JP6485065B2 - Iron nitride magnetic powder and bonded magnet using the same - Google Patents

Iron nitride magnetic powder and bonded magnet using the same Download PDF

Info

Publication number
JP6485065B2
JP6485065B2 JP2015010137A JP2015010137A JP6485065B2 JP 6485065 B2 JP6485065 B2 JP 6485065B2 JP 2015010137 A JP2015010137 A JP 2015010137A JP 2015010137 A JP2015010137 A JP 2015010137A JP 6485065 B2 JP6485065 B2 JP 6485065B2
Authority
JP
Japan
Prior art keywords
magnetic powder
iron nitride
bonded magnet
iron
iron oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015010137A
Other languages
Japanese (ja)
Other versions
JP2016134582A (en
Inventor
美香 神宮
美香 神宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2015010137A priority Critical patent/JP6485065B2/en
Publication of JP2016134582A publication Critical patent/JP2016134582A/en
Application granted granted Critical
Publication of JP6485065B2 publication Critical patent/JP6485065B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、Fe16化合物相を主相とし、高い飽和磁化を維持しつつ、かつ高い保磁力を有する窒化鉄系磁性粉末に関する。さらに、該窒化鉄系磁性粉末を用いたボンド磁石を提供する。 The present invention relates to an iron nitride-based magnetic powder having a Fe 16 N 2 compound phase as a main phase and maintaining a high saturation magnetization and having a high coercive force. Furthermore, a bonded magnet using the iron nitride magnetic powder is provided.

近年、電気自動車やハイブリッド自動車などのモーター用磁石として、Nd−Fe−B系の磁石が広く使われている。しかしながら、Ndに代表されるレアアースは、産業分野を支える高付加価値な部材の原料であり、近年需要が拡大しているため、資源の枯渇や原料価格が不安定であることが懸念されている。さらには、途上国においても著しく需要が拡大していることや、その偏在性ゆえに特定の産出国への依存度が高いことから、安定供給確保に対する問題が生じている。 In recent years, Nd-Fe-B magnets have been widely used as motor magnets for electric vehicles and hybrid vehicles. However, rare earths typified by Nd are raw materials for high-value-added members that support the industrial field, and since demand is increasing in recent years, there are concerns that resource depletion and raw material prices are unstable. . Furthermore, there is a problem in securing a stable supply because the demand is growing significantly in developing countries and the dependence on specific producing countries is high due to its uneven distribution.

上記問題を回避するため、レアアースを使用しない、自然界に無尽蔵に存在する元素(鉄、窒素)から高性能磁石を開発することが求められている。 In order to avoid the above problems, it is required to develop a high-performance magnet from elements (iron, nitrogen) that do not use rare earth and exist infinitely in nature.

Fe−N系の化合物、特にFe16は、Feよりも巨大な飽和磁化を示す材料のひとつとして注目されている。特許文献1では、高保磁力の窒化鉄を得るために、第三の元素を添加している。しかし、得られた窒化鉄粉末の保磁力が低いために、高保磁力かつ高飽和磁化が要求されるモーター用途の磁性材料としての使用は困難である。 Fe-N-based compounds, particularly Fe 16 N 2, are attracting attention as one of materials exhibiting a larger saturation magnetization than Fe. In Patent Document 1, a third element is added in order to obtain iron nitride having a high coercive force. However, since the obtained iron nitride powder has a low coercive force, it is difficult to use it as a magnetic material for motor applications that require high coercive force and high saturation magnetization.

また、Fe16は準安定化合物と言われるように、この化合物を単離した粉末として化学的に合成することは難しい。特許文献2では、共沈法により酸化鉄を合成し、還元・窒化する手法で窒化鉄系磁性粉末を合成している。しかしながら、得られた窒化鉄粉末の磁化が低いために、高保磁力かつ高飽和磁化が要求されるモーター用途の磁性材料としての使用は困難である。 Further, as Fe 16 N 2 is said to be a metastable compound, it is difficult to chemically synthesize this compound as an isolated powder. In Patent Document 2, iron nitride magnetic powder is synthesized by a technique of synthesizing iron oxide by a coprecipitation method and reducing and nitriding. However, since the obtained iron nitride powder has a low magnetization, it is difficult to use it as a magnetic material for motors that require a high coercive force and a high saturation magnetization.

特開2009−249682号公報JP 2009-249682 A 特開2009−84115号公報JP 2009-84115 A

本発明は、上記を鑑みたものであり、飽和磁化140emu/g以上を有し、かつ保磁力2.5kOe以上を有する窒化鉄系磁性粉及び該磁性粉を用いたボンド磁石の提供を目的とする。 The present invention has been made in view of the above, and aims to provide an iron nitride magnetic powder having a saturation magnetization of 140 emu / g or more and a coercive force of 2.5 kOe or more, and a bonded magnet using the magnetic powder. To do.

本発明は、Fe16を主成分とする窒化鉄系磁性粉末であって、前記窒化鉄系磁性粉末のFe16に対してPを0.1〜4.5at%含有することを特徴とする窒化鉄系磁性粉末および前記窒化鉄系磁性粉末を用いたボンド磁石に関するものである。 The present invention is an iron nitride-based magnetic powder containing Fe 16 N 2 as a main component, and containing 0.1 to 4.5 at% P with respect to Fe 16 N 2 of the iron nitride-based magnetic powder. The present invention relates to a featured iron nitride magnetic powder and a bonded magnet using the iron nitride magnetic powder.

