JP6618858B2 - Iron nitride magnet - Google Patents
Iron nitride magnet Download PDFInfo
- Publication number
- JP6618858B2 JP6618858B2 JP2016123843A JP2016123843A JP6618858B2 JP 6618858 B2 JP6618858 B2 JP 6618858B2 JP 2016123843 A JP2016123843 A JP 2016123843A JP 2016123843 A JP2016123843 A JP 2016123843A JP 6618858 B2 JP6618858 B2 JP 6618858B2
- Authority
- JP
- Japan
- Prior art keywords
- iron nitride
- magnet
- nitride magnet
- iron
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Powder Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
Description
本発明は、窒化鉄磁石に関する。 The present invention relates to an iron nitride magnet.
Fe16N2からなる窒化鉄磁石は、その磁気特性が高いことや、希土類を使用しないという環境への配慮の観点から注目されている。しかしながら、Fe16N2からなる窒化鉄磁石は、Fe16N2相が高温で分解するため焼結することが難しい。このため、窒化鉄磁石として、圧縮成型のみによる圧粉磁石や、樹脂により固化されたボンド磁石が提案されている。 An iron nitride magnet made of Fe 16 N 2 has attracted attention from the viewpoint of its high magnetic properties and environmental considerations that do not use rare earths. However, iron nitride magnet consisting of Fe 16 N 2, it is difficult to sinter for Fe 16 N 2 phase is decomposed at elevated temperatures. For this reason, as an iron nitride magnet, a compacted magnet only by compression molding and a bonded magnet solidified by resin have been proposed.
たとえば下記特許文献1では、明細書中にボンド磁石、圧粉磁石と記載されているものの、実施例を含み具体的な記述はされていない。 For example, in the following Patent Document 1, although it is described in the specification as a bond magnet and a dust magnet, there is no specific description including examples.
Fe16N2からなる窒化鉄磁石において、Fe16N2は準安定化合物であることから、高温での焼結によってFe4Nやα−Feといった不純物相が生成する場合がある。これにより、保磁力や磁化といった磁気特性が低下する。また、ボンド磁石のように樹脂を添加する場合、高い保磁力を有するFe16N2窒化鉄磁石は非常に微細な窒化鉄磁性粒子で構成されることから、多量の樹脂が必要となり、圧粉磁石と比較して磁気特性の低下が生じてしまう。さらに、機械的強度や耐湿性においても十分なものとは言えない。一方、単純な圧縮成型によって緻密化された圧粉磁石の場合、十分な機械的強度が得られないために磁石製品として適さない。 In iron nitride magnet consisting of Fe 16 N 2, Fe 16 N 2 from being metastable compounds, there is a case where an impurity phase is generated such Fe 4 N and alpha-Fe by sintering at high temperatures. Thereby, magnetic characteristics such as coercive force and magnetization are deteriorated. In addition, when a resin is added like a bond magnet, a Fe 16 N 2 iron nitride magnet having a high coercive force is composed of very fine iron nitride magnetic particles. The magnetic characteristics are deteriorated as compared with the magnet. Furthermore, it cannot be said that the mechanical strength and moisture resistance are sufficient. On the other hand, a powder magnet densified by simple compression molding is not suitable as a magnet product because sufficient mechanical strength cannot be obtained.
本発明は上記を鑑みてなされたものであり、高い機械的強度と高い磁気特性とを兼ね備えた窒化鉄磁石を提供することを目的とする。 The present invention has been made in view of the above, and an object thereof is to provide an iron nitride magnet having both high mechanical strength and high magnetic properties.
本発明に係る窒化鉄磁石は、Fe16N2が主成分である窒化鉄磁石であって、窒化鉄磁石中の窒化鉄磁性粒子間にSnまたはSn合金を、窒化鉄磁石重量に対して1重量%以上30重量%以下含むことを特徴とする窒化鉄磁石である。 The iron nitride magnet according to the present invention is an iron nitride magnet containing Fe 16 N 2 as a main component, and Sn or Sn alloy is added between iron nitride magnetic particles in the iron nitride magnet in an amount of 1 for the weight of the iron nitride magnet. It is an iron nitride magnet characterized by containing not less than 30% by weight.
