critical
Publication of JP6519419B2 publication Critical patent/JP6519419B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、Fe16化合物相を主相とし、高い飽和磁化を維持しつつ、かつ高い保磁力を有する窒化鉄系磁性粉末に関する。さらに、該窒化鉄系磁性粉末を用いたボンド磁石を提供する。 The present invention relates to an iron nitride-based magnetic powder having a Fe 16 N 2 compound phase as a main phase, maintaining high saturation magnetization, and having high coercivity. Furthermore, a bonded magnet using the iron nitride magnetic powder is provided.

近年、電気自動車やハイブリッド自動車などのモーター用磁石として、Nd−Fe−B系の磁石が広く使われている。しかしながら、Ndに代表されるレアアースは、産業分野を支える高付加価値な部材の原料であり、近年需要が拡大しているため、資源の枯渇や原料価格が不安定であることが懸念されている。さらには、途上国においても著しく需要が拡大していることや、その偏在性ゆえに特定の産出国への依存度が高いことから、安定供給確保に対する問題が生じている。   In recent years, Nd-Fe-B based magnets are widely used as magnets for motors of electric vehicles, hybrid vehicles and the like. However, rare earths typified by Nd are raw materials for high-value-added components that support industrial fields, and demand is expanding in recent years, so there is concern that resource exhaustion and raw material prices may be unstable. . Furthermore, the growing demand in developing countries and the high degree of reliance on specific producing countries due to their uneven distribution have led to problems with securing stable supply.

上記問題を回避するため、レアアースを使用しない、自然界に無尽蔵に存在する元素(鉄、窒素)から高性能磁石を開発することが求められている。   In order to avoid the above problems, it is required to develop high-performance magnets from elements (iron, nitrogen) which are inexhaustible in nature without using rare earth.

Fe−N系の化合物、特にFe16は、Feよりも巨大な飽和磁化を示す材料のひとつとして注目されている。 Fe-N compounds, in particular Fe 16 N 2, are attracting attention as one of the materials exhibiting a saturation magnetization larger than that of Fe.

特許文献1では、共沈法により酸化鉄を合成し、還元・窒化する手法で窒化鉄系磁性粉末を合成している。しかしながら、得られた窒化鉄粉末の保磁力が低いために、高保磁力かつ高飽和磁化が要求されるモーター用途の磁性材料としての使用は困難である。またモーターが使用中に高温になる場合が多く、窒化鉄粉末が高温において十分な耐湿性を有していない。   In Patent Document 1, an iron nitride-based magnetic powder is synthesized by a method of synthesizing iron oxide by a coprecipitation method, and reducing and nitriding it. However, due to the low coercivity of the obtained iron nitride powder, its use as a magnetic material for motor applications where high coercivity and high saturation magnetization are required is difficult. Also, the motor often becomes hot during use, and the iron nitride powder does not have sufficient moisture resistance at high temperatures.

特開2009−84115号公報JP, 2009-84115, A

本発明は、上記を鑑みたものであり、高い保磁力を有しかつ、優れた耐湿性を有する窒化鉄系磁性粉末及び該磁性粉末を用いたボンド磁石の提供を目的とする。 The present invention has been made in view of the above, and it is an object of the present invention to provide an iron nitride-based magnetic powder having a high coercive force and excellent moisture resistance, and a bonded magnet using the magnetic powder.

すなわち本発明は、Fe16相を主相とするFe16粒子の表面に第一の被覆層を有し、かつ、第一の被覆層の表面に第二の被覆層を有する窒化鉄系磁性粒子からなる窒化鉄系磁性粉末であって、前記第一の被覆層がCr、Mn、V、Mo、Wのいずれか1種以上からなる金属若しくは合金であり、前記第二の被覆層がNi、Coのいずれか1種以上からなる金属と前記第一の被覆層に含まれる金属との合金であることを特徴とするとする、窒化鉄系磁性粉末及び前記窒化鉄系磁性粉末を用いたボンド磁石に関するものである。 That is, according to the present invention, the first coating layer is formed on the surface of Fe 16 N 2 particles having the Fe 16 N 2 phase as the main phase, and the second coating layer is formed on the surface of the first coating layer. An iron nitride-based magnetic powder comprising iron-based magnetic particles, wherein the first coating layer is a metal or alloy comprising any one or more of Cr, Mn, V, Mo and W, and the second coating An iron nitride-based magnetic powder and the iron nitride-based magnetic powder characterized in that the layer is an alloy of a metal consisting of at least one of Ni and Co and a metal contained in the first covering layer. It relates to the bonded magnet used.

さらに、前記第二の被覆層の合金に含まれる前記第一の被覆層に含まれる金属が1〜10at%である、窒化鉄系磁性粉末及び前記窒化鉄系磁性粉末を用いたボンド磁石に関するものである。 Furthermore, it relates to an iron nitride based magnetic powder and a bonded magnet using the iron nitride based magnetic powder, wherein the metal contained in the first coating layer contained in the alloy of the second coating layer is 1 to 10 at%. It is.

さらに、前記第一の被覆層の厚みが5nm以上である、前記窒化鉄系磁性粉末及び前記窒化鉄系磁性粉末を用いたボンド磁石に関するものである。 Furthermore, the present invention relates to a bonded magnet using the iron nitride magnetic powder and the iron nitride magnetic powder, wherein the thickness of the first covering layer is 5 nm or more.

さらに、前記第二の被覆層の厚みが5nm以上である、前記窒化鉄系磁性粉末及び前記窒化鉄系磁性粉末を用いたボンド磁石に関するものである。 Furthermore, the present invention relates to a bonded magnet using the iron nitride magnetic powder and the iron nitride magnetic powder, wherein the thickness of the second covering layer is 5 nm or more.

前記窒化鉄系磁性粉末を構成するFe16粒子の第一の被覆層が非磁性であるCr、Mn、V、Mo、Wのいずれか1種以上の金属からなるため、Fe16粒子同士を磁気的に分離する効果が発現し、窒化鉄系磁性粉末が良好な保磁力を得ることができる。 Since the first covering layer of Fe 16 N 2 particles constituting the iron nitride-based magnetic powder is made of nonmagnetic Cr, Mn, V, Mo, or W at least one metal, Fe 16 N 2 The effect of magnetically separating the particles from each other is exhibited, and the iron nitride-based magnetic powder can obtain good coercivity.

前記窒化鉄系磁性粉末を構成するFe16粒子の第二の被覆層が卑金属類であるNi、Coのいずれか1種以上の金属を含むため、窒化鉄系磁性粉末が良好な耐湿性を得ることができる。 Since the second covering layer of Fe 16 N 2 particles constituting the iron nitride magnetic powder contains one or more metals of Ni and Co which are base metals, the moisture resistance of the iron nitride magnetic powder is good. You can get

さらに前記第二の被覆層が、前記第一の被覆層に含まれる金属と前記第二の被覆層の金属との合金であることにより、第二の被覆層と第一の被覆層の密着性が高まり、高温時における第二の被覆層の剥離を防ぐ効果が得られるため、窒化鉄系磁性粉末が良好な耐湿性を得ることができると考えられる。 Furthermore, since the second covering layer is an alloy of the metal contained in the first covering layer and the metal of the second covering layer, the adhesion between the second covering layer and the first covering layer It is believed that the iron nitride-based magnetic powder can obtain good moisture resistance because it has the effect of preventing peeling of the second coating layer at high temperatures.

前記第二の被覆層の合金に含まれる前記第一の被覆層に含まれる金属が1〜10at%とすることで、窒化鉄系磁性粉末がさらに良好な耐湿性を得ることができる。 By setting the metal contained in the first coating layer contained in the alloy of the second coating layer to 1 to 10 at%, the iron nitride-based magnetic powder can obtain even better moisture resistance.

前記第一の被覆層の厚みが5nm以上とすることで、窒化鉄系磁性粉末がさらに良好な保磁力を得ることができる。好ましくは前記第一の被覆層の厚みが5〜15nmである。 When the thickness of the first covering layer is 5 nm or more, the iron nitride-based magnetic powder can obtain a further favorable coercive force. Preferably, the thickness of the first covering layer is 5 to 15 nm.

前記第二の被覆層の厚みが5nm以上とすることで、窒化鉄系磁性粉末がさらに良好な耐湿性を得ることができる。好ましくは前記第一の被覆層の厚みが5〜15nmである。 When the thickness of the second covering layer is 5 nm or more, the iron nitride-based magnetic powder can obtain even better moisture resistance. Preferably, the thickness of the first covering layer is 5 to 15 nm.

本発明によれば、従来の窒化鉄系磁性粉末に比べて、高い保磁力を有し、かつ優れた耐食性を有する窒化鉄系磁性粉末を提供することができる。 According to the present invention, it is possible to provide an iron nitride-based magnetic powder having a high coercive force and excellent corrosion resistance as compared to conventional iron nitride-based magnetic powders.

以下、本発明の好適な実施形態について説明する。なお、本発明は以下に記載の実施形態及び実施例の内容により限定されるものではない。また、以下に記載の実施形態及び実施例にて示された構成要素は適宜組み合わせても良いし、適宜選択してもよい。 Hereinafter, preferred embodiments of the present invention will be described. The present invention is not limited by the contents of the embodiments and examples described below. In addition, the components shown in the embodiments and examples described below may be combined as appropriate or selected as appropriate.

本発明の一実施形態の係る窒化鉄系磁性粉末は、Fe16相を主相とするFe16粒子の表面に第一の被覆層を有し、かつ、第一の被覆層の表面に第二の被覆層を有する窒化鉄系磁性粒子からなる窒化鉄系磁性粉末であって、前記第一の被覆層がCr、Mn、V、Mo、Wのいずれか1種以上からなる金属若しくは合金であり、前記第二の被覆層がNi、Coのいずれか1種以上からなる金属と前記第一の被覆層に含まれる金属との合金であることを特徴とする。 An iron nitride-based magnetic powder according to an embodiment of the present invention has a first covering layer on the surface of Fe 16 N 2 particles having an Fe 16 N 2 phase as a main phase, and the first covering layer An iron nitride-based magnetic powder comprising iron nitride-based magnetic particles having a second covering layer on the surface, wherein the first covering layer is any one or more of Cr, Mn, V, Mo and W. Or an alloy, and the second covering layer is an alloy of a metal consisting of any one or more of Ni and Co and a metal contained in the first covering layer.

本発明に記載の窒化鉄系磁性粉末は、主相がFe16粒子からなる。また、前記主相以外に、Fe、Fe及びFeO等の酸化鉄相を有していてもよい。 The iron nitride-based magnetic powder according to the present invention comprises Fe 16 N 2 particles as the main phase. In addition to the main phase may have a Fe 2 O 3, Fe 3 O 4 and iron oxide phase such as FeO.