本発明は、Fe16を主成分とする窒化鉄系磁性粉末であって、前記窒化鉄系磁性粉末のFe16に対してPを0.1〜4.5at%含有する。それにより、飽和磁化140emu/g以上を維持しつつ、保磁力2.5kOe以上を有する窒化鉄系磁性粉末を得るこができる。さらに、前記窒化鉄系磁性粉末を用いた磁石を得ることができる。 The present invention is an iron nitride-based magnetic powder containing Fe 16 N 2 as a main component, and contains 0.1 to 4.5 at% P with respect to Fe 16 N 2 of the iron nitride-based magnetic powder. Thereby, an iron nitride-based magnetic powder having a coercive force of 2.5 kOe or more can be obtained while maintaining a saturation magnetization of 140 emu / g or more. Furthermore, a magnet using the iron nitride magnetic powder can be obtained.

この理由については定かではないが、PがFe16の格子間に侵入する、またはPがFe16を構成するNの一部を置換することにより、Fe16の格子が歪み、窒化鉄磁性粉末の異方性が増したため、高い飽和磁化を維持しつつ、高い保磁力を得ることができたと考えられる。 Although not clear about this reason, P enters between the lattice of Fe 16 N 2, or by P to replace a portion of the N constituting the Fe 16 N 2, the lattice distortion of the Fe 16 N 2 Since the anisotropy of the iron nitride magnetic powder is increased, it is considered that a high coercive force could be obtained while maintaining a high saturation magnetization.

以下、本発明の好適な実施形態について説明する。なお、本発明は以下に記載の実施形態及び実施例の内容により限定されるものではない。また、以下に記載の実施形態及び実施例にて示された構成要素は適宜組み合わせても良いし、適宜選択してもよい。 Hereinafter, preferred embodiments of the present invention will be described. The present invention is not limited by the contents of the embodiments and examples described below. In addition, the constituent elements shown in the embodiments and examples described below may be appropriately combined or may be appropriately selected.

本実施形態に係る窒化鉄系磁性粉末は、Fe16を主成分とする窒化鉄系磁性粉末であって、前記窒化鉄系磁性粉末のFe16に対してPを0.1〜4.5at%含有する。0.1at%未満であると、Pの侵入もしくは置換による格子歪みが小さいために、十分な結晶磁気異方性を有さず、高い保磁力を得られない。4.5at%超では、Fe16の一部が不純物であるFePに変化してしまい、飽和磁化と保磁力の両方が低下する。また、Pは窒化鉄粒子内に存在しており、表面や特定箇所の偏析はない。 The iron nitride magnetic powder according to the present embodiment is an iron nitride magnetic powder containing Fe 16 N 2 as a main component, and P is 0.1 to Fe 16 N 2 of the iron nitride magnetic powder. Contains 4.5 at%. If it is less than 0.1 at%, the lattice distortion due to penetration or substitution of P is small, so that it does not have sufficient crystal magnetic anisotropy and a high coercive force cannot be obtained. If it exceeds 4.5 at%, a part of Fe 16 N 2 is changed to Fe 3 P as an impurity, and both the saturation magnetization and the coercive force are lowered. Further, P exists in the iron nitride particles, and there is no segregation of the surface or a specific portion.

本実施形態に係る窒化鉄系磁性粉末の飽和磁化σsは140emu/g以上であり、飽和磁化が前記未満の場合、磁性粉として十分な磁気特性であるとは言い難い。 The saturation magnetization σs of the iron nitride magnetic powder according to the present embodiment is 140 emu / g or more, and when the saturation magnetization is less than the above, it is difficult to say that the magnetic characteristics are sufficient as the magnetic powder.

本実施形態に係る窒化鉄系磁性粉末の保磁力Hcは2.5kOe以上であり、保磁力が前記未満の場合、磁性粉として十分な磁気特性であるとは言い難い。 The coercive force Hc of the iron nitride-based magnetic powder according to this embodiment is 2.5 kOe or more, and when the coercive force is less than the above, it is difficult to say that the magnetic characteristics are sufficient as the magnetic powder.

本実施形態に係る窒化鉄系磁性粉末の平均粒径は、20nm以上60nm以下であることが好ましい。平均粒径が20nm未満では、粒子表面の酸化膜の割合が大きくなる、あるいは粒径が小さいことにより超常磁性が発現するため、保磁力が低下する傾向にある。平均粒径が60nm超では粒径が大きいため、単磁区臨界径以下の粒子割合が小さく、保磁力が低下する傾向にある。 The average particle size of the iron nitride magnetic powder according to this embodiment is preferably 20 nm or more and 60 nm or less. If the average particle size is less than 20 nm, the ratio of the oxide film on the particle surface is increased, or superparamagnetism is exhibited when the particle size is small, so the coercive force tends to decrease. When the average particle size exceeds 60 nm, the particle size is large, so the proportion of particles having a single domain critical diameter or less is small, and the coercive force tends to decrease.

本発明に係る平均粒径の測定方法は、得られた粉末を、Φ6mmのディスク型ケースに秤量し、融点50〜52℃のパラフィンを加え、ホットプレートで加熱し、パラフィンが融解したしたのち、パラフィンを放冷し固化させ、粉末を含むパラフィンを作製した。得られた粉末を含むパラフィンを、粉末の断面が出るように削り出し、その断面を透過型電子顕微鏡(TEM、日本電子製JEM−2000FX)にて観察した。TEM観察像の中から1000個の粒子の円面積相当径を算出し、その平均を平均粒径とした。 In the method for measuring the average particle diameter according to the present invention, the obtained powder is weighed in a Φ6 mm disk-shaped case, paraffin having a melting point of 50 to 52 ° C. is added, heated on a hot plate, and the paraffin is melted. Paraffin was allowed to cool and solidify to produce paraffin containing powder. The paraffin containing the obtained powder was cut out so that a cross section of the powder appeared, and the cross section was observed with a transmission electron microscope (TEM, JEM-2000FX manufactured by JEOL). The equivalent circular area diameter of 1000 particles was calculated from the TEM observation image, and the average was taken as the average particle diameter.