上記本発明に係る窒化鉄磁石は、SnまたはSn合金の効果によって比較的低温で緻密化することが可能であるため、Fe16N2の特性を損なうことなく、高い機械的強度と高い磁気特性とを兼ね備えることができる。Snを用いる理由は、加工性や機械的強度に優れ、価格や環境への影響の観点から優れているためである。 Since the iron nitride magnet according to the present invention can be densified at a relatively low temperature due to the effect of Sn or Sn alloy, high mechanical strength and high magnetic properties can be obtained without impairing the properties of Fe 16 N 2. Can be combined. The reason for using Sn is that it is excellent in workability and mechanical strength, and is excellent from the viewpoint of influence on price and environment.
本発明によれば、Fe16N2からなる窒化鉄磁石を緻密化することが可能となり、高い機械的強度と高い磁気特性とを兼ね備えることができる。 According to the present invention, an iron nitride magnet made of Fe 16 N 2 can be densified, and high mechanical strength and high magnetic properties can be combined.
以下、本発明の好適な実施形態について説明する。なお、本発明は以下に記載の実施形態及び実施例の内容により限定されるものではない。また、以下に記載の実施形態及び実施例にて示された構成要素は適宜組み合わせても良いし、適宜選択してもよい。 Hereinafter, preferred embodiments of the present invention will be described. The present invention is not limited by the contents of the embodiments and examples described below. In addition, the constituent elements shown in the embodiments and examples described below may be appropriately combined or may be appropriately selected.
本実施形態に係る窒化鉄磁石は、Fe16N2が主成分であり、一部にFe4NやFe3N、α−Fe、酸化鉄、非磁性酸化物、樹脂等を含んでいても良い。窒化鉄磁石を構成する窒化鉄磁性粒子の粒子径は、10nmから200nm程度であり、窒化鉄磁石としても原料である窒化鉄磁性粒子の粒子径を維持している。 The iron nitride magnet according to the present embodiment is mainly composed of Fe 16 N 2, and may include Fe 4 N, Fe 3 N, α-Fe, iron oxide, nonmagnetic oxide, resin, etc. in part. good. The particle diameter of the iron nitride magnetic particles constituting the iron nitride magnet is about 10 nm to 200 nm, and the particle diameter of the iron nitride magnetic particles as a raw material is maintained as the iron nitride magnet.
本実施形態に係る窒化鉄磁石は、最大磁気エネルギー積(BH)maxが3MGOe以上であることが好ましい。より好ましくは、最大磁気エネルギー積が3.5MGOe以上ある。また、機械的強度の指標として、曲げ強度が30MPa以上であることが好ましい。より好ましくは、曲げ強度が40MPa以上、更に好ましくは、50MPa以上である。 The iron nitride magnet according to the present embodiment preferably has a maximum magnetic energy product (BH) max of 3 MGOe or more. More preferably, the maximum magnetic energy product is 3.5 MGOe or more. Moreover, it is preferable that bending strength is 30 Mpa or more as an index of mechanical strength. More preferably, the bending strength is 40 MPa or more, and still more preferably 50 MPa or more.
本実施形態に係る窒化鉄磁石は、Fe16N2が主成分である窒化鉄磁石であって、窒化鉄磁石中の窒化鉄磁性粒子間にSnまたはSn合金を、窒化鉄磁石重量に対して1重量%以上30重量%以下含んでいる。SnまたはSn合金含有量として、1重量%未満の含有量では十分な緻密化を行なうことができず、十分な機械的強度を得ることができない。一方、SnまたはSn合金含有量が30重量%を超えると、最大エネルギー積が低下してしまい、満足な磁気特性を得ることができない。 The iron nitride magnet according to the present embodiment is an iron nitride magnet mainly composed of Fe 16 N 2, and Sn or Sn alloy is added between iron nitride magnetic particles in the iron nitride magnet with respect to the weight of the iron nitride magnet. 1 to 30% by weight is contained. If the content of Sn or Sn alloy is less than 1% by weight, sufficient densification cannot be performed and sufficient mechanical strength cannot be obtained. On the other hand, if the Sn or Sn alloy content exceeds 30% by weight, the maximum energy product decreases, and satisfactory magnetic properties cannot be obtained.