本実施形態に係るFe16粒子は、主相がFe16化合物相であり、FeN化合物相を含んでもよい。また、Fe16粒子の表面に酸化物からなる相を有していてもよい。 In the Fe 16 N 2 particles according to the present embodiment, the main phase is the Fe 16 N 2 compound phase, and the Fe 16 N 2 particles may include the Fe 4 N compound phase. It may also have a phase of oxide on the surface of the Fe 16 N 2 particles.

前記Fe16粒子が、Mn、Ni、Co、Ti、Zn等の遷移金属を含んでいてもよい。 The Fe 16 N 2 particles may contain a transition metal such as Mn, Ni, Co, Ti, Zn or the like.

前記Fe16粒子の粒子径は30〜150nmであることが望ましい。Fe16粒子の粒子径がこの範囲内の場合、保磁力が増加する傾向がある。 The particle diameter of the Fe 16 N 2 particles is preferably 30 to 150 nm. If the particle size of the Fe 16 N 2 particles is within this range, the coercivity tends to increase.

本発明に記載の窒化鉄系磁性粒子は、主相であるFe16粒子の表面に第一の被覆層を有しかつ、第一の被覆層の表面に第二の被覆層を有している。前記Fe16粒子と第一の被覆層の界面の一部にSi化合物を含んでいてもよい。 The iron nitride-based magnetic particles according to the present invention have a first covering layer on the surface of Fe 16 N 2 particles that are the main phase, and have a second covering layer on the surface of the first covering layer. ing. A Si compound may be contained in part of the interface between the Fe 16 N 2 particles and the first covering layer.

前記第一の被覆層はCr、Mn、V、Mo、Wのいずれか1種以上の金属若しくは合金であり、結晶質及び非晶質の何れの状態でもよい。 The first covering layer is a metal or an alloy of any one or more of Cr, Mn, V, Mo and W, and may be in either crystalline or amorphous state.

前記第二の被覆層はNi、Coのいずれか1種以上の金属と前記第一の被覆層に含まれる金属との合金であり、結晶質及び非晶質の何れの状態でもよい。前記第一の被覆層に含まれる金属が前記第二の被覆層の金属と合金化することにより、第二の被覆層と第一の被覆層の密着性が高まり、高温時における第二の被覆層の剥離を防ぐ効果が得られるため、窒化鉄系磁性粉末が良好な耐湿性を得ることができる。 The second covering layer is an alloy of at least one metal of Ni, Co and a metal contained in the first covering layer, and may be in a crystalline or amorphous state. By alloying the metal contained in the first covering layer with the metal of the second covering layer, the adhesion between the second covering layer and the first covering layer is enhanced, and the second covering at a high temperature is obtained. Since the effect of preventing layer peeling can be obtained, the iron nitride-based magnetic powder can obtain good moisture resistance.

また好ましくは前記第二の被覆層の合金に含まれる前記第一の被覆層に含まれる金属が1〜10at%とすることで、窒化鉄系磁性粉末がさらに良好な耐湿性を得ることができる。この時、前記第一の被覆層に複数の金属が含まれる場合、前記第二の被覆層の合金に含まれる前記第一の被覆層に含まれる金属が複数であってもよい。その場合は前記第二の被覆層の合金に含まれる前記第一の被覆層に含まれる複数の金属の総量が1〜10at%である。 In addition, preferably, the metal contained in the first coating layer contained in the alloy of the second coating layer is 1 to 10 at%, whereby the iron nitride magnetic powder can obtain even better moisture resistance. . At this time, when a plurality of metals are included in the first covering layer, a plurality of metals may be included in the first covering layer included in the alloy of the second covering layer. In that case, the total amount of the plurality of metals contained in the first covering layer contained in the alloy of the second covering layer is 1 to 10 at%.

前記第一の被覆層の厚みは5nm以上が好ましく、さらに好ましくは5〜15nmである。前記第一の被覆層の厚みが5nm未満の場合は、Fe16粒子同士を磁気的に分離する効果が十分に発現しないため、良好な保磁力を得ることができない。また、前記第一の被覆層の厚みが15nmを超える場合は、窒化鉄磁性粉末に含まれるFe16相の割合が低下し、窒化鉄系磁性粉末が十分な飽和磁化を得られない場合がある。また好ましくは、前記第二の被覆層の厚みが5nm以上である。前記第二の被覆層の厚みが5nm未満の場合は、前記窒化鉄系磁性粉末が良好な耐湿性を得ることができない。また、前記第二の被覆層の厚みが15nmを超える場合は、窒化鉄磁性粉末に含まれるFe16相の割合が低下し、窒化鉄系磁性粉末が十分な飽和磁化を得られない場合がある。 The thickness of the first covering layer is preferably 5 nm or more, more preferably 5 to 15 nm. If the thickness of the first covering layer is less than 5 nm, a sufficient coercive force can not be obtained because the effect of magnetically separating Fe 16 N 2 particles is not exhibited sufficiently. In the case where the thickness of the first covering layer exceeds 15 nm, the proportion of the Fe 16 N 2 phase contained in the iron nitride magnetic powder decreases, and a sufficient saturation magnetization of the iron nitride magnetic powder can not be obtained. There is. Further preferably, the thickness of the second covering layer is 5 nm or more. When the thickness of the second covering layer is less than 5 nm, the iron nitride-based magnetic powder can not obtain good moisture resistance. In the case where the thickness of the second covering layer exceeds 15 nm, the proportion of the Fe 16 N 2 phase contained in the iron nitride magnetic powder decreases, and a sufficient saturation magnetization can not be obtained by the iron nitride based magnetic powder. There is.

本実施形態に係る窒化鉄系磁性粉末の好適な製造法について述べる。本実施形態に係る窒化鉄系磁性粉末は、酸化鉄粒子を合成した後、前記酸化鉄粒子に還元処理および窒化処理を順に施して得たFe16粒子を第一及び第二の被覆層を形成する処理を行うことにより得られる。 The suitable manufacturing method of the iron nitride type magnetic powder which concerns on this embodiment is described. The iron nitride-based magnetic powder according to the present embodiment comprises first and second coated layers of Fe 16 N 2 particles obtained by synthesizing iron oxide particles and subsequently subjecting the iron oxide particles to reduction treatment and nitriding treatment in order Obtained by performing processing to form

前記酸化鉄粒子は鉄塩水溶液と、アルカリ水溶液とを混合させた後、熟成し、洗浄することにより製造することができる。 The iron oxide particles can be produced by mixing an iron salt aqueous solution and an alkaline aqueous solution, ripening and washing.

前期鉄塩としては、硫酸塩、塩化物、硝酸塩等を挙げることができ、これらを適宜組み合わせて使用してもよい。また、それらの水和物を使用することができる。 Examples of the above-mentioned iron salt include sulfate, chloride, nitrate and the like, and these may be used in combination as appropriate. Also, their hydrates can be used.

前記アルカリ水溶液としては、水酸化ナトリウム水溶液、アンモニア水、アンモニア塩水溶液、および尿素水溶液を1つ以上用いることができるが、この限りではない。 As the aqueous alkali solution, one or more of aqueous sodium hydroxide solution, aqueous ammonia, aqueous ammonia salt solution, and aqueous urea solution can be used, but it is not limited thereto.

また、酸化鉄製造後、結晶性改良や粒子サイズ、粒子形状制御のために、オートクレーブによる水熱処理など液中熟成反応を行ってもよい。 In addition, after iron oxide production, in-liquid aging reaction such as hydrothermal treatment with an autoclave may be performed to improve crystallinity and control particle size and particle shape.

酸化鉄製造後、水溶液をろ過し、必要に応じて水洗等の洗浄処理を施すことで酸化鉄粒子を回収することができる。 After the production of iron oxide, the aqueous solution is filtered, and if necessary, washing treatment such as water washing can be performed to recover iron oxide particles.

前記酸化鉄粒子は、還元処理によって粒子同士が焼結することを抑制するために、粒子表面の一部をSi化合物で被覆してもよい。Si化合物としては、コロイダルシリカ、シランカップリング剤、シラノール化合物等が使用できる。   The said iron oxide particle may coat | cover a part of particle | grain surface with Si compound, in order to suppress that particle | grains sinter by reduction processing. As the Si compound, colloidal silica, a silane coupling agent, a silanol compound or the like can be used.

Si化合物を被覆する場合、その被覆量は酸化鉄粒子に対しSi換算で0.1質量%以上20質量%以下であることが望ましい。0.1質量%未満の場合には熱処理時に粒子間の焼結を抑制する効果が十分得られないため、最終的に得られる窒化鉄系磁性粒子が大きくなる。20質量%を超える場合には熱処理時に粒子間の焼結を抑制する効果が過剰となり、最終的に得られるFe16粒子が小さくなる。 When the Si compound is coated, the coating amount is desirably 0.1% by mass or more and 20% by mass or less in terms of Si based on iron oxide particles. If the amount is less than 0.1% by mass, the effect of suppressing sintering between particles can not be sufficiently obtained during heat treatment, so that the finally obtained iron nitride-based magnetic particles become large. If it exceeds 20% by mass, the effect of suppressing sintering between particles during heat treatment becomes excessive, and the finally obtained Fe 16 N 2 particles become small.

前記酸化鉄粒子は、平均粒子径は10nm以上150nm以下が好ましい。平均粒子径をこの範囲とすることで、最終的に得られるFe16粒子の平均粒子径を30〜150nmとすることができる。 The iron oxide particles preferably have an average particle size of 10 nm or more and 150 nm or less. By setting the average particle size to this range, the average particle size of Fe 16 N 2 particles finally obtained can be set to 30 to 150 nm.

前記酸化鉄粒子は、マグネタイト、γ−Fe、α−Fe、α−FeOOH、β−FeOOH、γ−FeOOH、FeOなどである、この限りではない。 The iron oxide particles are not limited to magnetite, γ-Fe 2 O 3 , α-Fe 2 O 3 , α-FeOOH, β-FeOOH, γ-FeOOH, FeO, and the like.

前記酸化鉄粒子の粒子形状は、球状、針状、粒状、紡錘状、直方体状などいずれでもよい。 The particle shape of the iron oxide particles may be spherical, needle-like, granular, spindle-like, rectangular or the like.