本形態に係る窒化鉄系磁性粉末は、主相がFe16化合物相であり、Fe、Fe及びFeO等の酸化鉄相、FeN等の窒化鉄相、FeP等のリン化鉄相を含んでもよい。 In the iron nitride magnetic powder according to this embodiment, the main phase is an Fe 16 N 2 compound phase, an iron oxide phase such as Fe 2 O 3 , Fe 3 O 4 and FeO, an iron nitride phase such as Fe 4 N, Fe An iron phosphide phase such as 3 P may also be included.

本実施形態に係る磁性粉の好適な製造法について述べる。本発明の窒化鉄系磁性粉末は、酸化鉄粒子の合成、酸化鉄の還元、アンモニアガスとホスフィンガスの混合ガスによる窒化処理、を順に施すことにより得られる。Pの含有量は、前記混合ガスに占めるホスフィンガスの割合を変えることにより制御することができる。 A suitable method for producing the magnetic powder according to this embodiment will be described. The iron nitride magnetic powder of the present invention can be obtained by sequentially performing synthesis of iron oxide particles, reduction of iron oxide, and nitriding with a mixed gas of ammonia gas and phosphine gas. The P content can be controlled by changing the proportion of the phosphine gas in the mixed gas.

前記酸化鉄粒子は、第一鉄塩および/または第二鉄塩を含む鉄塩水溶液と、アルカリ水溶液とを混合させた後、熟成し、洗浄することにより製造することができる。 The iron oxide particles can be produced by mixing an aqueous iron salt solution containing ferrous salt and / or ferric salt and an alkaline aqueous solution, aging and washing.

前期鉄塩としては、硫酸塩、塩化物、硝酸塩等を挙げることができ、これらを適宜組み合わせて使用してもよい。また、それらの水和物を使用することができる。 Examples of the early iron salt include sulfate, chloride, nitrate, etc., and these may be used in appropriate combination. Moreover, those hydrates can be used.

前記アルカリ水溶液としては、水酸化カリウム水溶液、水酸化ナトリウム水溶液、アンモニア水溶液、アンモニア塩水溶液、および尿素水溶液を1つ以上用いることができるが、この限りではない。 As the alkaline aqueous solution, one or more of a potassium hydroxide aqueous solution, a sodium hydroxide aqueous solution, an ammonia aqueous solution, an ammonia salt aqueous solution, and a urea aqueous solution can be used, but not limited thereto.

前記酸化鉄は、平均粒径が5〜25nmである。 The iron oxide has an average particle size of 5 to 25 nm.

平均粒径5〜10nmの酸化鉄は、前記沈殿反応時の液中熟成反応温度を制御することで作製できる。また、平均粒径10〜25nmの酸化鉄の粒径制御は、酸化鉄超微粒子を添加した溶液中で、第一鉄イオンを含有する溶液を等量以上のアルカリ存在下で酸化することで作製できる。 Iron oxide having an average particle diameter of 5 to 10 nm can be prepared by controlling the aging reaction temperature in the liquid during the precipitation reaction. Moreover, the particle size control of the iron oxide having an average particle size of 10 to 25 nm is made by oxidizing a solution containing ferrous ions in the presence of an alkali of an equal amount or more in a solution to which ultrafine iron oxide particles are added. it can.

また、酸化鉄生成後、結晶性改良や粒子形状制御のために、オートクレーブによる水熱処理など液中熟成反応を行ってもよい。 Further, after the iron oxide is produced, an aging reaction in liquid such as hydrothermal treatment by an autoclave may be performed for improving crystallinity and controlling the particle shape.

酸化鉄合成後水溶液をろ過し、必要に応じて水洗等の洗浄処理を施すことで酸化鉄粒子を回収することができる。 The iron oxide particles can be recovered by filtering the aqueous solution after the synthesis of iron oxide and subjecting it to a washing treatment such as washing as necessary.

前記酸化鉄合成後、必要により、還元処理によって粒子同士が焼結することを抑制するために、酸化鉄の表面をSi化合物で被覆してもよい。Si化合物としては、オルトケイ酸ナトリウム、メタケイ酸ナトリウム、コロイダルシリカ、シランカップリング剤、シラノール化合物等が使用できる。 After the iron oxide synthesis, if necessary, the surface of iron oxide may be coated with a Si compound in order to suppress sintering of the particles by reduction treatment. As the Si compound, sodium orthosilicate, sodium metasilicate, colloidal silica, silane coupling agent, silanol compound and the like can be used.

Si化合物の被覆量は、酸化鉄に対しSi換算で0.1質量%以上20質量%以下が好ましい。0.1質量%未満の場合には熱処理時に粒子間の焼結を抑制する効果が十分とは言い難い。20質量%を超える場合には、非磁性成分が増加することとなり好ましくない。より好ましい表面被覆量は0.15質量%以上15質量%以下、更により好ましくは0.2質量%以上10質量%以下である。 The coating amount of the Si compound is preferably 0.1% by mass or more and 20% by mass or less in terms of Si with respect to iron oxide. When the amount is less than 0.1% by mass, it is difficult to say that the effect of suppressing the sintering between particles during heat treatment is sufficient. When it exceeds 20 mass%, a nonmagnetic component will increase and it is not preferable. A more preferable surface coating amount is 0.15% by mass or more and 15% by mass or less, and further more preferably 0.2% by mass or more and 10% by mass or less.

得られた酸化鉄スラリーを85℃で20時間乾燥し、酸化鉄粉末を作製することができる。 The obtained iron oxide slurry can be dried at 85 ° C. for 20 hours to produce an iron oxide powder.

前記酸化鉄は、特に限定されないが、マグネタイト、γ−Fe、α−Fe、α−FeOOH、β−FeOOH、γ−FeOOH、FeOなどを用いることができるが、この限りではない。 The iron oxide is not particularly limited, but magnetite, γ-Fe 2 O 3 , α-Fe 2 O 3 , α-FeOOH, β-FeOOH, γ-FeOOH, FeO, etc. can be used, but in this case Absent.