前記Sn合金としては、Snと、Cu、Ag、Zn、Bi、SbやIn等の合金を使用することができる。単体での一般的な低融点金属としては、Sn以外にもZn、Ga、In、BiやPbなどが挙げられる。ただし、Fe16N2からなる窒化鉄磁石に用いる場合、これらの低融点金属では融点を下げる効果が不十分であり、価格や環境への影響の観点からも好ましくない。 As the Sn alloy, Sn and alloys such as Cu, Ag, Zn, Bi, Sb, and In can be used. As a general low melting point metal as a simple substance, Zn, Ga, In, Bi, Pb and the like can be cited in addition to Sn. However, when used for an iron nitride magnet made of Fe 16 N 2 , these low melting point metals are insufficient in reducing the melting point, which is not preferable from the viewpoint of cost and environmental impact.
次に、本実施形態に係る窒化鉄磁石の好適な製造法について述べる。 Next, the suitable manufacturing method of the iron nitride magnet which concerns on this embodiment is described.
本実施形態に係る窒化鉄磁性粒子は、酸化鉄を原料として用いて還元処理を行い、続いて窒化処理を行って得ることができる。 The iron nitride magnetic particles according to the present embodiment can be obtained by performing a reduction treatment using iron oxide as a raw material and subsequently performing a nitriding treatment.
原料である酸化鉄は、特に限定されないが、マグネタイト、γ−Fe2O3、α−Fe2O3、α−FeOOH、β−FeOOH、γ−FeOOH、FeOなどが挙げられる。 The raw material iron oxide is not particularly limited, and examples thereof include magnetite, γ-Fe 2 O 3 , α-Fe 2 O 3 , α-FeOOH, β-FeOOH, γ-FeOOH, and FeO.
原料である酸化鉄の合成方法は、特に限定されないが、共沈法、空気酸化法、水熱合成法、気相法などが挙げられる。 The method for synthesizing the raw material iron oxide is not particularly limited, and examples thereof include a coprecipitation method, an air oxidation method, a hydrothermal synthesis method, and a gas phase method.
本実施形態においては、必要により、還元処理によって粒子同士が焼結することを抑制するために原料である酸化鉄の表面をSi等の化合物で被覆してもよい。 In the present embodiment, if necessary, the surface of iron oxide as a raw material may be coated with a compound such as Si in order to suppress sintering of the particles by reduction treatment.
表面をSiで被覆された原料酸化鉄は、酸化鉄粒子を分散して得られる水懸濁液のpHを調整した後、Si化合物を添加して混合攪拌することにより、又は、必要により、混合攪拌後にpH値を調整し、その後、水洗、乾燥、粉砕することで得られる。 The raw iron oxide whose surface is coated with Si is adjusted by adjusting the pH of the aqueous suspension obtained by dispersing the iron oxide particles, and then adding the Si compound and mixing and stirring, or if necessary, mixing It is obtained by adjusting the pH value after stirring, and then washing, drying and pulverizing.
Si化合物としては、オルトケイ酸ナトリウム、メタケイ酸ナトリウム、コロイダルシリカ、シランカップリング剤等が使用できる。 As the Si compound, sodium orthosilicate, sodium metasilicate, colloidal silica, silane coupling agent and the like can be used.
Si化合物の被覆量は、酸化鉄に対しSi換算で0.1重量%以上20重量%以下が好ましい。0.1重量%未満の場合には熱処理時に粒子間の焼結を抑制する効果が十分とは言い難い。20重量%を超える場合には、非磁性成分が増加することとなり好ましくない。より好ましい表面被覆量は0.15重量%以上15重量%以下、更により好ましくは0.2重量%以上10重量%以下である。 The coating amount of the Si compound is preferably 0.1% by weight or more and 20% by weight or less in terms of Si with respect to iron oxide. When the amount is less than 0.1% by weight, it is difficult to say that the effect of suppressing the sintering between particles during heat treatment is sufficient. When it exceeds 20% by weight, the nonmagnetic component increases, which is not preferable. A more preferable surface coating amount is 0.15% by weight or more and 15% by weight or less, and further more preferably 0.2% by weight or more and 10% by weight or less.
還元処理の温度は200〜600℃が好ましい。還元処理の温度が200℃未満の場合には酸化鉄が十分に金属鉄に還元されない。還元処理の温度が600℃を超える場合には酸化鉄は十分に還元されるが、粒子間の焼結も進行することになり、好ましくない。より好ましい還元温度は250〜450℃である。 The temperature of the reduction treatment is preferably 200 to 600 ° C. When the temperature of the reduction treatment is less than 200 ° C., iron oxide is not sufficiently reduced to metallic iron. When the temperature of the reduction treatment exceeds 600 ° C., iron oxide is sufficiently reduced, but sintering between particles also proceeds, which is not preferable. A more preferable reduction temperature is 250 to 450 ° C.