次に、得られた酸化鉄粒子の還元処理を行い、鉄粒子を得る。還元処理の温度は200〜400℃である。還元処理の温度が200℃未満の場合には酸化鉄粒子が十分に還元されない。還元処理の温度が400℃を超える場合には酸化鉄粒子は十分に還元されるが、粒子間の焼結が進行するため好ましくない。より好ましくは230〜350℃である。 Next, reduction processing of the obtained iron oxide particles is performed to obtain iron particles. The temperature of the reduction treatment is 200 to 400 ° C. When the temperature of the reduction treatment is less than 200 ° C., the iron oxide particles are not sufficiently reduced. When the temperature of the reduction treatment exceeds 400 ° C., the iron oxide particles are sufficiently reduced, but this is not preferable because sintering between particles proceeds. More preferably, it is 230 to 350 ° C.

還元処理の時間は特に限定されないが、1〜96時間が好ましい。96時間を超えると還元温度によっては焼結が進み後段の窒化処理が進みにくくなってしまう。1時間未満では十分に還元が進行しない。より好ましくは2〜72時間である。 Although the time of a reduction process is not specifically limited, 1 to 96 hours are preferable. If it exceeds 96 hours, depending on the reduction temperature, sintering will proceed and it will be difficult to advance the subsequent stage nitriding treatment. The reduction does not proceed sufficiently in less than one hour. More preferably, it is 2 to 72 hours.

還元処理の雰囲気は、水素雰囲気である。 The atmosphere of the reduction treatment is a hydrogen atmosphere.

次に、得られた鉄粒子の窒化処理を行い、Fe16粒子を得る。窒化処理の温度は100〜200℃である。窒化処理の温度が100℃未満の場合には窒化が十分に進行しない。窒化処理の温度が200℃を超える場合には、窒化が過剰に進行するため、磁気特性が低下する。より好ましくは120〜180℃である。 Next, the iron particles obtained are subjected to a nitriding treatment to obtain Fe 16 N 2 particles. The temperature of the nitriding treatment is 100 to 200 ° C. When the temperature of the nitriding treatment is less than 100 ° C., the nitriding does not proceed sufficiently. When the temperature of the nitriding treatment exceeds 200 ° C., the nitriding progresses excessively, and the magnetic properties are degraded. More preferably, it is 120-180 ° C.

窒化処理の時間は特に限定されないが、1〜48時間が好ましい。48時間を超えると窒化温度によっては磁気特性が低下する。1時間未満では十分な還元ができない場合が多い。より好ましくは3〜24時間である。 Although the time of the nitriding treatment is not particularly limited, 1 to 48 hours are preferable. If it exceeds 48 hours, depending on the nitriding temperature, the magnetic properties deteriorate. In less than one hour, sufficient reduction can often not be achieved. More preferably, it is 3 to 24 hours.

窒化処理の雰囲気は、NH雰囲気が望ましく、NHの他、N、Hなどを混合させてもよい。 The atmosphere for the nitriding treatment is preferably an NH 3 atmosphere, and in addition to NH 3 , N 2 , H 2 and the like may be mixed.

この時、Fe16粒子が、粒子表面に酸化鉄相を有していてもよい。 At this time, the Fe 16 N 2 particles may have an iron oxide phase on the particle surface.

得られたFe16粒子を十分に脱水した有機溶剤と混合し、さらに分散剤を添加し、Fe16粒子を含むスラリーを作製する。 The obtained Fe 16 N 2 particles are mixed with a fully dehydrated organic solvent, and a dispersant is further added to prepare a slurry containing Fe 16 N 2 particles.

前記有機溶剤にはヘキサン、シクロヘキサン、オクタン等のアルカン類や、シクロヘキサノン等のケトン類等のいずれか一つ以上を用いた、単体液体もしくは混合液体を用いることができるが、この限りではない。 A single liquid or mixed liquid using any one or more of alkanes such as hexane, cyclohexane and octane, and ketones such as cyclohexanone can be used as the organic solvent, but the present invention is not limited thereto.

前記分散剤には、オレイン酸、オレイルアミン、トリオクチルアミン等の何れか一つ以上を用いることができるが、この限りではない。   As the dispersant, any one or more of oleic acid, oleylamine, trioctylamine and the like can be used, but it is not limited thereto.

前記分散剤の添加量は、前記Fe16粒子に対して0.1質量%以上5質量%以下である。分散剤量をこの範囲にすることにより後段の被覆層の形成処理時にFe16粒子の凝集を制御することができる。 The addition amount of the dispersant is 0.1% by mass or more and 5% by mass or less with respect to the Fe 16 N 2 particles. By setting the amount of the dispersant in this range, it is possible to control the aggregation of the Fe 16 N 2 particles during the process of forming the coating layer in the latter stage.

前記Fe16粒子を含むスラリーにCrヘキサカルボニル、二Mnデカカルボニル、Vヘキサカルボニル、Moヘキサカルボニル、Wヘキサカルボニル等の非磁性金属カルボニルの何れかを添加し、処理温度120〜150℃で1〜48時間撹拌し、第一の被覆層を有する窒化鉄系磁性粒子を含むスラリーを作製する。この時の処理温度が120℃未満の場合、金属カルボニルの分解が進まず、Fe16粒子表面に第一の被覆層を十分に形成することができない。この時の処理温度が150℃を超える場合には、金属カルボニルの分解によって生成する金属が粒子として形成されるため、窒化鉄系磁性粒子表面に第一の被覆層を形成することができない。より好ましくは130℃〜140℃である。また撹拌時間が1時間未満の場合は金属カルボニルの分解しきらないため、Fe16粒子表面に第一の被覆層を十分に形成することができない。撹拌時間が48時間を超える場合には、処理温度によっては最終的に得られる窒化鉄系磁性粉末の磁気特性が低下する。より好ましくは3〜24時間である。 Any of nonmagnetic metal carbonyls such as Cr hexacarbonyl, diMndecacarbonyl, V hexacarbonyl, Mo hexacarbonyl, W hexacarbonyl, etc. is added to the slurry containing the Fe 16 N 2 particles, and the treatment temperature is 120 to 150 ° C. Stir for 1 to 48 hours to prepare a slurry containing iron nitride-based magnetic particles having a first covering layer. If the treatment temperature at this time is less than 120 ° C., decomposition of metal carbonyl does not proceed, and the first covering layer can not be sufficiently formed on the surface of the Fe 16 N 2 particles. If the treatment temperature at this time exceeds 150 ° C., the metal formed by the decomposition of the metal carbonyl is formed as particles, so that the first covering layer can not be formed on the surface of the iron nitride-based magnetic particles. More preferably, the temperature is 130 ° C to 140 ° C. When the stirring time is less than 1 hour, the metal carbonyl is not completely decomposed, so that the first covering layer can not be sufficiently formed on the surface of the Fe 16 N 2 particles. When the stirring time exceeds 48 hours, depending on the treatment temperature, the magnetic properties of the finally obtained iron nitride-based magnetic powder deteriorate. More preferably, it is 3 to 24 hours.

前記第一の被覆層を有する窒化鉄系磁性粒子を含むスラリーにCoオクタカルボニル、Niテトラカルボニル等の卑金属カルボニルの何れかと、前記第一の被覆層の形成に用いた非磁性金属カルボニルを添加し、処理温度100〜130℃で1〜48時間撹拌し、第二の被覆層を有する窒化鉄系磁性粒子を含むスラリーを作製する。この時の処理温度が100℃未満の場合、金属カルボニルの分解が進まず、前記第一の被覆層の表面に第二の被覆層を十分に形成することができない。この時の処理温度が130℃超える場合には、金属カルボニルの分解によって生成する金属が粒子として形成されるため、前記第一の被覆層の表面に第二の被覆層を形成することができない。より好ましくは110〜120℃である。また撹拌時間が1時間未満の場合は金属カルボニルの分解しきらないため、前記第一の被覆層の表面に第二の被覆層を十分に形成することができない。より好ましくは3〜24時間である。 The slurry containing iron nitride-based magnetic particles having the first covering layer is added with any of base metal carbonyls such as Co octacarbonyl and Ni tetracarbonyl, and nonmagnetic metal carbonyl used for forming the first covering layer The mixture is stirred at a treatment temperature of 100 to 130 ° C. for 1 to 48 hours to prepare a slurry containing iron nitride-based magnetic particles having a second covering layer. When the treatment temperature at this time is less than 100 ° C., decomposition of metal carbonyl does not proceed, and a sufficient second covering layer can not be formed on the surface of the first covering layer. If the treatment temperature at this time exceeds 130 ° C., the metal formed by the decomposition of the metal carbonyl is formed as particles, so that the second covering layer can not be formed on the surface of the first covering layer. More preferably, it is 110-120 degreeC. When the stirring time is less than 1 hour, the metal carbonyl is not completely decomposed, so that the second covering layer can not be sufficiently formed on the surface of the first covering layer. More preferably, it is 3 to 24 hours.

次に、得られた前記第二の被覆層を有する窒化鉄系磁性粒子を含むスラリーを100℃で20時間窒素雰囲気中にて乾燥し、第一の被覆層と第二の被覆層を有する窒化鉄系磁性粉末を作製することができる。   Next, the obtained slurry containing the iron nitride-based magnetic particles having the second covering layer is dried at 100 ° C. for 20 hours in a nitrogen atmosphere to form a nitride having a first covering layer and a second covering layer. Iron-based magnetic powder can be produced.

本実施形態によって得られた窒化鉄系磁性粉末を用いて、ボンド磁石を得ることができる。以下、その製造方法を述べる。 A bonded magnet can be obtained using the iron nitride based magnetic powder obtained by the present embodiment. Hereafter, the manufacturing method is described.

まず、本実施形態によって得られた窒化鉄系磁性粉末を用いたボンド磁石の製造方法の一例について説明する。樹脂を含む樹脂バインダーと磁性粉とを例えば加圧ニーダー等の加圧混練機で混練して、ボンド磁石用コンパウンド(組成物)を調製する。樹脂は、エポキシ樹脂、フェノール樹脂等の熱硬化性樹脂や、スチレン系、オレフィン系、ウレタン系、ポリエステル系、ポリアミド系のエラストマー、アイオノマー、エチレンプロピレン共重合体(EPM)、エチレン−エチルアクリレート共重合体等の熱可塑性樹脂がある。なかでも、圧縮成形をする場合に用いる樹脂は、熱硬化性樹脂が好ましく、エポキシ樹脂又はフェノール樹脂がより好ましい。また、射出成形をする場合に用いる樹脂は熱可塑性樹脂が好ましい。また、ボンド磁石用コンパウンドには、必要に応じて、カップリング剤やその他の添加材を加えてもよい。 First, an example of a method of manufacturing a bonded magnet using the iron nitride based magnetic powder obtained by the present embodiment will be described. The resin binder containing the resin and the magnetic powder are kneaded, for example, by a pressure kneader such as a pressure kneader to prepare a compound magnet composition (composition). Resins include thermosetting resins such as epoxy resins and phenol resins, styrene-based, olefin-based, urethane-based, polyester-based and polyamide-based elastomers, ionomers, ethylene propylene copolymer (EPM), ethylene-ethyl acrylate copolymer There is a thermoplastic resin such as coalescence. Among them, a thermosetting resin is preferable, and an epoxy resin or a phenol resin is more preferable, as a resin used in compression molding. The resin used for injection molding is preferably a thermoplastic resin. Further, if necessary, a coupling agent and other additives may be added to the bonded magnet compound.