原料である酸化鉄の粒子形状には特に限定はないが、球状、針状、粒状、紡錘状、直方体状などいずれでもよい。 The particle shape of the iron oxide as a raw material is not particularly limited.

次に、還元処理を行う。還元処理の温度は200〜400℃が好ましい。還元処理の温度が200℃未満の場合には酸化鉄が十分に金属鉄に還元されない。還元処理の温度が400℃を超える場合には酸化鉄は十分に還元されるが、粒子間の焼結が進行するため、好ましくない。より好ましくは230〜350℃である。 Next, a reduction process is performed. The temperature for the reduction treatment is preferably 200 to 400 ° C. When the temperature of the reduction treatment is less than 200 ° C., iron oxide is not sufficiently reduced to metallic iron. When the temperature of the reduction treatment exceeds 400 ° C., the iron oxide is sufficiently reduced, but this is not preferable because sintering between particles proceeds. More preferably, it is 230-350 degreeC.

還元処理の時間は特に限定されないが、1〜96時間が好ましい。96時間を超えると還元温度によっては焼結が進み後段の窒化処理が進みにくくなってしまう。1時間未満では十分に還元が進行しない。より好ましくは2〜72時間である。 The time for the reduction treatment is not particularly limited, but is preferably 1 to 96 hours. If it exceeds 96 hours, depending on the reduction temperature, the sintering proceeds and the subsequent nitriding process becomes difficult to proceed. If it is less than 1 hour, the reduction does not proceed sufficiently. More preferably, it is 2 to 72 hours.

還元処理の雰囲気は、水素雰囲気が好ましい。 The atmosphere for the reduction treatment is preferably a hydrogen atmosphere.

還元処理を行った後、窒化処理を行う。窒化処理に使用するアンモニアとホスフィンガスの混合ガス中に占めるホスフィンガスの割合を制御することにより、本発明の窒化鉄系磁性粉末中のP含有量を制御することができる。 After the reduction treatment, nitriding treatment is performed. By controlling the ratio of the phosphine gas in the mixed gas of ammonia and phosphine gas used for the nitriding treatment, the P content in the iron nitride magnetic powder of the present invention can be controlled.

窒化処理は、アンモニアガスとホスフィンガスの混合ガスを使用する。アンモニアガスとホスフィンガスの混合ガス中に占めるホスフィンガスの割合が、0.8〜29mol%が望ましい。 The nitriding treatment uses a mixed gas of ammonia gas and phosphine gas. The proportion of phosphine gas in the mixed gas of ammonia gas and phosphine gas is preferably 0.8 to 29 mol%.

窒化処理の温度は100〜200℃である。窒化処理の温度が100℃未満の場合には窒化処理が十分に進行しない。窒化処理の温度が200℃を超える場合には、窒化が過剰に進行するため、所望のHcを示す窒化鉄系磁性粉末は得られない。より好ましくは120〜180℃である。 The temperature of the nitriding treatment is 100 to 200 ° C. When the nitriding temperature is less than 100 ° C., the nitriding does not proceed sufficiently. When the nitriding temperature exceeds 200 ° C., nitriding proceeds excessively, so that an iron nitride magnetic powder exhibiting desired Hc cannot be obtained. More preferably, it is 120-180 degreeC.

窒化処理の時間は特に限定されないが、1〜48時間が好ましい。48時間を超えると窒化温度によっては所望のHcを示す窒化鉄系磁性粉末は得られない。1時間未満では十分な還元ができない場合が多い。より好ましくは3〜24時間である。 The nitriding time is not particularly limited, but is preferably 1 to 48 hours. If it exceeds 48 hours, depending on the nitriding temperature, an iron nitride magnetic powder exhibiting desired Hc cannot be obtained. In many cases, sufficient reduction cannot be achieved in less than 1 hour. More preferably, it is 3 to 24 hours.

本実施形態によって得られた窒化鉄系磁性粉末を用いて、異方性ボンド磁石を得ることができる。以下、その製造方法を述べる。 An anisotropic bonded magnet can be obtained using the iron nitride magnetic powder obtained by the present embodiment. Hereinafter, the manufacturing method will be described.

本実施形態によって得られた窒化鉄系磁性粉末を用いた異方性ボンド磁石の製造方法の一例について説明する。樹脂を含む樹脂バインダーと磁性粉とを例えば加圧ニーダー等の加圧混練機で混練して、ボンド磁石用コンパウンド(組成物)を調製する。樹脂は、エポキシ樹脂、フェノール樹脂等の熱硬化性樹脂や、スチレン系、オレフィン系、ウレタン系、ポリエステル系、ポリアミド系のエラストマー、アイオノマー、エチレンプロピレン共重合体(EPM)、エチレン−エチルアクリレート共重合体等の熱可塑性樹脂がある。なかでも、圧縮成形をする場合に用いる樹脂は、熱硬化性樹脂が好ましく、エポキシ樹脂又はフェノール樹脂がより好ましい。また、射出成形をする場合に用いる樹脂は熱可塑性樹脂が好ましい。また、ボンド磁石用コンパウンドには、必要に応じて、カップリング剤やその他の添加材を加えてもよい。 An example of a method for producing an anisotropic bonded magnet using the iron nitride-based magnetic powder obtained by the present embodiment will be described. A resin binder containing resin and magnetic powder are kneaded by a pressure kneader such as a pressure kneader to prepare a compound (composition) for a bond magnet. Resins include thermosetting resins such as epoxy resins and phenol resins, styrene, olefin, urethane, polyester and polyamide elastomers, ionomers, ethylene propylene copolymer (EPM), ethylene-ethyl acrylate copolymer There are thermoplastic resins such as coalescence. Among them, the resin used for compression molding is preferably a thermosetting resin, and more preferably an epoxy resin or a phenol resin. The resin used for injection molding is preferably a thermoplastic resin. Moreover, you may add a coupling agent and another additive to the compound for bonded magnets as needed.