還元処理の時間は特に限定されないが、1〜96時間が好ましい。96時間を超えると還元温度によっては焼結が進み後段の窒化処理が進みにくくなってしまう。1時間未満では十分な還元ができない場合が多い。より好ましくは2〜72時間である。還元処理の雰囲気は、水素雰囲気が好ましい。 The time for the reduction treatment is not particularly limited, but is preferably 1 to 96 hours. If it exceeds 96 hours, depending on the reduction temperature, the sintering proceeds and the subsequent nitriding process becomes difficult to proceed. In many cases, sufficient reduction cannot be achieved in less than 1 hour. More preferably, it is 2 to 72 hours. The atmosphere for the reduction treatment is preferably a hydrogen atmosphere.
還元処理を行った後、窒化処理を行う。窒化処理の温度は100〜200℃である。窒化処理の温度が100℃未満の場合には窒化が十分に進行しない。窒化処理の温度が200℃を超える場合には、窒化が進行しすぎるため、Fe16N2は得られない。より好ましい窒化温度は120〜180℃である。 After the reduction treatment, nitriding treatment is performed. The temperature of the nitriding treatment is 100 to 200 ° C. When the nitriding temperature is less than 100 ° C., nitriding does not proceed sufficiently. When the temperature of the nitriding process exceeds 200 ° C., since nitriding proceeds excessively, Fe 16 N 2 cannot be obtained. A more preferable nitriding temperature is 120 to 180 ° C.
窒化処理の時間は特に限定されないが、1〜48時間が好ましい。48時間を超えると窒化温度によってはFe16N2化合物相ではない異相の割合が多くなってしまう。1時間未満では十分な窒化ができない場合が多い。より好ましくは3〜24時間である。 The nitriding time is not particularly limited, but is preferably 1 to 48 hours. If it exceeds 48 hours, depending on the nitriding temperature, the proportion of heterogeneous phases that are not Fe 16 N 2 compound phases will increase. In many cases, sufficient nitriding cannot be performed in less than 1 hour. More preferably, it is 3 to 24 hours.
窒化処理の雰囲気は、NH3雰囲気が望ましく、NH3の他、N2、H2などを混合させてもよい。 The atmosphere of the nitriding treatment is desirably an NH 3 atmosphere, and N 2 , H 2 or the like may be mixed in addition to NH 3 .
次に、本実施形態によって得られた窒化鉄磁性粒子を用いた、窒化鉄磁石の製造方法の一例について説明する。 Next, an example of a method for producing an iron nitride magnet using the iron nitride magnetic particles obtained by the present embodiment will be described.
本実施形態によって得られた窒化鉄磁性粒子の表面に、SnまたはSn合金を窒化鉄磁石重量に対して1重量%以上30重量%以下被着させる。SnまたはSn合金の被着方法としては、蒸着、めっき、粉末混合、ペースト添加、メカニカルアロイ等が使用できる。 Sn or Sn alloy is deposited on the surface of the iron nitride magnetic particles obtained by the present embodiment in an amount of 1 wt% to 30 wt% with respect to the iron nitride magnet weight. As a method for depositing Sn or Sn alloy, vapor deposition, plating, powder mixing, paste addition, mechanical alloy, or the like can be used.
次に、窒化鉄磁性粒子を金型に充填し、1〜30t/cm2の圧力で加圧しながら、150〜250℃の温度で緻密化させる。加圧時間は1〜3600秒である。なお、成形方法としては、一軸加圧法またはCIPなどの等方加圧法のいずれを用いてもよい。加熱方法としては、ヒーター加熱、マイクロ波加熱、プラズマ加熱等が使用できる。 Next, iron nitride magnetic particles are filled in a mold and densified at a temperature of 150 to 250 ° C. while being pressurized at a pressure of 1 to 30 t / cm 2 . The pressurization time is 1 to 3600 seconds. As a forming method, either a uniaxial pressing method or an isotropic pressing method such as CIP may be used. As a heating method, heater heating, microwave heating, plasma heating or the like can be used.