また、ボンド磁石における窒化鉄系磁性粉末と樹脂との含有比率は、磁性粉末100質量%に対して、樹脂を0.5質量%以上20質量%以下含むことが好ましい。磁性粉末100質量%に対して、樹脂の含有量が0.5質量%未満であると、保形性が損なわれる傾向があり、樹脂が20質量%と超えると、十分に優れた磁気特性が得られ難くなる傾向がある。 Further, the content ratio of the iron nitride-based magnetic powder to the resin in the bonded magnet preferably includes 0.5% by mass or more and 20% by mass or less of the resin with respect to 100% by mass of the magnetic powder. When the content of the resin is less than 0.5% by mass with respect to 100% by mass of the magnetic powder, the shape retention tends to be impaired, and when the content of the resin exceeds 20% by mass, sufficiently excellent magnetic properties are obtained. It tends to be difficult to obtain.

上述のボンド磁石用コンパウンドを調製した後、このボンド磁石用コンパウンドを射出成形することにより、磁性粉末と樹脂とを含むボンド磁石を得ることができる。射出成形によりボンド磁石を作製する場合、ボンド磁石用コンパウンドを、必要に応じてバインダー(熱可塑性樹脂)の溶融温度まで加熱し、流動状態とした後、このボンド磁石用コンパウンドを所定の形状を有する金型内に射出して成形を行う。その後、冷却し、金型から所定形状を有する成形品(ボンド磁石)を取り出す。このようにしてボンド磁石が得られる。ボンド磁石の製造方法は、上述の射出成形による方法に限定されるものではなく、例えばボンド磁石用コンパウンドを圧縮成形することにより磁性粉末と樹脂とを含むボンド磁石を得るようにしてもよい。圧縮成形によりボンド磁石を作製する場合、上述のボンド磁石用コンパウンドを調製した後、このボンド磁石用コンパウンドを所定の形状を有する金型内に充填し、圧力を加えて金型から所定形状を有する成形品(ボンド磁石)を取り出す。金型にてボンド磁石用コンパウンドを成形し、取り出す際には、機械プレスや油圧プレス等の圧縮成形機を用いて行なわれる。その後、加熱炉や真空乾燥炉などの炉に入れて熱をかけることにより硬化させることで、ボンド磁石が得られる。 After preparing the above-described bonded magnet compound, the bonded magnet compound including the magnetic powder and the resin can be obtained by injection molding the bonded magnet compound. When a bonded magnet is produced by injection molding, the bonded magnet compound is heated to the melting temperature of the binder (thermoplastic resin) as necessary to bring it into a fluidized state, and then the bonded magnet compound has a predetermined shape. It injects in the mold and performs molding. Then, it cools and takes out the molded article (bond magnet) which has a predetermined shape from a metal mold | die. Thus, a bonded magnet is obtained. The method of manufacturing the bonded magnet is not limited to the above-described injection molding method. For example, the bonded magnet containing a magnetic powder and a resin may be obtained by compression molding a bonded magnet compound. When producing a bonded magnet by compression molding, after preparing the above-mentioned bonded magnet compound, the bonded magnet compound is filled in a mold having a predetermined shape, and pressure is applied to have a predetermined shape from the mold Take out the molded product (bond magnet). When molding the bonded magnet compound with a mold and taking it out, it is carried out using a compression molding machine such as a mechanical press or hydraulic press. Thereafter, it is placed in a furnace such as a heating furnace or a vacuum drying furnace and hardened by applying heat to obtain a bonded magnet.

成形して得られるボンド磁石の形状は特に限定されるものではなく、用いる金型の形状に応じて、例えば平板状、柱状、断面形状がリング状等、変更することができる。また、得られたボンド磁石は、その表面上に酸化層や樹脂層等の劣化を防止するためにめっきや塗装を施すようにしてもよい。 The shape of the bonded magnet obtained by molding is not particularly limited, and may be changed to, for example, a flat plate shape, a columnar shape, or a ring shape in cross section depending on the shape of a mold to be used. Further, the obtained bonded magnet may be plated or coated on its surface to prevent deterioration of the oxide layer, the resin layer and the like.

ボンド磁石用コンパウンドは目的とする所定の形状に成形する際、磁場を印加して窒化鉄系磁性粉末を一定方向に配向させる。これにより、窒化鉄系磁性粉末が特定方向に配向するので、より磁性の強い異方性ボンド磁石が得られる。 When the bonded magnet compound is formed into a predetermined shape, the magnetic field is applied to orient the iron nitride-based magnetic powder in a predetermined direction. As a result, the iron nitride-based magnetic powder is oriented in a specific direction, whereby a more strongly anisotropic bonded magnet is obtained.

次に、本発明に記載の窒化鉄系磁性粉末について、実施例・比較例を用いてさらに詳細に説明するが、本発明は実施例に示す態様に限定されるものではない。 Next, the iron nitride-based magnetic powder described in the present invention will be described in more detail using Examples and Comparative Examples, but the present invention is not limited to the embodiments shown in the Examples.

(実施例1)硫酸鉄七水和物(FeSO・7HO)167gと塩化鉄六水和物(FeCl・6HO)85gをイオン交換水に溶解し、鉄塩水溶液を作製した。2.5molアンモニア水溶液600gを30℃に保持し、先に調整した鉄塩水溶液を添加した後、液中熟成反応として70℃で一定となるように温度コントロールし、30分撹拌後、遠心分離機にて2Lのイオン交換水で3回洗浄を行い、酸化鉄スラリーを作製した。 Example 1 An iron salt aqueous solution was prepared by dissolving 167 g of iron sulfate heptahydrate (FeSO 4 · 7 H 2 O) and 85 g of iron chloride hexahydrate (FeCl 3 · 6 H 2 O) in ion exchanged water. . After holding 600 g of a 2.5 mol aqueous ammonia solution at 30 ° C. and adding the previously prepared iron salt aqueous solution, the temperature is controlled to be constant at 70 ° C. as an in-liquid aging reaction, and after stirring for 30 minutes, centrifuge The reaction mixture was washed three times with 2 L of ion-exchanged water to prepare an iron oxide slurry.

前記酸化鉄スラリーに、テトラエトキシシラン5.0g、エタノール21g、ジエチレングリコールモノブチルエーテル78gを添加し、Si被着処理を施した。この酸化鉄スラリーを85℃で24時間乾燥し、Feを含む酸化鉄粒子を作製した。 To the above-mentioned iron oxide slurry, 5.0 g of tetraethoxysilane, 21 g of ethanol and 78 g of diethylene glycol monobutyl ether were added to carry out Si deposition treatment. The iron oxide slurry was dried at 85 ° C. for 24 hours to prepare iron oxide particles containing Fe 2 O 3 .

前記酸化鉄粒子2gを焼成ボートに入れ、熱処理炉に静置した。炉内に窒素ガスを充填した後、水素ガスを1L/minの流量で流しながら、5℃/minの昇温速度で250℃まで昇温し、48時間保持して還元処理を行った。その後、水素ガスの供給を止めて窒素ガスを2L/minの流量で流しながら140℃まで降温した。続いて、アンモニアガスを0.2L/minにて流しながら、140℃で24時間窒化処理を行った。その後、窒素ガスを2L/minの流量で流しながら50℃まで降温し、空気置換を24時間実施し、Fe16粒子を得た。 2 g of the iron oxide particles were placed in a baking boat and allowed to stand in a heat treatment furnace. The furnace was filled with nitrogen gas, and while flowing hydrogen gas at a flow rate of 1 L / min, the temperature was raised to 250 ° C. at a temperature rising rate of 5 ° C./min and held for 48 hours for reduction treatment. Thereafter, the supply of hydrogen gas was stopped, and the temperature was lowered to 140 ° C. while flowing nitrogen gas at a flow rate of 2 L / min. Subsequently, nitriding treatment was performed at 140 ° C. for 24 hours while flowing ammonia gas at 0.2 L / min. Thereafter, the temperature was lowered to 50 ° C. while flowing nitrogen gas at a flow rate of 2 L / min, air replacement was performed for 24 hours, and Fe 16 N 2 particles were obtained.

得られたFe16粒子10gを十分に脱水したオクタン500gと混合し、さらに分散剤としてオレイルアミンを0.3g添加し、窒化鉄系磁性粒子を含むスラリーを作製した。得られた窒化鉄系磁性粒子を含むスラリーにCrヘキサカルボニルを4.0g添加し140℃で24時間撹拌し、Cr金属からなる第一の被覆層を有する窒化鉄系磁性粒子を含むスラリーを作製した。 10 g of the obtained Fe 16 N 2 particles were mixed with 500 g of fully dehydrated octane, and 0.3 g of oleylamine was further added as a dispersant to prepare a slurry containing iron nitride-based magnetic particles. 4.0 g of Cr hexacarbonyl was added to the obtained slurry containing iron nitride based magnetic particles and stirred at 140 ° C. for 24 hours to prepare a slurry containing iron nitride based magnetic particles having a first coating layer of Cr metal. did.

得られた第一の被覆層を有する窒化鉄系磁性粒子を含むスラリーにNiテトラカルボニルを3.0g、Crヘキサカルボニルを0.03g添加し110℃で24時間撹拌し、Ni金属にCr金属が固溶した合金からなる第二の被覆層を有する窒化鉄系磁性粒子を含むスラリーを作製した。   3.0 g of Ni tetracarbonyl and 0.03 g of Cr hexacarbonyl were added to the obtained slurry containing iron nitride-based magnetic particles having the first covering layer, and stirred at 110 ° C. for 24 hours, Cr metal was added to Ni metal. A slurry containing iron nitride based magnetic particles having a second covering layer made of a solid solution alloy was prepared.

次に得られた第二の被覆層を有する窒化鉄系磁性粒子を含むスラリーを100℃で20時間窒素雰囲気中にて乾燥し、窒化鉄系磁性粉末を作製した。   Next, the obtained slurry containing the iron nitride-based magnetic particles having the second covering layer was dried at 100 ° C. for 20 hours in a nitrogen atmosphere to produce an iron nitride-based magnetic powder.

(実施例2、3、4、5)第一の被覆層を有する窒化鉄系磁性粒子を含むスラリーに添加するCrヘキサカルボニルの量を0.04、0.20、0.40、0.44gとした以外は、実施例1と同様の方法で窒化鉄系磁性粉末を作製した。   (Examples 2, 3, 4, 5) The amount of Cr hexacarbonyl added to a slurry containing iron nitride-based magnetic particles having a first covering layer is 0.04, 0.20, 0.40, 0.44 g An iron nitride-based magnetic powder was produced in the same manner as in Example 1 except that

(実施例6、7、8、9)第一の被覆層を有する窒化鉄系磁性粒子を含むスラリーに添加するNiテトラカルボニルの量を0.6、1.8、6.0、9.0gとし、Crヘキサカルボニルの量を0.04、0.12、0.40、0.60gとした以外は、実施例3と同様の方法で窒化鉄系磁性粉末を作製した。   (Examples 6, 7, 8, 9) The amount of Ni tetracarbonyl added to a slurry containing iron nitride-based magnetic particles having a first covering layer is 0.6, 1.8, 6.0, 9.0 g An iron nitride magnetic powder was produced in the same manner as in Example 3 except that the amount of Cr hexacarbonyl was changed to 0.04, 0.12, 0.20, and 0.60 g.

(実施例1011、12、13)Fe16粒子を含むスラリーに添加するCrヘキサカルボニルの量を0.8、2.4、8.0、12.0gとした以外は、実施例3と同様の方法で窒化鉄系磁性粉末を作製した。 (Examples 101, 12, and 13) Example 3 was repeated except that the amount of Cr hexacarbonyl added to the slurry containing Fe 16 N 2 particles was 0.8, 2.4, 8.0, and 12.0 g. An iron nitride based magnetic powder was produced in the same manner.

(実施例14)Fe16粒子を含むスラリーに二Mnデカカルボニルを4.0g添加し、第一の被覆層を有する窒化鉄系磁性粒子を含むスラリーにCrヘキサカルボニルに変えて二Mnデカカルボニルを0.20g添加した以外は、実施例3と同様の方法で窒化鉄系磁性粉末を作製した。 (Example 14) 4.0 g of 2 Mn decacarbonyl is added to a slurry containing Fe 16 N 2 particles, and the slurry containing iron nitride-based magnetic particles having a first covering layer is changed to Cr hexacarbonyl to obtain 2 Mn deca An iron nitride based magnetic powder was produced in the same manner as in Example 3 except that 0.20 g of carbonyl was added.

(実施例15)Fe16粒子を含むスラリーにVヘキサカルボニルを4.0g添加し、第一の被覆層を有する窒化鉄系磁性粒子を含むスラリーにCrヘキサカルボニルに変えてVデカカルボニルを0.20g添加した以外は、実施例3と同様の方法で窒化鉄系磁性粉末を作製した。 (Example 15) 4.0 g of V hexacarbonyl is added to a slurry containing Fe 16 N 2 particles, and Cr hexacarbonyl is changed to a slurry containing iron nitride-based magnetic particles having a first covering layer to obtain V decacarbonyl An iron nitride-based magnetic powder was produced in the same manner as in Example 3 except that 0.20 g was added.

(実施例16)Fe16粒子を含むスラリーにMoヘキサカルボニルを2.2g添加し、第一の被覆層を有する窒化鉄系磁性粒子を含むスラリーにCrヘキサカルボニルに変えてMoヘキサカルボニルを0.11g添加した以外は、実施例3と同様の方法で窒化鉄系磁性粉末を作製した。 (Example 16) 2.2 g of Mo hexacarbonyl was added to a slurry containing Fe 16 N 2 particles, and Cr hexacarbonyl was changed to a slurry containing iron nitride-based magnetic particles having a first covering layer to obtain Mo hexacarbonyl. An iron nitride based magnetic powder was produced in the same manner as in Example 3 except that 0.11 g was added.

(実施例17)Fe16粒子を含むスラリーにWヘキサカルボニルを1.7g添加し、第一の被覆層を有する窒化鉄系磁性粒子を含むスラリーにCrヘキサカルボニルに変えてWヘキサカルボニルを0.09g添加した以外は、実施例3と同様の方法で窒化鉄系磁性粉末を作製した。 Example 17 1.7 g of W hexacarbonyl is added to a slurry containing Fe 16 N 2 particles, and the Cr hexacarbonyl is changed to a slurry containing iron nitride-based magnetic particles having a first covering layer. An iron nitride based magnetic powder was produced in the same manner as in Example 3 except that 0.09 g was added.

(実施例18)第一の被覆層を有する窒化鉄系磁性粒子を含むスラリーに二Coオクタカルボニルを3.0g添加した以外は、実施例3と同様の方法で窒化鉄系磁性粉末を作製した。   (Example 18) An iron nitride-based magnetic powder was produced in the same manner as in Example 3 except that 3.0 g of 2-Co octacarbonyl was added to a slurry containing iron nitride-based magnetic particles having a first covering layer. .

(実施例19)第一の被覆層を有する窒化鉄系磁性粒子を含むスラリーに二Coオクタカルボニルを3.0g添加した以外は、実施例14と同様の方法で窒化鉄系磁性粉末を作製した。   Example 19 An iron nitride-based magnetic powder was produced in the same manner as in Example 14 except that 3.0 g of 2-Co octacarbonyl was added to a slurry containing iron nitride-based magnetic particles having a first covering layer. .

(実施例20)第一の被覆層を有する窒化鉄系磁性粒子を含むスラリーに二Coオクタカルボニルを3.0g添加した以外は、実施例15と同様の方法で窒化鉄系磁性粉末を作製した。   Example 20 An iron nitride-based magnetic powder was produced in the same manner as in Example 15, except that 3.0 g of 2-Co octacarbonyl was added to a slurry containing iron nitride-based magnetic particles having a first covering layer. .

(実施例21)第一の被覆層を有する窒化鉄系磁性粒子を含むスラリーに二Coオクタカルボニルを3.0g添加した以外は、実施例16と同様の方法で窒化鉄系磁性粉末を作製した。   (Example 21) An iron nitride-based magnetic powder was produced in the same manner as in Example 16 except that 3.0 g of 2-Co octacarbonyl was added to a slurry containing iron nitride-based magnetic particles having a first covering layer. .

(実施例22)第一の被覆層を有する窒化鉄系磁性粒子を含むスラリーに二Coオクタカルボニルを3.0g添加した以外は、実施例17と同様の方法で窒化鉄系磁性粉末を作製した。   (Example 22) An iron nitride-based magnetic powder was produced in the same manner as in Example 17 except that 3.0 g of 2-Co octacarbonyl was added to a slurry containing iron nitride-based magnetic particles having a first covering layer. .

(比較例1)実施例1と同様の方法でFe16粉末を作製した。 Comparative Example 1 In the same manner as in Example 1, Fe 16 N 2 powder was produced.

(比較例2)第一の被覆層を有する窒化鉄系磁性粒子を含むスラリーに卑金属カルボニル及び非磁性金属カルボニルを添加しなかった以外は実施例1と同様の方法で窒化鉄系磁性粉末を作製した。   Comparative Example 2 An iron nitride based magnetic powder was prepared in the same manner as in Example 1 except that the base metal carbonyl and the nonmagnetic metal carbonyl were not added to the slurry containing the iron nitride based magnetic particles having the first covering layer. did.

(比較例3)Fe16粒子を含むスラリーに非磁性金属カルボニルを添加せず、Niテトラカルボニルのみを添加した以外は実施例1と同様の方法で窒化鉄系磁性粉末を作製した。 Comparative Example 3 An iron nitride-based magnetic powder was produced in the same manner as in Example 1 except that nonmagnetic metal carbonyl was not added to the slurry containing Fe 16 N 2 particles and only Ni tetracarbonyl was added.

(比較例4)第一の被覆層を有する窒化鉄系磁性粒子を含むスラリーに非磁性金属カルボニルを添加しなかった以外は実施例1と同様の方法で窒化鉄系磁性粉末を作製した。   Comparative Example 4 An iron nitride based magnetic powder was produced in the same manner as in Example 1 except that the nonmagnetic metal carbonyl was not added to the slurry containing the iron nitride based magnetic particles having the first covering layer.

(比較例5)第一の被覆層を有する窒化鉄系磁性粒子を含むスラリーにCrヘキサカルボニルに変えてMoヘキサカルボニルを0.11g添加した以外は、実施例3と同様の方法で窒化鉄系磁性粉末を作製した。   Comparative Example 5 An iron nitride-based iron was obtained by the same method as Example 3, except that Cr hexacarbonyl was changed to a slurry containing iron nitride-based magnetic particles having a first covering layer and 0.11 g of Mo hexacarbonyl was added. Magnetic powder was produced.

(比較例6)第一の被覆層を有する窒化鉄系磁性粒子を含むスラリーにCrヘキサカルボニルに変えて二Coオクタカルボニルを3.0g添加した以外は比較例4と同様の方法で窒化鉄系磁性粉末を作製した。   Comparative Example 6 The same procedure as Comparative Example 4 was repeated except that 3.0 g of dicooctacarbonyl was added to the slurry containing iron nitride-based magnetic particles having the first covering layer instead of Cr hexacarbonyl. Magnetic powder was produced.

(比較例7)Fe16粒子を含むスラリーにNiテトラカルボニルを3.0g、Crヘキサカルボニルを0.03g添加し、第一の被覆層を有する窒化鉄系磁性粒子を含むスラリーにCrヘキサカルボニルに変えてCrヘキサカルボニルを4.0g添加した以外は実施例1と同様の方法で窒化鉄系磁性粉末を作製した。 Comparative Example 7 3.0 g of Ni tetracarbonyl and 0.03 g of Cr hexacarbonyl were added to a slurry containing Fe 16 N 2 particles, and Cr hexa hexahydrate was added to a slurry containing iron nitride-based magnetic particles having a first covering layer. An iron nitride based magnetic powder was produced in the same manner as in Example 1 except that 4.0 g of Cr hexacarbonyl was added instead of the carbonyl.

(比較例8)Fe16粒子を含むスラリーにNiテトラカルボニルを3.0g添加し、第一の被覆層を有する窒化鉄系磁性粒子を含むスラリーにCrヘキサカルボニルに変えてCrヘキサカルボニルを4.0g添加した以外は実施例1と同様の方法で窒化鉄系磁性粉末を作製した。 Comparative Example 8 3.0 g of Ni tetracarbonyl was added to a slurry containing Fe 16 N 2 particles, and Cr hexacarbonyl was changed to a slurry containing iron nitride-based magnetic particles having a first covering layer instead of Cr hexacarbonyl. An iron nitride based magnetic powder was produced in the same manner as in Example 1 except that 4.0 g was added.

≪窒化鉄系磁性粉末の構成相≫
得られた窒化鉄系磁性粉末の構成相は、粉末X線回折装置(XRD、リガク製RINT−2500)により同定を行った。
«Constituent phase of iron nitride based magnetic powder»
The constituent phase of the obtained iron nitride-based magnetic powder was identified using a powder X-ray diffractometer (XRD, manufactured by Rigaku RINT-2500).

≪窒化鉄系磁性粉末の粒子径、第一および第二の被覆層の組成および厚み≫
得られた窒化鉄系磁性粉末のFe16粒子径、第一および第二の被覆層の厚みは、透過型電子顕微鏡(TEM、日本電子製JEM−200FX)により観察し、EDSを用いて粒子組成を分析した。用いた観察用サンプルは、得られた窒化鉄系磁性粉末をエポキシ樹脂に練りこみ、樹脂硬化した後、薄片化処理を行い作製した。TEM観察像の中らから選んだ100個の粒子断面のEDSによる元素マッピングを行った後、第一および第二の被膜層の組成の点分析を行った。この時実施例のFe16粒子からはFeを検出し、第一の被覆層からはCr、Mn、V、Mo、Wのいずれかの元素を検出し、第二の被覆層からはNi、Coのいずれかの元素を検出した。次に画像処理により、EDSにより、1000個の粒子断面の元素マッピング結果からFe16粒子径、第一および第二の被覆層のそれぞれの厚みを計測し、その平均値を算出し、第一および第二の被覆層の厚みとした。算出結果を表1に示す。
«Particle diameter of iron nitride magnetic powder, composition and thickness of first and second covering layers»
The Fe 16 N 2 particle diameter of the obtained iron nitride-based magnetic powder and the thickness of the first and second covering layers are observed with a transmission electron microscope (TEM, JEM-200 FX, manufactured by JEOL Ltd.), using EDS. Particle composition was analyzed. The sample for observation used was prepared by kneading the obtained iron nitride-based magnetic powder in an epoxy resin, curing the resin, and then thinning it. After performing elemental mapping by EDS of 100 particle cross sections selected from the inside of the TEM observation image, point analysis of the composition of the first and second coating layers was performed. At this time, Fe is detected from the Fe 16 N 2 particles of the example, and any element of Cr, Mn, V, Mo, W is detected from the first covering layer, and Ni from the second covering layer. And Co elements were detected. Next, by image processing, EDS measures the Fe 16 N 2 particle diameter, the thickness of each of the first and second covering layers from EDS based on the elemental mapping result of 1000 particle cross sections, and calculates the average value thereof. It was the thickness of the first and second covering layers. The calculation results are shown in Table 1.

≪窒化鉄系磁性粉末の保磁力(HcJ)≫
得られた窒化鉄系磁性粉末の保磁力(HcJ)を振動試料型磁力計(VSM、東英工業製VSM−5−20)による減磁曲線の測定結果から求めた。保磁力(HcJ)が2.6kOe以上の窒化鉄系磁性粉末を許容とし、測定結果を表1に示す。
«Coercive force of iron nitride magnetic powder (HcJ)»
The coercive force (HcJ) of the obtained iron nitride-based magnetic powder was determined from the measurement results of the demagnetization curve using a vibrating sample magnetometer (VSM, VSM-5-20 manufactured by Toei Kogyo Co., Ltd.). The iron nitride-based magnetic powder having a coercivity (HcJ) of 2.6 kOe or more is acceptable, and the measurement results are shown in Table 1.

≪窒化鉄系磁性粉末の耐湿性≫
得られた窒化鉄系磁性粉末の耐湿性は、湿度90%以上の雰囲気における窒化鉄系磁性粉末の重量増加開始温度を腐食開始温度として測定し、腐食開始温度が高いほど良好として評価した。前記腐食開始温度はTG−DTA(リガク製Thermo Plus TG8120)により、DTG>0となる温度を腐食開始温度として求めた。腐食開始温度が90℃以上の窒化鉄系磁性粉末を許容とした。尚測定の初期の室温付近にてDTG>0となる場合は、測定ノイズとして腐食開始温度とはしなかった。評価結果を表1に示す。
«Humidity resistance of iron nitride magnetic powder»
The moisture resistance of the obtained iron nitride-based magnetic powder was measured by using the weight increase start temperature of the iron nitride-based magnetic powder in an atmosphere of humidity of 90% or more as the corrosion start temperature, and the higher the corrosion start temperature, the better the evaluation. The said corrosion start temperature calculated | required the temperature used as DTG> 0 as a corrosion start temperature by TG-DTA (Thermo Plus TG8120 made from RIGAKU). An iron nitride-based magnetic powder having a corrosion start temperature of 90 ° C. or more was accepted. When DTG> 0 in the vicinity of room temperature at the initial stage of measurement, the corrosion start temperature was not determined as measurement noise. The evaluation results are shown in Table 1.

Figure 0006519419
Figure 0006519419

全ての実施例と比較例で、Fe16相が主相であることが確認された。 In all the examples and comparative examples, it was confirmed that the Fe 16 N 2 phase is the main phase.

実施例1、2、3、4、5のように、窒化鉄系磁性粉末の表面にCr金属かならなる第一の被覆層と、前記第一の被覆層の表面にNi金属とCr金属の合金からなる第二の被覆層を有している場合、保磁力(HcJ)が2.9kOe以上、腐食開始温度が90℃以上であることが確認できた。特に第二の被覆層の合金に含まれる前記第一の被覆層に含まれる金属が1〜10at%の場合、腐食開始温度が120℃以上の良好な特性が得られた。   As in the first, second, third, fourth and fifth examples, the first covering layer consisting of Cr metal on the surface of the iron nitride magnetic powder and the Ni and Cr metals on the surface of the first covering layer When the second covering layer made of an alloy was provided, it was confirmed that the coercive force (HcJ) was 2.9 kOe or more, and the corrosion start temperature was 90 ° C. or more. In particular, when the metal contained in the first coating layer contained in the alloy of the second coating layer is 1 to 10 at%, good characteristics having a corrosion initiation temperature of 120 ° C. or higher were obtained.

実施例3、6、7、8、9のように、窒化鉄系磁性粉末の表面にCr金属かならなる第一の被覆層と、前記第一の被覆層の表面にNi金属とCr金属の合金からなる第二の被覆層を有している場合、保磁力(HcJ)が2.9kOe以上、腐食開始温度が90℃以上であることが確認できた。特に第二の被覆層の厚みが5nm以上の場合、腐食開始温度が130℃以上の良好な特性が得られた。   As in Examples 3, 6, 7, 8 and 9, the first covering layer consisting of Cr metal on the surface of the iron nitride magnetic powder and Ni metal and Cr metal on the surface of the first covering layer When the second covering layer made of an alloy was provided, it was confirmed that the coercive force (HcJ) was 2.9 kOe or more, and the corrosion start temperature was 90 ° C. or more. In particular, when the thickness of the second covering layer is 5 nm or more, good characteristics having a corrosion start temperature of 130 ° C. or more were obtained.

実施例3、10、11、12、13のように、窒化鉄系磁性粉末の表面にCr金属かならなる第一の被覆層と、前記第一の被覆層の表面にNi金属とCr金属の合金からなる第二の被覆層を有している場合、保磁力(HcJ)が2.6kOe以上、腐食開始温度が130℃以上であることが確認できた。特に第一の被覆層の厚みが5nm以上の場合保磁力(HcJ)が3.0kOe以上の良好な特性が得られた。   As in Examples 3, 10, 11, 12 and 13, the first covering layer consisting of Cr metal on the surface of the iron nitride based magnetic powder, and Ni metal and Cr metal on the surface of the first covering layer When the second covering layer made of an alloy was provided, it was confirmed that the coercive force (HcJ) was 2.6 kOe or more, and the corrosion start temperature was 130 ° C. or more. In particular, when the thickness of the first covering layer was 5 nm or more, good characteristics with a coercive force (HcJ) of 3.0 kOe or more were obtained.

実施例14のように窒化鉄系磁性粉末の表面にMn金属かならなる第一の被覆層と、前記第一の被覆層の表面にNi金属とMn金属の合金からなる第二の被覆層を有している場合、保磁力(HcJ)が3.0kOe以上、腐食開始温度が130℃以上であることが確認できた。   As in Example 14, a first covering layer consisting of Mn metal is formed on the surface of iron nitride based magnetic powder, and a second covering layer consisting of an alloy of Ni metal and Mn metal is formed on the surface of the first covering layer. When it has, it has confirmed that coercive force (HcJ) was 3.0 kOe or more, and the corrosion start temperature was 130 degreeC or more.

実施例15のように窒化鉄系磁性粉末の表面にV金属かならなる第一の被覆層と、前記第一の被覆層の表面にNi金属とV金属の合金からなる第二の被覆層を有している場合、保磁力(HcJ)が2.9kOe以上、腐食開始温度が135℃以上であることが確認できた。   A first covering layer consisting of V metal is formed on the surface of iron nitride based magnetic powder as in Example 15, and a second covering layer consisting of an alloy of Ni metal and V metal is formed on the surface of the first covering layer. When it had, it has confirmed that coercive force (HcJ) was 2.9 kOe or more, and the corrosion start temperature was 135 degreeC or more.

実施例16のように窒化鉄系磁性粉末の表面にMo金属かならなる第一の被覆層と、前記第一の被覆層の表面にNi金属とMo金属の合金からなる第二の被覆層を有している場合、保磁力(HcJ)が2.9kOe以上、腐食開始温度が135℃以上であることが確認できた。   A first covering layer consisting of Mo metal on the surface of an iron nitride based magnetic powder as in Example 16, and a second covering layer consisting of an alloy of Ni metal and Mo metal on the surface of the first covering layer When it had, it has confirmed that coercive force (HcJ) was 2.9 kOe or more, and the corrosion start temperature was 135 degreeC or more.

実施例17のように窒化鉄系磁性粉末の表面にW金属かならなる第一の被覆層と、前記第一の被覆層の表面にNi金属とW金属の合金からなる第二の被覆層を有している場合、保磁力(HcJ)が2.9kOe以上、腐食開始温度が135℃以上であることが確認できた。   The first covering layer consisting of W metal on the surface of the iron nitride based magnetic powder as in Example 17, and the second covering layer consisting of an alloy of Ni metal and W metal on the surface of the first covering layer When it had, it has confirmed that coercive force (HcJ) was 2.9 kOe or more, and the corrosion start temperature was 135 degreeC or more.

実施例18のように窒化鉄系磁性粉末の表面にCr金属かならなる第一の被覆層と、前記第一の被覆層の表面にCo金属とCr金属の合金からなる第二の被覆層を有している場合、保磁力(HcJ)が2.9kOe以上、腐食開始温度が100℃以上であることが確認できた。   The first covering layer consisting of Cr metal on the surface of the iron nitride magnetic powder as in Example 18, and the second covering layer consisting of an alloy of Co metal and Cr metal on the surface of the first covering layer When it had, it has confirmed that coercive force (HcJ) was 2.9 kOe or more, and the corrosion start temperature was 100 degreeC or more.

実施例19のように窒化鉄系磁性粉末の表面にMn金属かならなる第一の被覆層と、前記第一の被覆層の表面にCo金属とMn金属の合金からなる第二の被覆層を有している場合、保磁力(HcJ)が3.0kOe以上、腐食開始温度が95℃以上であることが確認できた。   A first covering layer consisting of Mn metal is provided on the surface of an iron nitride based magnetic powder as in Example 19, and a second covering layer consisting of an alloy of Co metal and Mn metal is provided on the surface of the first covering layer. When it had, it has confirmed that coercive force (HcJ) was 3.0 kOe or more, and the corrosion start temperature was 95 degreeC or more.

実施例20のように窒化鉄系磁性粉末の表面にV金属かならなる第一の被覆層と、前記第一の被覆層の表面にCo金属とV金属の合金からなる第二の被覆層を有している場合、保磁力(HcJ)が2.9kOe以上、腐食開始温度が100℃以上であることが確認できた。   A first covering layer consisting of V metal is formed on the surface of an iron nitride based magnetic powder as in Example 20, and a second covering layer consisting of an alloy of Co metal and V metal is formed on the surface of the first covering layer. When it had, it has confirmed that coercive force (HcJ) was 2.9 kOe or more, and the corrosion start temperature was 100 degreeC or more.

実施例21のように窒化鉄系磁性粉末の表面にMo金属かならなる第一の被覆層と、前記第一の被覆層の表面にCo金属とMo金属の合金からなる第二の被覆層を有している場合、保磁力(HcJ)が2.9kOe以上、腐食開始温度が100℃以上であることが確認できた。   A first covering layer consisting of Mo metal on the surface of an iron nitride based magnetic powder as in Example 21, and a second covering layer consisting of an alloy of Co metal and Mo metal on the surface of the first covering layer When it had, it has confirmed that coercive force (HcJ) was 2.9 kOe or more, and the corrosion start temperature was 100 degreeC or more.

実施例22のように窒化鉄系磁性粉末の表面にW金属かならなる第一の被覆層と、前記第一の被覆層の表面にCo金属とW金属の合金からなる第二の被覆層を有している場合、保磁力(HcJ)が2.9kOe以上、腐食開始温度が105℃以上であることが確認できた。   A first covering layer consisting of W metal on the surface of an iron nitride based magnetic powder as in Example 22, and a second covering layer consisting of an alloy of Co metal and W metal on the surface of the first covering layer When it had, it has confirmed that coercive force (HcJ) was 2.9 kOe or more, and the corrosion start temperature was 105 degreeC or more.

比較例1のようにFe16粒子の第一の被覆層及び第二の被覆層を有していない場合、保磁力(HcJ)が2.4kOe、窒化鉄系磁性粉末を常温大気に暴露した際燃焼したため、腐食開始温度の測定はできなかった。これは第一の被覆層に含まれる非磁性金属が存在しないことより、窒化鉄系磁性粉末を構成するFe16粒子同士を磁気的に分離する効果が発現しなかったため、保磁力が低くなったためと考えられる。さらに、窒化鉄系磁性粉末の表面を卑金属層にて保護していないため常温大気での暴露で燃焼したと考えられる。 When the first covering layer and the second covering layer of Fe 16 N 2 particles are not provided as in Comparative Example 1, the coercive force (HcJ) is 2.4 kOe, and the iron nitride based magnetic powder is exposed to the normal temperature atmosphere. Since combustion occurred at the same time, it was not possible to measure the corrosion start temperature. This is because the nonmagnetic metal contained in the first covering layer does not exhibit the effect of magnetically separating the Fe 16 N 2 particles constituting the iron nitride-based magnetic powder, so the coercivity is low. It is thought that it is because it became. Furthermore, since the surface of the iron nitride-based magnetic powder is not protected by the base metal layer, it is considered that combustion occurred by exposure to normal temperature air.

比較例2のように窒化鉄系磁性粉末の表面にCr金属かならなる第一の被覆層を有し、第二の被覆層を有していない場合、磁力(HcJ)が3.0kOeであるが、窒化鉄系磁性粉末を常温大気に暴露した際燃焼したため、腐食開始温度の測定はできなかった。これは、窒化鉄系磁性粉末の表面を卑金属層にて保護していないため常温大気での暴露で燃焼したと考えられる。   As in Comparative Example 2, when the first coated layer made of Cr metal is provided on the surface of the iron nitride-based magnetic powder and the second coated layer is not provided, the magnetic force (HcJ) is 3.0 kOe. However, since the iron nitride-based magnetic powder was burned when exposed to ambient temperature air, the corrosion initiation temperature could not be measured. The surface of the iron nitride-based magnetic powder is not protected by the base metal layer, and this is considered to be burning by exposure to normal temperature air.

比較例3のように窒化鉄系磁性粉末の表面に第一の被覆層を有さず、Ni金属からのみなる第二の被覆層を有している場合、保磁力(HcJ)が2.2kOe、腐食開始温度が85℃であることが確認できた。これは、これは第一の被覆層に含まれる非磁性金属が存在しないことより、窒化鉄系磁性粉末を構成するFe16粒子同士を磁気的に分離する効果が発現しなかったため、保磁力が低くなったと考えられる。さらに、第一の被覆層を有さず、第二の被覆層に第一の被覆層を構成する金属が含まれていないことより、第二の被覆層とFe16粒子の密着性が不十分となり、耐湿性評価中に第二の被覆層が剥離したため、窒化鉄系磁性粉末が十分な耐湿性を得ることができなかったと考えられる。 As in Comparative Example 3, in the case where the surface of the iron nitride-based magnetic powder does not have the first covering layer but has the second covering layer consisting only of Ni metal, the coercivity (HcJ) is 2.2 kOe It was confirmed that the corrosion start temperature was 85 ° C. This is because, since the nonmagnetic metal contained in the first covering layer is not present, the effect of magnetically separating Fe 16 N 2 particles constituting the iron nitride-based magnetic powder is not exhibited. It is believed that the magnetic force is lowered. Furthermore, the adhesion between the second covering layer and the Fe 16 N 2 particles is improved by the absence of the first covering layer and the absence of the metal constituting the first covering layer in the second covering layer. Since it became inadequate and the 2nd coating layer exfoliated during moisture resistance evaluation, it is thought that iron nitride system magnetic powder was not able to acquire sufficient moisture resistance.

比較例4のようにFe16粒子の表面にCr金属かならなる第一の被覆層を有し、Ni金属からのみなる第二の被覆層を有している場合、保磁力(HcJ)が3.0kOe、腐食開始温度が85℃であることが確認できた。これは、第二の被覆層に第一の被覆層に含まれる金属が含まれていないことより、第二の被覆層と第一の被覆層の密着性が不十分となり、耐湿性評価中に第二の被覆層が剥離したため、窒化鉄系磁性粉末が十分な耐湿性を得ることができなかったと考えられる。 When the first covering layer consisting of Cr metal is provided on the surface of Fe 16 N 2 particles as in Comparative Example 4 and the second covering layer consisting only of Ni metal is provided, the coercivity (HcJ) Of 3.0 kOe and the corrosion initiation temperature of 85.degree. C. were confirmed. This is because the adhesion between the second covering layer and the first covering layer is insufficient because the second covering layer does not contain the metal contained in the first covering layer, and the moisture resistance is evaluated. It is considered that the iron nitride-based magnetic powder could not obtain sufficient moisture resistance because the second coating layer peeled off.

比較例5のように窒化鉄系磁性粉末の表面にCr金属かならなる第一の被覆層と、前記第一の被覆層の表面にNi金属とMo金属の合金からなる第二の被覆層を有している場合、保磁力(HcJ)が2.9kOe以上、腐食開始温度が85℃以上であることが確認できた。これは、第二の被覆層に第一の被覆層に含まれる金属が含まれていないことより、第二の被覆層と第一の被覆層の密着性が不十分となり、耐湿性評価中に第二の被覆層が剥離したため、窒化鉄系磁性粉末が十分な耐湿性を得ることができなかったと考えられる。   As in Comparative Example 5, on the surface of iron nitride-based magnetic powder, a first covering layer consisting of Cr metal and a second covering layer consisting of an alloy of Ni metal and Mo metal on the surface of the first covering layer When it had, it has confirmed that coercive force (HcJ) was 2.9 kOe or more, and the corrosion start temperature was 85 degreeC or more. This is because the adhesion between the second covering layer and the first covering layer is insufficient because the second covering layer does not contain the metal contained in the first covering layer, and the moisture resistance is evaluated. It is considered that the iron nitride-based magnetic powder could not obtain sufficient moisture resistance because the second coating layer peeled off.

比較例3、4の腐食開始温度を測定した後の試料を(0087)と同様の微構造観察した結果、窒化鉄系磁性粒子から第二の被覆層が剥離していることがわかった。これは、第二の被覆層に第一の被覆層と同一の金属が含まれていないことに起因すると考えられる。   As a result of observing the sample after measuring the corrosion start temperature of Comparative Examples 3 and 4 in the same microstructure as (0087), it was found that the second coating layer was peeled from the iron nitride-based magnetic particles. This is considered to be due to the fact that the second cover layer does not contain the same metal as the first cover layer.

比較例6のように窒化鉄系磁性粉末の表面にCr金属かならなる第一の被覆層を有し、Co金属からのみなる第二の被覆層を有している場合、保磁力(HcJ)が2.9kOe、腐食開始温度が70℃であることが確認できた。これは、第二の被覆層に第一の被覆層に含まれる金属が含まれていないことより、第二の被覆層と第一の被覆層の密着性が不十分となり、耐湿性評価中に第二の被覆層が剥離したため、窒化鉄系磁性粉末が十分な耐湿性を得ることができなかったと考えられる。   As in Comparative Example 6, when the surface of iron nitride-based magnetic powder has a first covering layer made of Cr metal and has a second covering layer made only of Co metal, the coercivity (HcJ) Is 2.9 kOe, and it has been confirmed that the corrosion initiation temperature is 70.degree. This is because the adhesion between the second covering layer and the first covering layer is insufficient because the second covering layer does not contain the metal contained in the first covering layer, and the moisture resistance is evaluated. It is considered that the iron nitride-based magnetic powder could not obtain sufficient moisture resistance because the second coating layer peeled off.

比較例7のように窒化鉄系磁性粉末の表面にNi金属とCr金属の合金かならなる第一の被覆層を有し、前記第一の被覆層の表面にCr金属からなる第二の被覆層を有している場合、保磁力(HcJ)が2.5kOe以上、腐食開始温度が90℃以上であることが確認できた。これは、窒化鉄系磁性粉末を常温大気に暴露した際、第二の被覆層が酸化し剥離したため、窒化鉄系磁性粉末を構成するFe16粒子同士を磁気的に分離する効果が発現しなかったため、保磁力が低くなったためと考えられる。さらに、第一の被覆層とFe16粒子の密着性が不十分となり、耐湿性評価中に第二の被覆層が剥離したため、窒化鉄系磁性粉末が十分な耐湿性を得ることができなかったと考えられる。 As in Comparative Example 7, the iron nitride-based magnetic powder has a first covering layer made of an alloy of Ni metal and Cr metal on the surface, and a second covering made of Cr metal on the surface of the first covering layer. In the case of having a layer, it was confirmed that the coercive force (HcJ) was 2.5 kOe or more and the corrosion start temperature was 90 ° C. or more. This is because the second coating layer is oxidized and exfoliated when the iron nitride-based magnetic powder is exposed to the normal temperature atmosphere, so that the effect of magnetically separating Fe 16 N 2 particles constituting the iron nitride-based magnetic powder is exhibited. It is considered that the coercivity was lowered because it did not occur. Furthermore, the adhesion between the first coating layer and the Fe 16 N 2 particles is insufficient, and the second coating layer is peeled off during the evaluation of the moisture resistance, so that the iron nitride-based magnetic powder can obtain sufficient moisture resistance. It is thought that it was not.

比較例8のように窒化鉄系磁性粉末の表面にNi金属かならなる第一の被覆層を有し、前記第一の被覆層の表面にCr金属からなる第二の被覆層を有している場合、保磁力(HcJ)が2.3kOe以上、腐食開始温度が80℃以上であることが確認できた。これは、窒化鉄系磁性粉末を常温大気に暴露した際、第二の被覆層が酸化し剥離したため、窒化鉄系磁性粉末を構成するFe16粒子同士を磁気的に分離する効果が発現しなかったため、保磁力が低くなったためと考えられる。さらに、第一に被覆層と窒化鉄系磁性粉末を構成するFe16粒子の密着性が不十分となり、耐湿性評価中に第二の被覆層が剥離したため、窒化鉄系磁性粉末が十分な耐湿性を得ることができなかったと考えられる。 As in Comparative Example 8, it has a first covering layer made of Ni metal on the surface of iron nitride based magnetic powder, and has a second covering layer made of Cr metal on the surface of the first covering layer. It was confirmed that the coercivity (HcJ) was 2.3 kOe or more and the corrosion start temperature was 80 ° C. or more. This is because the second coating layer is oxidized and exfoliated when the iron nitride-based magnetic powder is exposed to the normal temperature atmosphere, so that the effect of magnetically separating Fe 16 N 2 particles constituting the iron nitride-based magnetic powder is exhibited. It is considered that the coercivity was lowered because it did not occur. Furthermore, the adhesion between the coating layer and the Fe 16 N 2 particles constituting the iron nitride-based magnetic powder is insufficient, and the second coating layer is peeled off during the evaluation of the moisture resistance, so that the iron nitride-based magnetic powder is sufficient. It can be considered that it was not possible to obtain good moisture resistance.

以上のように、本発明に係る、窒化鉄系磁性粉末は、十分な保磁力及び耐湿性を有することから、レアアースを使用しない磁石として有用である。 As described above, the iron nitride-based magnetic powder according to the present invention is useful as a magnet that does not use rare earth because it has sufficient coercivity and moisture resistance.

Claims (5)

Fe16相を主相とするFe16粒子の表面に第一の被覆層を有し、かつ、第一の被覆層の表面に第二の被覆層を有する窒化鉄系磁性粒子からなる窒化鉄系磁性粉末であって、前記第一の被覆層がCr、Mn、V、Mo、Wのいずれか1種以上からなる金属若しくは合金であり、前記第二の被覆層がNi、Coのいずれか1種以上からなる金属と前記第一の被覆層に含まれる金属との合金であることを特徴とするとする、窒化鉄系磁性粉末。 Iron nitride-based magnetic particles having a first covering layer on the surface of Fe 16 N 2 particles having an Fe 16 N 2 phase as the main phase and having a second covering layer on the surface of the first covering layer An iron nitride-based magnetic powder, wherein the first coating layer is a metal or alloy composed of any one or more of Cr, Mn, V, Mo and W, and the second coating layer is Ni, Co An iron nitride-based magnetic powder comprising an alloy of a metal of any one or more of the foregoing and a metal contained in the first coating layer. 前記第二の被覆層の合金に含まれる前記第一の被覆層に含まれる金属が1〜10at%である、請求項1に記載の窒化鉄系磁性粉末。 The iron nitride-based magnetic powder according to claim 1, wherein the metal contained in the first cover layer contained in the alloy of the second cover layer is 1 to 10 at%. 前記第一の被覆層の厚みが5nm以上である請求項1および2に記載の窒化鉄系磁性粉末。 The iron nitride-based magnetic powder according to claim 1 or 2, wherein the thickness of the first covering layer is 5 nm or more. 前記第二の被覆層の厚みが5nm以上である請求項1〜3に記載の窒化鉄系磁性粉末。 The iron nitride-based magnetic powder according to any one of claims 1 to 3, wherein the thickness of the second covering layer is 5 nm or more. 請求項1〜4に記載の窒化鉄系磁性粉末を用いたボンド磁石。

A bonded magnet using the iron nitride based magnetic powder according to claim 1.

JP2015178814A 2015-09-10 2015-09-10 Iron nitride based magnetic powder and bonded magnet using the same Active JP6519419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015178814A JP6519419B2 (en) 2015-09-10 2015-09-10 Iron nitride based magnetic powder and bonded magnet using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015178814A JP6519419B2 (en) 2015-09-10 2015-09-10 Iron nitride based magnetic powder and bonded magnet using the same

Publications (2)

Publication Number Publication Date
JP2017054982A JP2017054982A (en) 2017-03-16
JP6519419B2 true JP6519419B2 (en) 2019-05-29

Family

ID=58321105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015178814A Active JP6519419B2 (en) 2015-09-10 2015-09-10 Iron nitride based magnetic powder and bonded magnet using the same

Country Status (1)

Country Link
JP (1) JP6519419B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0713241B2 (en) * 1990-12-15 1995-02-15 株式会社トーキン Method for producing rare earth magnet alloy powder
JPH05222483A (en) * 1990-12-19 1993-08-31 Nkk Corp Production of iron nitride based high density sintered compact
JP4734602B2 (en) * 2004-12-21 2011-07-27 Dowaエレクトロニクス株式会社 Iron nitride magnetic powder with excellent storage stability
JP4769130B2 (en) * 2006-06-14 2011-09-07 Dowaエレクトロニクス株式会社 Iron nitride magnetic powder, method for producing the same, and magnetic recording medium
JP2009088287A (en) * 2007-09-28 2009-04-23 Fujifilm Corp Iron nitride powder, method of manufacturing the same, and magnetic recording medium
JP5769223B2 (en) * 2009-10-22 2015-08-26 戸田工業株式会社 Ferromagnetic particle powder and production method thereof, anisotropic magnet and bonded magnet
JP6155440B2 (en) * 2011-09-22 2017-07-05 戸田工業株式会社 Method for producing ferromagnetic iron nitride particle powder, method for producing anisotropic magnet, bonded magnet and dust magnet

Also Published As

Publication number Publication date
JP2017054982A (en) 2017-03-16

Similar Documents

Publication Publication Date Title
JP5924657B2 (en) Method for producing ferromagnetic iron nitride particle powder, anisotropic magnet, bonded magnet and dust magnet
JP6155440B2 (en) Method for producing ferromagnetic iron nitride particle powder, method for producing anisotropic magnet, bonded magnet and dust magnet
US20190228889A1 (en) Epsilon-type iron oxide magnetic particles and method for producing the same, magnetic powder, magnetic coating material and magnetic recording medium containing magnetic particles
WO2013042721A1 (en) Method for manufacturing ferromagnetic iron nitride powder, anisotropic magnet, bond magnet, and compressed-powder magnet
US9607740B2 (en) Hard-soft magnetic MnBi/SiO2/FeCo nanoparticles
CN103119664A (en) Ferromagnetic particle powder, method for producing same, anisotropic magnet, and bonded magnet
JP2010202974A (en) Surface-treated rare earth-based magnetic powder, resin composition for bond magnet containing the rare earth-based magnetic powder, and bond magnet
JP6485066B2 (en) Iron nitride magnet
JP4623308B2 (en) Sm-Fe-N-based magnetic particle powder for bonded magnet and method for producing the same, resin composition for bonded magnet, and bonded magnet
JP6446817B2 (en) Manufacturing method of nanocomposite magnet
JP6380736B2 (en) Iron nitride magnetic powder and magnet using the same
JP6520168B2 (en) Iron nitride based magnetic powder and bonded magnet using the same
US9427805B2 (en) Method to prepare hard-soft magnetic FeCo/ SiO2/MnBi nanoparticles with magnetically induced morphology
JP6519419B2 (en) Iron nitride based magnetic powder and bonded magnet using the same
JP6344129B2 (en) Iron nitride magnetic powder and magnet using the same
JP2017183322A (en) Bond magnet arranged by use of iron nitride-based magnetic powder
JP6500470B2 (en) Iron nitride magnet
JP6485065B2 (en) Iron nitride magnetic powder and bonded magnet using the same
JP6778651B2 (en) Iron nitride based bond magnet
JP4662061B2 (en) Method for producing Sm-Fe-N magnetic particle powder, resin composition for bonded magnet containing Sm-Fe-N magnetic particle powder, and bonded magnet
JP6778653B2 (en) Iron nitride based magnet
JP2010024479A (en) Flat fine particle of iron alloy and method for producing the same
JP7111549B2 (en) iron nitride magnet
JP4296379B2 (en) Method for producing Sm-Fe-N magnetic powder for bonded magnet and bonded magnet
JP2017183323A (en) Iron nitride-based magnetic powder and bond magnet arranged by use thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190408

R150 Certificate of patent or registration of utility model

Ref document number: 6519419

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150