また、ボンド磁石における磁性粉と樹脂との含有比率は、磁性粉100質量%に対して、樹脂を例えば0.5質量%以上20質量%以下含むことが好ましい。磁性粉100質量%に対して、樹脂の含有量が0.5質量%未満であると、保形性が損なわれる傾向があり、樹脂が20質量%と超えると、十分に優れた磁気特性が得られ難くなる傾向がある。 Moreover, it is preferable that the content ratio of the magnetic powder and resin in a bond magnet contains 0.5 mass% or more and 20 mass% or less of resin with respect to 100 mass% of magnetic powder. If the resin content is less than 0.5% by mass with respect to 100% by mass of the magnetic powder, the shape retention tends to be impaired. If the resin exceeds 20% by mass, sufficiently excellent magnetic properties are obtained. It tends to be difficult to obtain.

上述のボンド磁石用コンパウンドを調製した後、このボンド磁石用コンパウンドを射出成形することにより、磁性粉と樹脂とを含むボンド磁石を得ることができる。射出成形によりボンド磁石を作製する場合、ボンド磁石用コンパウンドを、必要に応じてバインダー(熱可塑性樹脂)の溶融温度まで加熱し、流動状態とした後、このボンド磁石用コンパウンドを所定の形状を有する金型内に射出して成形を行う。その後、冷却し、金型から所定形状を有する成形品(ボンド磁石)を取り出す。このようにしてボンド磁石が得られる。ボンド磁石の製造方法は、上述の射出成形による方法に限定されるものではなく、例えばボンド磁石用コンパウンドを圧縮成形することにより磁性粉と樹脂とを含むボンド磁石を得るようにしてもよい。圧縮成形によりボンド磁石を作製する場合、上述のボンド磁石用コンパウンドを調製した後、このボンド磁石用コンパウンドを所定の形状を有する金型内に充填し、圧力を加えて金型から所定形状を有する成形品(ボンド磁石)を取り出す。金型にてボンド磁石用コンパウンドを成形し、取り出す際には、機械プレスや油圧プレス等の圧縮成形機を用いて行なわれる。その後、加熱炉や真空乾燥炉などの炉に入れて熱をかけることにより硬化させることで、ボンド磁石が得られる。 After preparing the above-described bonded magnet compound, the bonded magnet compound containing magnetic powder and resin can be obtained by injection molding the bonded magnet compound. When producing a bonded magnet by injection molding, the bonded magnet compound is heated to the melting temperature of the binder (thermoplastic resin) as necessary to obtain a fluid state, and then the bonded magnet compound has a predetermined shape. Injection into the mold and molding. Then, it cools and the molded article (bond magnet) which has a predetermined shape is taken out from a metal mold | die. In this way, a bonded magnet is obtained. The method of manufacturing the bonded magnet is not limited to the above-described method by injection molding. For example, a bonded magnet containing magnetic powder and resin may be obtained by compression molding a bonded magnet compound. In the case of producing a bonded magnet by compression molding, after preparing the above-mentioned bonded magnet compound, the bonded magnet compound is filled into a mold having a predetermined shape, and pressure is applied to form the predetermined shape from the mold. Take out the molded product (bonded magnet). When forming and taking out a bonded magnet compound with a mold, a compression molding machine such as a mechanical press or a hydraulic press is used. Then, a bonded magnet is obtained by making it harden | cure by putting in furnaces, such as a heating furnace and a vacuum drying furnace, and applying heat.

成形して得られるボンド磁石の形状は特に限定されるものではなく、用いる金型の形状に応じて、例えば平板状、柱状、断面形状がリング状等、変更することができる。また、得られたボンド磁石は、その表面上に酸化層や樹脂層等の劣化を防止するためにめっきや塗装を施すようにしてもよい。 The shape of the bonded magnet obtained by molding is not particularly limited, and can be changed, for example, to have a plate shape, a column shape, or a cross-sectional shape that is a ring shape, depending on the shape of the mold to be used. Further, the obtained bonded magnet may be plated or painted on the surface in order to prevent deterioration of the oxide layer, the resin layer, and the like.

ボンド磁石用コンパウンドは目的とする所定の形状に成形する際、磁場を印加して成形して得られる成形体を一定方向に配向させるようにしてもよい。これにより、ボンド磁石が特定方向に配向するので、より磁性の強い異方性ボンド磁石が得られる。 When the bonded magnet compound is molded into a desired predetermined shape, a molded body obtained by molding by applying a magnetic field may be oriented in a certain direction. Thereby, since a bonded magnet orientates in a specific direction, an anisotropic bonded magnet with stronger magnetism is obtained.

以下、本発明について、実施例・比較例を用いてさらに詳細に説明するが、本発明は実施例に示す態様に限定されるものではない。 Hereinafter, although this invention is demonstrated further in detail using an Example and a comparative example, this invention is not limited to the aspect shown in an Example.

(測定方法の説明)
得られた窒化鉄系磁性粉末の構成相は、X線回折装置(XRD、リガク製RINT−2500)及びメスバウアー分光分析装置により同定を行った。メスバウアー測定は、アルゴン雰囲気のグローブボックス中で磁性粉末をラミネートパックに入れて封止した状態で行った。メスバウアースペクトルのピーク解析は、スペクトルを理想線型の足し合わせと仮定してカーブフィッティングを行い、ピーク位置を定めて各成分のピーク面積を算出した。ピークは左右対称のローレンツ型とし、成分毎のピーク半値幅はすべて等しく、対称位置にあるピーク高さはそれぞれ等しいと仮定した。窒化鉄系磁性粉末の磁気特性は、振動試料型磁力計(VSM、東英工業製VSM−5−20)を用いて296Kにて、0〜20000Oeの磁場中で測定した。磁気特性の測定試料として、得られた粉末を、Φ6mmのディスク型ケースに秤量し、融点50〜52℃のパラフィンを加え、ホットプレートで加熱し、パラフィンが融解したしたのち、パラフィンを放冷し固化させ、窒化鉄系磁性粉末を含むパラフィンを作製した。また窒化鉄系磁性粉末の平均粒径は、前記窒化鉄系磁性粉末を含むパラフィンを、窒化鉄系磁性粉末の断面が出るように削り出し、その断面を透過型電子顕微鏡(TEM、日本電子製JEM−2000FX)にて観察した。TEM観察像の中から1000個の粒子の円面積相当径を算出し、その平均を平均粒径とした。
次にその断面を走査透過型電子顕微鏡によるエネルギー分散型X線分析装置(STEM−EDS、日本電子製JEM2100F)を用いて元素マッピングを行い、前記窒化鉄系磁性粉末粒子内におけるPの分布が均一であることを確認したのち、1000個の粒子について、鉄とPの元素比の平均値を算出した。さらに、前記メスバウアー分光分析の結果を用いて、鉄、窒素及びPの元素比を算出した。ボンド磁石についても粉末と同様の方法で測定できる。ただし、磁気特性の測定についてはB−Hトレーサーを用い、平均粒径およびPの分布と量については、ボンド磁石の断面を削り出すことにより測定する。
(Explanation of measurement method)
The constituent phases of the obtained iron nitride magnetic powder were identified by an X-ray diffractometer (XRD, RINT-2500, manufactured by Rigaku) and a Mossbauer spectrometer. Mossbauer measurement was performed in a state where a magnetic powder was put in a laminate pack and sealed in a glove box in an argon atmosphere. In the peak analysis of the Mossbauer spectrum, curve fitting was performed on the assumption that the spectrum was an ideal linear addition, the peak position was determined, and the peak area of each component was calculated. The peaks were assumed to be symmetrical Lorentz type, and the peak half-value widths for each component were all equal, and the peak heights at the symmetrical positions were assumed to be equal. The magnetic properties of the iron nitride magnetic powder were measured in a magnetic field of 0 to 20000 Oe at 296K using a vibrating sample magnetometer (VSM, VSM-5-20 manufactured by Toei Kogyo). As a sample for measuring magnetic properties, the obtained powder is weighed in a Φ6 mm disk-type case, paraffin having a melting point of 50 to 52 ° C. is added, heated on a hot plate, and the paraffin is melted. Solidified to produce paraffin containing iron nitride magnetic powder. The average particle size of the iron nitride-based magnetic powder is such that the paraffin containing the iron nitride-based magnetic powder is cut out so that the cross-section of the iron nitride-based magnetic powder appears, and the cross-section is transmitted through a transmission electron microscope (TEM, manufactured by JEOL JEM-2000FX). The equivalent circular area diameter of 1000 particles was calculated from the TEM observation image, and the average was taken as the average particle diameter.
Next, elemental mapping is performed on the cross section using an energy dispersive X-ray analyzer (STEM-EDS, JEM2100F manufactured by JEOL) using a scanning transmission electron microscope, and the distribution of P in the iron nitride magnetic powder particles is uniform. After confirming that, the average value of the element ratio of iron and P was calculated for 1000 particles. Furthermore, the element ratio of iron, nitrogen, and P was calculated using the results of the Mossbauer spectroscopy. Bonded magnets can also be measured by the same method as for powders. However, the B—H tracer is used for measuring the magnetic properties, and the average particle size and the distribution and amount of P are measured by cutting out the cross section of the bonded magnet.

(実施例1)
<酸化鉄粉末の製造>
1mol/Lの硫酸第一鉄水溶液600mLと、1mol/Lの塩化第二鉄水溶液300mLとを30℃で混合撹拌し、これに5mol/Lの水酸化ナトリウム水溶液を500mL加えた後、液中熟成反応として70℃で一定となるように温度コントロールし、30分撹拌後、ろ別、水洗し、平均粒径10nmの酸化鉄スラリーを作製した。
Example 1
<Manufacture of iron oxide powder>
600 mL of 1 mol / L ferrous sulfate aqueous solution and 300 mL of 1 mol / L ferric chloride aqueous solution were mixed and stirred at 30 ° C., and 500 mL of 5 mol / L sodium hydroxide aqueous solution was added thereto, followed by aging in the liquid As a reaction, the temperature was controlled to be constant at 70 ° C., and the mixture was stirred for 30 minutes, filtered and washed with water to prepare an iron oxide slurry having an average particle size of 10 nm.

<焼結防止剤の被着>
前記で作製した酸化鉄スラリーに、テトラエトキシシラン2.5g、エタノール21g、ジエチレングリコールモノブチルエーテル78gを添加し、Si被着処理を施した。この酸化鉄スラリーを85℃で24時間乾燥し、酸化鉄粉末を作製した。
<Adhesion of sintering inhibitor>
To the iron oxide slurry prepared above, 2.5 g of tetraethoxysilane, 21 g of ethanol, and 78 g of diethylene glycol monobutyl ether were added to perform Si deposition treatment. This iron oxide slurry was dried at 85 ° C. for 24 hours to produce iron oxide powder.

<酸化鉄粉末の還元処理>
上記で得られた粉末2gを焼成ボートに入れ、熱処理炉に静置した。炉内に窒素ガスを充填した後、水素ガスを1L/minの流量で流しながら、5℃/minの昇温速度で250℃まで昇温し、48時間保持して還元処理を行った。その後、水素ガスの供給を止めて窒素ガスを2L/minの流量で流しながら140℃まで降温し、鉄粉末を作製した。
<Reduction treatment of iron oxide powder>
2 g of the powder obtained above was placed in a firing boat and allowed to stand in a heat treatment furnace. After filling the furnace with nitrogen gas, the temperature was raised to 250 ° C. at a temperature rising rate of 5 ° C./min while flowing hydrogen gas at a flow rate of 1 L / min, and the reduction treatment was performed for 48 hours. Thereafter, the supply of hydrogen gas was stopped, and the temperature was lowered to 140 ° C. while flowing nitrogen gas at a flow rate of 2 L / min to produce iron powder.

<鉄粉末の窒化処理>
続いて、アンモニアガス198mL/min、ホスフィンガス2mL/minの混合ガスを流し、140℃で24時間窒化処理を行った。その後、窒素ガスを2L/minの流量で流しながら50℃まで降温し、空気置換を24時間実施し、窒化鉄系磁性粉末を作製した。
<Nitride treatment of iron powder>
Subsequently, a mixed gas of 198 mL / min of ammonia gas and 2 mL / min of phosphine gas was flowed, and nitriding was performed at 140 ° C. for 24 hours. Thereafter, the temperature was lowered to 50 ° C. while flowing nitrogen gas at a flow rate of 2 L / min, and air substitution was carried out for 24 hours to produce an iron nitride magnetic powder.

(実施例2)
アンモニアガスを188mL/min、ホスフィンガスを12mL/minとした以外は、実施例1と同様にして作製した。
(Example 2)
It was produced in the same manner as in Example 1 except that the ammonia gas was 188 mL / min and the phosphine gas was 12 mL / min.

(実施例3)
アンモニアガスを180mL/min、ホスフィンガスを20mL/minとした以外は、実施例1と同様にして作製した。
(Example 3)
It was produced in the same manner as in Example 1 except that ammonia gas was 180 mL / min and phosphine gas was 20 mL / min.

(実施例4)
アンモニアガスを169mL/min、ホスフィンガスを31mL/minとした以外は、実施例1と同様にして作製した。
Example 4
It was produced in the same manner as in Example 1 except that ammonia gas was 169 mL / min and phosphine gas was 31 mL / min.

(実施例5)
アンモニアガスを142mL/min、ホスフィンガスを58mL/minとした以外は、実施例1と同様にして作製した。
(Example 5)
It was produced in the same manner as in Example 1 except that ammonia gas was 142 mL / min and phosphine gas was 58 mL / min.

(実施例6)
テトラエトキシシランの添加量を1.0gとした以外は、実施例4と同様にして作製した。
(Example 6)
It was produced in the same manner as in Example 4 except that the amount of tetraethoxysilane added was 1.0 g.

(実施例7)
テトラエトキシシランの添加量を2.0gとした以外は、実施例4と同様にして作製した。
(Example 7)
It was produced in the same manner as in Example 4 except that the amount of tetraethoxysilane added was 2.0 g.

(実施例8)
テトラエトキシシランの添加量を3.0gとした以外は、実施例4と同様にして作製した。
(Example 8)
It was produced in the same manner as in Example 4 except that the amount of tetraethoxysilane added was 3.0 g.

(実施例9)
テトラエトキシシランの添加量を3.5gとした以外は、実施例4と同様にして作製した。
Example 9
It was produced in the same manner as in Example 4 except that the amount of tetraethoxysilane added was 3.5 g.

(比較例1)
アンモニアガスを200mL/min、ホスフィンガスを0mL/minとした以外は、実施例1と同様にして作製した。
(Comparative Example 1)
It was produced in the same manner as in Example 1 except that the ammonia gas was 200 mL / min and the phosphine gas was 0 mL / min.

(比較例2)
アンモニアガスを199mL/min、ホスフィンガスを1mL/minとした以外は、実施例1と同様にして作製した。
(Comparative Example 2)
It was produced in the same manner as in Example 1 except that ammonia gas was 199 mL / min and phosphine gas was 1 mL / min.

(比較例3)
アンモニアガスを138mL/min、ホスフィンガスを62mL/minとした以外は、実施例1と同様にして作製した。
(Comparative Example 3)
It was produced in the same manner as in Example 1 except that the ammonia gas was 138 mL / min and the phosphine gas was 62 mL / min.

≪評価≫
実施例1〜5及び比較例1〜3で得られた試料の、P含有量と飽和磁化および保磁力の結果を表1に示す。

Figure 0006485065
≪Evaluation≫
Table 1 shows the results of the P content, saturation magnetization, and coercivity of the samples obtained in Examples 1 to 5 and Comparative Examples 1 to 3.
Figure 0006485065

Fe16に対してPを0.1〜4.5at%含有する場合、窒化鉄磁性粉末の飽和磁化が140emu/g以上、かつ保磁力が2.5kOe以上であることが確認できた。これはFe16のNの一部がPに置換され、格子が歪んだことにより、高い飽和磁化を維持しつつ、高い保磁力を得ることができたと考えられる。 When 0.1 to 4.5 at% of P was contained with respect to Fe 16 N 2 , it was confirmed that the saturation magnetization of the iron nitride magnetic powder was 140 emu / g or more and the coercive force was 2.5 kOe or more. This is probably because a part of N in Fe 16 N 2 was replaced with P and the lattice was distorted, so that a high coercive force could be obtained while maintaining a high saturation magnetization.

さらに、Fe16に対してPを0.1〜4.5at%含有し、平均粒径が20〜60nmの場合、飽和磁化が150emu/g以上、かつ保磁力が2.8kOe以上と良好な特性が確認できた。 Further, when Fe is contained in an amount of 0.1 to 4.5 at% with respect to Fe 16 N 2 and the average particle diameter is 20 to 60 nm, the saturation magnetization is 150 emu / g or more and the coercive force is 2.8 kOe or more. The characteristic was able to be confirmed.

比較例1では、アンモニアガスのみによる窒化であり、Pが含有されないために保磁力が低い。 In Comparative Example 1, nitriding is performed only with ammonia gas, and since P is not contained, the coercive force is low.

比較例2では、P含有量が0.1at%未満のため、保磁力が低下した。 In Comparative Example 2, the coercive force decreased because the P content was less than 0.1 at%.

比較例3では、P含有量が4.5at%超となり、強磁性成分が減り不純物成分であるFePが増えることにより、飽和磁化、保磁力ともに低下した。 In Comparative Example 3, the P content exceeded 4.5 at%, and the saturation component and coercive force were reduced by decreasing the ferromagnetic component and increasing the impurity component Fe 3 P.

以上のように、本発明に係る、窒化鉄系磁性粉末は、十分な飽和磁化及び保磁力を有することから、レアアースを使用しない高性能磁石に用いることができる。 As described above, since the iron nitride magnetic powder according to the present invention has sufficient saturation magnetization and coercive force, it can be used for high-performance magnets that do not use rare earths.

Claims (3)

Fe16であらわされる強磁性相を含む窒化鉄系磁性粉末であって、前記Fe16に対してPを0.1〜4.5at%含有している、窒化鉄系磁性粉末。 An iron nitride magnetic powder containing a ferromagnetic phase represented by Fe 16 N 2 and containing 0.1 to 4.5 at% P with respect to the Fe 16 N 2 . 前記窒化鉄系磁性粉末を構成するFe16粒子の平均粒径が20nm〜60nmである、請求項1に記載の窒化鉄系磁性粉末。 The iron nitride magnetic powder according to claim 1, wherein an average particle diameter of Fe 16 N 2 particles constituting the iron nitride magnetic powder is 20 nm to 60 nm. 請求項1及び2に記載の窒化鉄系磁性粉末を用いたボンド磁石。 A bonded magnet using the iron nitride-based magnetic powder according to claim 1.
JP2015010137A 2015-01-22 2015-01-22 Iron nitride magnetic powder and bonded magnet using the same Active JP6485065B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015010137A JP6485065B2 (en) 2015-01-22 2015-01-22 Iron nitride magnetic powder and bonded magnet using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015010137A JP6485065B2 (en) 2015-01-22 2015-01-22 Iron nitride magnetic powder and bonded magnet using the same

Publications (2)

Publication Number Publication Date
JP2016134582A JP2016134582A (en) 2016-07-25
JP6485065B2 true JP6485065B2 (en) 2019-03-20

Family

ID=56464557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015010137A Active JP6485065B2 (en) 2015-01-22 2015-01-22 Iron nitride magnetic powder and bonded magnet using the same

Country Status (1)

Country Link
JP (1) JP6485065B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6778652B2 (en) * 2017-05-24 2020-11-04 Tdk株式会社 Iron nitride based magnet

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62297437A (en) * 1986-06-18 1987-12-24 Kawasaki Steel Corp Magnetic material having high saturation magnetic moment
JPH0786013A (en) * 1993-06-30 1995-03-31 Victor Co Of Japan Ltd Magnetic powder material
JP2009009646A (en) * 2007-06-28 2009-01-15 Hitachi Maxell Ltd Magnetic recording medium
CN105849834A (en) * 2013-06-27 2016-08-10 明尼苏达大学董事会 Iron nitride materials and magnets including iron nitride materials

Also Published As

Publication number Publication date
JP2016134582A (en) 2016-07-25

Similar Documents

Publication Publication Date Title
JP5708454B2 (en) Alcohol solution and sintered magnet
JP6155440B2 (en) Method for producing ferromagnetic iron nitride particle powder, method for producing anisotropic magnet, bonded magnet and dust magnet
JP5924657B2 (en) Method for producing ferromagnetic iron nitride particle powder, anisotropic magnet, bonded magnet and dust magnet
WO2013042721A1 (en) Method for manufacturing ferromagnetic iron nitride powder, anisotropic magnet, bond magnet, and compressed-powder magnet
JP6942379B2 (en) Magnetic materials and their manufacturing methods
CN111373065B (en) Magnetic material and method for producing the same
US9607740B2 (en) Hard-soft magnetic MnBi/SiO2/FeCo nanoparticles
JP6380736B2 (en) Iron nitride magnetic powder and magnet using the same
JP6485066B2 (en) Iron nitride magnet
JP6520168B2 (en) Iron nitride based magnetic powder and bonded magnet using the same
JP2019080055A (en) Composite magnetic material, magnet, motor, and method of producing composite magnetic material
JP6485065B2 (en) Iron nitride magnetic powder and bonded magnet using the same
KR20190085442A (en) Rare-earth magnet
US9427805B2 (en) Method to prepare hard-soft magnetic FeCo/ SiO2/MnBi nanoparticles with magnetically induced morphology
JP7309260B2 (en) Manufacturing method of sintered magnet
JP2017183322A (en) Bond magnet arranged by use of iron nitride-based magnetic powder
JP6344129B2 (en) Iron nitride magnetic powder and magnet using the same
KR102399418B1 (en) Manufacturing method of sintered magnetic and sintered magnetic manufactured by the same
JP6569208B2 (en) Film-forming iron nitride magnetic powder and magnet using the same
JP6513623B2 (en) Method of manufacturing isotropic bulk magnet
JP6500470B2 (en) Iron nitride magnet
JP6519419B2 (en) Iron nitride based magnetic powder and bonded magnet using the same
JP4934787B2 (en) Magnetic alloys and bonded magnets
JP6337662B2 (en) Iron nitride magnetic powder and magnet using the same
JP6618858B2 (en) Iron nitride magnet

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160714

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190204

R150 Certificate of patent or registration of utility model

Ref document number: 6485065

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150