窒化鉄磁性粒子を目的とする所定の形状に成形する際、磁場を印加しながら成形して、得られる成形体を一定方向に配向させるようにしてもよい。これにより、窒化鉄磁石が特定方向に配向するので、より磁性の強い異方性をもった窒化鉄磁石が得られる。印加する磁場の強度は20kOe以上であることが好ましい。 When the iron nitride magnetic particles are formed into a desired shape, they may be formed while applying a magnetic field, and the resulting formed body may be oriented in a certain direction. Thereby, since the iron nitride magnet is oriented in a specific direction, an iron nitride magnet having stronger magnetic anisotropy can be obtained. The intensity of the applied magnetic field is preferably 20 kOe or more.
成形して得られる窒化鉄磁石の形状は特に限定されるものではなく、用いる金型の形状に応じて、例えば平板状、柱状、断面形状がリング状等、変更することができる。また、得られた窒化鉄磁石は、その表面上に酸化層や樹脂層等の劣化を防止するためにめっきや塗装を施してもよい。 The shape of the iron nitride magnet obtained by molding is not particularly limited, and can be changed, for example, in a plate shape, a column shape, or a cross-sectional shape in a ring shape, depending on the shape of the mold to be used. Further, the obtained iron nitride magnet may be plated or painted on its surface in order to prevent deterioration of the oxide layer, the resin layer and the like.
以上、本実施形態に係る窒化鉄磁石及びその製造法について説明したが、本発明は上記実施形態に何ら限定されるものではない。 Although the iron nitride magnet and the manufacturing method thereof according to the present embodiment have been described above, the present invention is not limited to the above embodiment.
以下、実施例及び比較例に基づき本発明をさらに具体的に説明する。 Hereinafter, the present invention will be described more specifically based on examples and comparative examples.
(実施例1)
<窒化鉄磁性粒子の作製工程>
Sigma−Aldrich社製の酸化鉄γ−Fe2O3(粒子径30nm)を用い、熱処理炉にて水素ガス2L/min、350℃、50時間の条件で還元し、続いて、アンモニアガスを0.1L/min流しながら、160℃で12時間窒化処理を行うことにより窒化鉄磁性粒子を得た。
(Example 1)
<Production process of iron nitride magnetic particles>
Using iron oxide γ-Fe 2 O 3 (particle size 30 nm) manufactured by Sigma-Aldrich, reduction was performed in a heat treatment furnace under conditions of hydrogen gas 2 L / min, 350 ° C., 50 hours, and then ammonia gas was reduced to 0. Iron nitride magnetic particles were obtained by performing nitriding treatment at 160 ° C. for 12 hours while flowing 1 L / min.
<Sn被着工程>
得られた窒化鉄磁性粒子に対し、真空蒸着装置を用いてSnを被着させた。真空度は1×10−4Paとし、被着させる重量は、蒸着時間によって調節した。
<Sn deposition process>
Sn was deposited on the obtained iron nitride magnetic particles using a vacuum deposition apparatus. The degree of vacuum was 1 × 10 −4 Pa, and the weight to be deposited was adjusted by the deposition time.
<窒化鉄磁石の作製工程>
得られたSn被着窒化鉄磁性粒子を、90mm×12mmの試料形状の金型に充填し、25kOeの横磁場を印加して20t/cm2の圧力で油圧プレス成形をおこなった。この加圧成形の間に、窒素雰囲気にて試料の最高到達温度が200℃となる条件にて緻密化処理を施した。以上の工程により、実施例1の窒化鉄磁石を得た。
<Manufacturing process of iron nitride magnet>
The obtained Sn-coated iron nitride magnetic particles were filled into a 90 mm × 12 mm sample-shaped mold and subjected to hydraulic press molding at a pressure of 20 t / cm 2 by applying a transverse magnetic field of 25 kOe. During the pressure molding, a densification treatment was performed in a nitrogen atmosphere under the condition that the maximum temperature reached by the sample was 200 ° C. The iron nitride magnet of Example 1 was obtained through the above steps.
<曲げ強度試験>
窒化鉄磁石の曲げ強度は、窒化鉄磁石を80×10×4mmのサイズに加工し、JIS K7171規格に準じて曲げ強度試験機を用いて測定した。測定試料5点の平均値を曲げ強度とし、測定には、島津製作所製の万能試験機(AGS)を用いた。結果を表1に示す。
<Bending strength test>
The bending strength of the iron nitride magnet was measured by processing the iron nitride magnet into a size of 80 × 10 × 4 mm and using a bending strength tester according to JIS K7171 standard. An average value of five measurement samples was defined as bending strength, and a universal testing machine (AGS) manufactured by Shimadzu Corporation was used for the measurement. The results are shown in Table 1.
<磁気特性評価>
窒化鉄磁石の磁気特性をBHトレーサーにより評価した。磁気特性として、最大エネルギー積を、測定試料5点の平均値により算出した。測定には、玉川製作所製のBHトレーサー(TM−BH25)を用いた。結果を表1に示す。
<添加金属の含有量測定>
窒化鉄磁石重量に対する添加金属の含有量を島津製作所製のICP分析装置(ICPS−8100CL)によって測定した。測定回数2回の平均値を算出し、結果を表1に示す。
<Evaluation of magnetic properties>
The magnetic properties of the iron nitride magnet were evaluated with a BH tracer. As a magnetic characteristic, the maximum energy product was calculated by an average value of five measurement samples. A BH tracer (TM-BH25) manufactured by Tamagawa Seisakusho was used for the measurement. The results are shown in Table 1.
<Measurement of content of added metal>
The content of the added metal relative to the weight of the iron nitride magnet was measured by an ICP analyzer (ICPS-8100CL) manufactured by Shimadzu Corporation. The average value of the number of times of measurement was calculated, and the results are shown in Table 1.
(実施例2〜10、比較例4、比較例5)
実施例1と同様に作製した窒化鉄磁性粒子に、表1に示す添加金属を所望の被着量となるように被着させることで、実施例2〜10および比較例4、比較例5の窒化鉄磁石を得た。
(Examples 2 to 10, Comparative Example 4, Comparative Example 5)
By applying the additive metal shown in Table 1 to the iron nitride magnetic particles produced in the same manner as in Example 1 so as to have a desired deposition amount, Examples 2 to 10 and Comparative Examples 4 and 5 An iron nitride magnet was obtained.
(比較例1〜3)
Sn被着工程がない以外は、実施例1と同様の作製方法で比較例1の窒化鉄磁石を得た。また、Sn被着工程にて、Sn被着量を表1に示す量とすること以外は実施例1と同様の作製方法で比較例2および3の窒化鉄磁石を得た。
(Comparative Examples 1-3)
An iron nitride magnet of Comparative Example 1 was obtained by the same production method as Example 1 except that there was no Sn deposition step. Moreover, the iron nitride magnets of Comparative Examples 2 and 3 were obtained in the same manner as in Example 1 except that the Sn deposition amount was changed to the amount shown in Table 1 in the Sn deposition step.
実施例1と同様の方法で、実施例2〜10及び比較例1〜5の各窒化鉄磁石の曲げ強度試験、磁気特性評価、添加金属の含有量を測定した。曲げ強度、磁気特性評価および添加金属の含有量の測定結果を表1に示す。 In the same manner as in Example 1, the bending strength test, magnetic property evaluation, and additive metal content of each of the iron nitride magnets of Examples 2 to 10 and Comparative Examples 1 to 5 were measured. Table 1 shows the results of measurement of bending strength, magnetic property evaluation, and content of added metal.
曲げ強度は、30MPa以上、最大エネルギー積は3MGOe以上を良好とした。 The bending strength was 30 MPa or more, and the maximum energy product was 3 MGOe or more.
表1に示される結果から、比較例1および2の試料はSnが添加されていない、あるいは添加されていても含有量が不足しているために曲げ強度が不十分である。また、比較例3ではSnの含有量が過剰であるために最大エネルギー積が不十分である。さらに、比較例4および比較例5では、Zn、BiがSnと比較して融点を下げる効果が低いために十分な緻密化ができておらず、曲げ強度が不十分である。これらに対し、本発明では高い曲げ強度と、最大エネルギー積が良好な試料が得られていることがわかる。 From the results shown in Table 1, the samples of Comparative Examples 1 and 2 have insufficient bending strength because Sn is not added, or even if added, the content is insufficient. In Comparative Example 3, the maximum energy product is insufficient because the Sn content is excessive. Furthermore, in Comparative Example 4 and Comparative Example 5, Zn and Bi are less effective in lowering the melting point compared to Sn, so that sufficient densification is not achieved and bending strength is insufficient. On the other hand, in the present invention, it can be seen that a sample having a high bending strength and a good maximum energy product is obtained.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016123843A JP6618858B2 (en) | 2016-06-22 | 2016-06-22 | Iron nitride magnet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016123843A JP6618858B2 (en) | 2016-06-22 | 2016-06-22 | Iron nitride magnet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017228656A JP2017228656A (en) | 2017-12-28 |
JP6618858B2 true JP6618858B2 (en) | 2019-12-11 |
Family
ID=60891827
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016123843A Active JP6618858B2 (en) | 2016-06-22 | 2016-06-22 | Iron nitride magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6618858B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114222826A (en) * | 2019-05-22 | 2022-03-22 | 尼龙磁学公司 | Coercive force enhanced iron nitride nanoparticles with high saturation magnetization |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04354104A (en) * | 1991-05-30 | 1992-12-08 | Minebea Co Ltd | Manufacture of rare earth bond magnet |
JP3248077B2 (en) * | 2000-11-17 | 2002-01-21 | ミネベア株式会社 | Manufacturing method of rare earth-iron-nitrogen permanent magnet |
JP2009249682A (en) * | 2008-04-04 | 2009-10-29 | Nec Tokin Corp | Hard magnetic alloy and method for producing the same |
JP5859753B2 (en) * | 2010-09-06 | 2016-02-16 | ダイハツ工業株式会社 | Manufacturing method of magnetic material |
KR101665648B1 (en) * | 2013-06-27 | 2016-10-12 | 리전츠 오브 더 유니버시티 오브 미네소타 | Iron nitride materials and magnets including iron nitride materials |
JP6344129B2 (en) * | 2014-08-06 | 2018-06-20 | Tdk株式会社 | Iron nitride magnetic powder and magnet using the same |
-
2016
- 2016-06-22 JP JP2016123843A patent/JP6618858B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017228656A (en) | 2017-12-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010073590A1 (en) | Composite soft magnetic material and method for producing same | |
JP5063861B2 (en) | Composite dust core and manufacturing method thereof | |
JP2008028162A (en) | Soft magnetic material, manufacturing method therefor, and dust core | |
WO2016010098A1 (en) | Magnetic core, method for producing magnetic core, and coil component | |
WO2013042721A1 (en) | Method for manufacturing ferromagnetic iron nitride powder, anisotropic magnet, bond magnet, and compressed-powder magnet | |
JP2013191839A (en) | Dust core and powder for magnetic core used therefor | |
JP2013069926A (en) | Method for manufacturing ferromagnetic iron nitride grain powder, anisotropic magnet, bond magnet and powder-compact magnet | |
JP5439888B2 (en) | Composite magnetic material and method for producing the same | |
JP2009185312A (en) | Composite soft magnetic material, dust core using the same, and their production method | |
JP2009164401A (en) | Manufacturing method of dust core | |
CN111696746A (en) | Crushing-method Fe-Si-Al soft magnetic powder core and preparation method thereof | |
JP2006287004A (en) | Magnetic core for high frequency and inductance component using it | |
JP2019178402A (en) | Soft magnetic powder | |
JP6471881B2 (en) | Magnetic core and coil parts | |
JP5168637B2 (en) | Metal magnetic fine particles and production method thereof, dust core | |
JP6380736B2 (en) | Iron nitride magnetic powder and magnet using the same | |
JP2009249739A5 (en) | ||
JP2012204744A (en) | Soft magnetic metal powder, method for producing the same, powder magnetic core and method for producing the same | |
JP6471882B2 (en) | Magnetic core and coil parts | |
JP6618858B2 (en) | Iron nitride magnet | |
JPS6338216A (en) | Manufacture of corrosion-resistant rare-earth magnetic powder and magnetic unit made of the powder | |
CN113871128B (en) | Soft magnetic alloy composite material and preparation method thereof | |
JP2009272615A (en) | Dust core, and manufacturing method thereof | |
JP2010185126A (en) | Composite soft magnetic material and method for producing the same | |
TW201802262A (en) | Soft magnetic metal powder and dust core |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190408 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20191023 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20191029 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20191113 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6618858 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |