JP2009164401A - Manufacturing method of dust core - Google Patents

Manufacturing method of dust core Download PDF

Info

Publication number
JP2009164401A
JP2009164401A JP2008001376A JP2008001376A JP2009164401A JP 2009164401 A JP2009164401 A JP 2009164401A JP 2008001376 A JP2008001376 A JP 2008001376A JP 2008001376 A JP2008001376 A JP 2008001376A JP 2009164401 A JP2009164401 A JP 2009164401A
Authority
JP
Japan
Prior art keywords
particles
magnetic
metal magnetic
magnetic particles
permeability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008001376A
Other languages
Japanese (ja)
Inventor
Hiroshi Sato
啓 佐藤
Masaharu Edo
雅晴 江戸
Takayuki Hirose
隆之 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP2008001376A priority Critical patent/JP2009164401A/en
Publication of JP2009164401A publication Critical patent/JP2009164401A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dust core which has high magnetic permeability and excellent DC superposition characteristics. <P>SOLUTION: Disclosed is the manufacturing method of the dust core in which metal magnetic particles are compression-molded, the manufacturing method of the dust core being characterized in that the metal magnetic particles are made of two kind of metal magnetic particles A and B differing in material and mean particle diameter, wherein the ratio of the mean particle diameters of the two kind of metal magnetic particles is 1:0.15 to 1:0.22 and the metal magnetic particles A have larger yield stress than the metal magnetic particles B. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、圧粉磁心の製造方法に関する。この製造方法で得られる圧粉磁心はスイッチング電源などに搭載される高周波用トランス、リアクトル、インダクタなどに用いる磁気部品として有用である。   The present invention relates to a method for manufacturing a dust core. The dust core obtained by this manufacturing method is useful as a magnetic component used for a high-frequency transformer, a reactor, an inductor and the like mounted on a switching power supply.

近年、各種電子機器は、小形化、軽量化されてきており、なおかつ低消費電力化が求められている。これに伴い電子機器に搭載されているスイッチング電源も小形化の要求が高まっている。特にノート型パソコンや小型携帯機器、薄型CRT、フラットパネルディスプレイに用いられるスイッチング電源では、小型化、薄型化が強く求められている。しかしながら、従来のスイッチング電源は、その主要な構成部品であるトランス、リアクトル等の磁気部品が、大きな体積を占め、小型化、薄型化することに限界があった。これら磁気部品の体積を小型、薄型化しない限り、スイッチング電源を小型化、薄型化することは困難となっていた。   In recent years, various electronic devices have been reduced in size and weight, and reduction in power consumption has been demanded. Along with this, there is an increasing demand for miniaturization of switching power supplies mounted on electronic devices. In particular, switching power supplies used in notebook personal computers, small portable devices, thin CRTs, and flat panel displays are strongly required to be small and thin. However, in conventional switching power supplies, magnetic components such as transformers and reactors, which are main components, occupy a large volume, and there has been a limit to downsizing and thinning. Unless the volume of these magnetic components is reduced in size and thickness, it has been difficult to reduce the size and thickness of the switching power supply.

従来、このようなスイッチング電源に使用されているトランス、リアクトルなどの磁気部品には、センダストやパーマロイなどの金属磁性材料や、フェライトなどの酸化物磁性材料がコアすなわち圧粉磁心として使用されていた。   Conventionally, in magnetic parts such as transformers and reactors used in such switching power supplies, metal magnetic materials such as sendust and permalloy, and oxide magnetic materials such as ferrite have been used as cores, that is, dust cores. .

金属磁性材料は、一般に高い飽和磁束密度と透磁率を有するが、電気抵抗率が低いため、特に高周波数領域ではヒステリシス損失や渦電流損失が大きくなってしまう。スイッチング電源では、回路を高周波駆動することにより、高効率化および小型化する傾向にあるが、上記の渦電流損失の影響から金属磁性材料をスイッチング電源用の磁気部品に使用することは困難であった。   Metallic magnetic materials generally have a high saturation magnetic flux density and magnetic permeability, but have low electrical resistivity, so hysteresis loss and eddy current loss are particularly large in the high frequency region. Switching power supplies tend to be highly efficient and miniaturized by driving the circuit at a high frequency. However, it is difficult to use metallic magnetic materials for magnetic parts for switching power supplies due to the effects of eddy current loss. It was.

一方、フェライトに代表される酸化物磁性材料は、金属磁性材料に比べ電気抵抗率が高いため、高周波数領域でも発生する渦電流損失が小さい。しかしながら、トランスやリアクトルを小型化した場合、コイルに流す電流は同じでも磁心にかかる磁場は強くなってしまう。一般に、フェライトの飽和磁束密度は金属磁性材料に比べて小さく、スイッチング電源の磁気部品として使用した場合、上記の理由によりその小型化には限界がある。   On the other hand, an oxide magnetic material typified by ferrite has a higher electrical resistivity than a metal magnetic material, and therefore, an eddy current loss generated even in a high frequency region is small. However, when the transformer or the reactor is downsized, the magnetic field applied to the magnetic core becomes strong even if the current flowing through the coil is the same. In general, the saturation magnetic flux density of ferrite is smaller than that of a metal magnetic material, and when used as a magnetic component of a switching power supply, there is a limit to downsizing for the above reasons.

このように、従来の磁気部品では、いずれの材料を用いても、スイッチング電源の磁気部品に対して要求される、高周波駆動と小型化の双方を満足させることは困難となっていた。   As described above, with any conventional magnetic component, it has been difficult to satisfy both high frequency driving and miniaturization required for the magnetic component of the switching power supply, regardless of which material is used.

近年、前述の圧粉磁心材料である飽和磁束密度および透磁率が高い金属磁性材料に関して、トレードオフの関係にある低抵抗率を改善するため、様々な検討がなされており、金属磁性粒子の表面に電気抵抗率の高い酸化物材料の被膜や粒子を形成した粒子を用いた圧粉磁心や、金属磁性粉末と電気絶縁性が高いバインダーとの混合物からなる圧粉磁心が提案されている(例えば、特許文献1〜6参照。)。
これらの手法によると、非磁性絶縁膜の効果により電気抵抗率が上昇することで渦電流を抑制できる。つまり、MHz帯域などの高周波帯域でも使用することができるようになる。
In recent years, various studies have been made to improve the low resistivity, which has a trade-off relationship, with respect to the above-described powder magnetic core material, which has a high saturation magnetic flux density and high magnetic permeability. For example, a dust core using particles formed with a coating film or particles of an oxide material having a high electrical resistivity, and a dust core made of a mixture of metal magnetic powder and a binder having high electrical insulation have been proposed (for example, , See Patent Literatures 1 to 6.)
According to these methods, the eddy current can be suppressed by increasing the electrical resistivity due to the effect of the nonmagnetic insulating film. That is, it can be used even in a high frequency band such as the MHz band.

即ち、特許文献1では、1〜10μmの粒子からなる金属磁性材料の表面をM−Fex4(但しM=Ni、Mn、Zn、x≦2)で表されるスピネル組成の金属酸化物磁性材で被覆してなる高密度焼結磁性体が提案されている。 That is, in Patent Document 1, the surface of the metallic magnetic material consisting of 1~10μm particles M-Fe x O 4 (where M = Ni, Mn, Zn, x ≦ 2) metal oxide represented by the spinel composition by A high-density sintered magnetic body that is coated with a magnetic material has been proposed.

さらに、特許文献2では、表面に超音波励起フェライトめっきによって形成されたフェライト層の被覆を有する金属または金属間化合物の強磁性体微粒子粉末が圧縮成形され、前記フェライト層を介して前記強磁性体粒子問に磁路を形成するものであることを特徴とする複合磁性材料が提案されている。   Further, in Patent Document 2, a ferromagnetic fine particle powder of a metal or an intermetallic compound having a ferrite layer coating formed by ultrasonic excitation ferrite plating on the surface is compression-molded, and the ferromagnetic material is passed through the ferrite layer. A composite magnetic material characterized in that a magnetic path is formed in a particle is proposed.

また、特許文献3では、高密度で、かつ、比抵抗が高い軟磁性成形体を得る方法として、軟磁性の金属粒子と、その表面に被覆された高抵抗物質と、該高抵抗物質の表面に被覆されたリン酸系化成処理被膜とよりなることを特徴とする軟磁性粒子が提案されている。   In Patent Document 3, as a method for obtaining a soft magnetic molded body having a high density and a high specific resistance, soft magnetic metal particles, a high resistance material coated on the surface thereof, and a surface of the high resistance material There has been proposed a soft magnetic particle characterized in that it is composed of a phosphoric acid-based chemical conversion coating coated on the surface.

特許文献4では、軟磁性金属粒子の表面に絶縁性の高い酸化物粉末(チタニア、シリカ、アルミナなど)をまぶした粉末を用いる方法や、そのような粉末に圧縮・せん断作用を機械的に反復負荷する表面融合処理した粉末を用いる方法や、軟磁性金属粒子と酸化物粉末とを混合して表面融合処理した粉末を用いる方法が提案されている。   In Patent Document 4, a method of using a powder obtained by coating a soft magnetic metal particle with a highly insulating oxide powder (titania, silica, alumina, etc.), or mechanically repeating compression and shearing action on such powder. A method using a surface-fused powder to be loaded, and a method using a surface-fused powder obtained by mixing soft magnetic metal particles and an oxide powder have been proposed.

また、スイッチング電源回路には、直流重畳特性に優れていることが必要とされているが、特許文献7には、金属磁性材料を用いた良好な直流重畳特性を示す圧粉磁心の製造方法が提案されている。即ち、センダスト(Fe−Si−Al系)合金粒子を扁平化し、形状異方性を発現させ、粒子における磁化困難軸を扁平な粒子の面に垂直な方向に生じさせ、磁場により配向させながら圧縮成形し、磁心の磁路方向の反磁界形数が高い圧粉磁心を得るとしている。これにより、直流励磁に対し、磁束密度の飽和を抑制し、飽和に至らせず、透磁率を低下させないことで直流重畳特性に優れた圧粉磁心を提供し、コイル電流の大電流化に対応する狙いがある。   In addition, the switching power supply circuit is required to have excellent direct current superposition characteristics. However, Patent Document 7 discloses a method of manufacturing a dust core that exhibits good direct current superposition characteristics using a metal magnetic material. Proposed. In other words, Sendust (Fe-Si-Al) alloy particles are flattened, shape anisotropy is developed, hard magnetization axes in the particles are generated in a direction perpendicular to the plane of the flat particles, and compressed while being oriented by a magnetic field. Molding and obtaining a powder magnetic core having a high demagnetizing field type in the magnetic path direction of the magnetic core. This suppresses saturation of the magnetic flux density against direct current excitation, provides no dust core, and provides a dust core with excellent direct current superposition characteristics to prevent coil current from increasing. There is an aim to do.

また、特許文献8、9には、磁性粒子の充填率を向上させるため、圧粉磁心における磁性粒子が最密充填されるように粒径分布を変えた磁性粒子を用いた圧粉磁心の製造方法が提案されている。即ち、Fe−Co系金属磁性粒子の表面をフェライト被覆したりSiO2微粒子で被覆したりして電気抵抗を向上させ、かつ、磁性粒子自体に互いに異なる2つの粒径分布を持たせることで、圧粉磁心中の磁性粒子の充填率を高める手法が提案されている。   Patent Documents 8 and 9 describe the production of a dust core using magnetic particles whose particle size distribution is changed so that the magnetic particles in the dust core are closely packed to improve the filling rate of the magnetic particles. A method has been proposed. That is, the surface of the Fe-Co based metal magnetic particle is coated with ferrite or coated with SiO2 fine particles to improve the electrical resistance, and the magnetic particle itself has two different particle size distributions. A technique for increasing the filling rate of magnetic particles in a powder magnetic core has been proposed.

特許文献10には降伏応力が1.5倍以上異なる2種類以上の磁性粉末を混合して200MPa以上で成形することにより、降伏応力が小さい粉末が塑性変形して圧粉密度を上げることのできるインダクタが開示されている。   In Patent Document 10, two or more kinds of magnetic powders with different yield stresses of 1.5 times or more are mixed and molded at 200 MPa or more, so that the powder with small yield stress can be plastically deformed to increase the powder density. An inductor is disclosed.

特開昭56−38402号公報JP-A-56-38402 国際公開第03/015109号パンフレットWO03 / 015109 pamphlet 特開2001−85211号公報JP 2001-85211 A 特開2003−332116号公報JP 2003-332116 A 特開2003−303711号公報JP 2003-303711 A 特開2001−307914号公報JP 2001-307914 A 特開2001−68365号公報JP 2001-68365 A 特開2003−306703号公報JP 2003-306703 A 特開2005−167097号公報Japanese Patent Laying-Open No. 2005-167097 特開2006−294733号公報JP 2006-294733 A 粉体工学概論 三輪茂雄著 初版(日刊工業新聞社発行)p39−42Introduction to Powder Engineering by Shigeo Miwa, First Edition (published by Nikkan Kogyo Shimbun) p39-42

しかし、前述した特許文献1、2に開示された圧粉磁心の製造方法では、透磁率向上と電気抵抗率向上がトレードオフの関係にあり、透磁率が大きな材料は抵抗率が低いため高周波では使用できず、抵抗率の高い材料は透磁率が数10〜80程度であり、高透磁率が得られないという問題がある。   However, in the manufacturing method of the dust core disclosed in Patent Documents 1 and 2 described above, there is a trade-off relationship between the improvement of the magnetic permeability and the improvement of the electric resistivity. A material that cannot be used and has a high resistivity has a permeability of about several tens to 80, and there is a problem that a high permeability cannot be obtained.

また、特許文献3〜6に開示されている圧粉磁心の製造方法は、燐酸系化成処理被膜を用いたものや、SiO2微粒子を含む懸濁液、絶縁性の高いシリカ系バインダーなどと磁性粒子を混合する際に、スラリー状の処理液を用いて被膜を形成する湿式の絶縁被膜形成法を用いたものである。この絶縁被膜形成法では、圧粉磁心の高電気抵抗化は図れるが、耐熱性に劣り、粒子の成形歪を除去するに必要な程度に高い温度での熱処理を行うことができず、透磁率を向上させることができない。また、粒子混合液中の不純物との化学反応や、磁性粒子の腐食が生じるおそれもあり、強度が低い、生産コストが高いなどの欠点もある。このため、得られる圧粉磁心は磁気部品への適用が困難といえる。 In addition, the method for producing a powder magnetic core disclosed in Patent Documents 3 to 6 uses a phosphoric acid-based chemical conversion coating film, a suspension containing SiO 2 fine particles, a highly insulating silica-based binder, and the like. When the particles are mixed, a wet insulating film forming method is used in which a film is formed using a slurry-like treatment liquid. Although this insulation film formation method can increase the electrical resistance of the dust core, it is inferior in heat resistance and cannot be subjected to heat treatment at a temperature as high as necessary to remove the molding distortion of the particles. Cannot be improved. In addition, there is a possibility that chemical reaction with impurities in the particle mixture and corrosion of magnetic particles may occur, and there are disadvantages such as low strength and high production cost. For this reason, it can be said that the obtained dust core is difficult to apply to magnetic parts.

例えば、Fe−Ni系金属粒子(未処理状態のもの。以下ベア粒子と呼ぶ)を、充填率95%以上でプレスした場合、プレス後の状態では透磁率は100程度である。本材料を熱処理することで、透磁率は1000程度まで向上させることができるが、ベア粒子では粒子同士の界面での拡散結合で、ほぼ金属結晶レベルまで抵抗率が低下してしまい、数10kHzレベルまでの周波数帯域でしか使用できない。   For example, when Fe—Ni-based metal particles (untreated state, hereinafter referred to as “bare particles”) are pressed at a filling rate of 95% or more, the magnetic permeability is about 100 in the state after pressing. By heat-treating this material, the magnetic permeability can be improved to about 1000. However, in the case of bare particles, the resistivity decreases to almost the metal crystal level due to diffusion bonding at the interface between the particles, and the level is several tens of kHz. It can be used only in the frequency band up to.

そこで、ベア粒子に水ガラス法を用いたSiO2被覆を形成した粒子を用いると、プレス後の抵抗率は1〜100Ωcmと大きな抵抗率を示すが、透磁率は30〜70程度であり、高い透磁率が得られない。プレス時に軟磁性金属粒子に生じた歪みを解放し透磁率を増加させるために600〜1000℃の熱処理を実施すると、透磁率は大きくなるが、絶縁被膜の破壊によって抵抗率が低下し、周波数特性が悪化してしまう欠点がある。これは、金属磁性粒子と絶縁被膜が相互拡散し、絶縁被膜の絶縁性が著しく低下することによるものである。逆に、相互拡散しなければ、透磁率は高くならないということになる。 Therefore, the use of particles formed of SiO 2 coating with a bare particles of water glass method, resistivity after pressing exhibit greater resistivity and 1~100Omucm, permeability is about 30 to 70, higher Magnetic permeability cannot be obtained. When heat treatment at 600 to 1000 ° C. is performed to release the strain generated in the soft magnetic metal particles during press and increase the magnetic permeability, the magnetic permeability increases, but the resistivity decreases due to the breakdown of the insulating coating, and the frequency characteristics Has the disadvantage of getting worse. This is due to the fact that the metal magnetic particles and the insulating coating are interdiffused and the insulating properties of the insulating coating are significantly reduced. On the other hand, the permeability does not increase unless mutual diffusion occurs.

また、特許文献7に開示されている圧粉磁心の製造方法では、粒子加工、圧縮成形時におけるコスト、形状制御性に課題があり、生産上好ましくない。また、センダスト系合金粒子は一般に硬く、粒子自体の変形性が乏しく、多量のバインダーを用いなければ、圧粉自身の成形性が悪いため、充填率が悪化し、磁気特性の向上は困難である。   Moreover, in the manufacturing method of the powder magnetic core currently disclosed by patent document 7, there exists a subject in the cost at the time of particle processing and compression molding, and shape controllability, and it is unpreferable on production. In addition, Sendust alloy particles are generally hard, the particles themselves are poorly deformable, and if a large amount of binder is not used, the compactability of the powder compact itself is poor, so the filling rate deteriorates and it is difficult to improve the magnetic properties. .

また、特許文献8、9に開示されている圧粉磁心の製造方法では、粒径が異なる粒子が同じ組成からなる。即ち、全粒子が同じ硬さなので、成形時に最密充填が得られるまで加圧すると、力の逃げようがないので全粒子に大きな応力がかかり、この応力のため発生する成形歪み解消のため高温での熱処理が必要となる。また、金属磁性粒子がその表面に絶縁被膜を有するものであっても、前記応力のため、その絶縁被膜は破壊され易いという問題を有している。   Moreover, in the manufacturing method of the powder magnetic core currently disclosed by patent document 8, 9, the particle | grains from which a particle size differs consist of the same composition. That is, since all the particles have the same hardness, if pressure is applied until close-packing is obtained during molding, there is no escape of force, so a large stress is applied to all particles, and high temperature is used to eliminate the molding distortion that occurs due to this stress. Heat treatment at is required. Further, even if the metal magnetic particles have an insulating coating on the surface, the insulating coating has a problem that it is easily broken due to the stress.

前記熱処理を1,000℃程度の温度で行えば高透磁率は得られるが、高周波数特性は悪く、インダクタ等の高周波デバイスには適用困難である。また、造粒工程、成形工程が複雑で、生産性に劣り、生産コストも高くなるという問題がある。   If the heat treatment is performed at a temperature of about 1,000 ° C., a high magnetic permeability can be obtained, but the high frequency characteristics are poor and it is difficult to apply to high frequency devices such as inductors. In addition, the granulation process and the molding process are complicated, resulting in poor productivity and high production costs.

上述のように、上記いずれの方法でも、透磁率向上と電気抵抗率向上がトレードオフの関係にある。これは用いられる絶縁被覆磁性粒子として、一般的には球状の粒子が用いられていることにも関係する。つまり、磁性粒子が球形であると、粒子間の反磁界および粒子間の空隙率が大きいため、透磁率が上がらない、もしくは、反磁界を低減させるために熱処理を実施して絶縁被覆と磁性粒子を相互拡散させると抵抗率が低下してしまう。   As described above, in any of the above methods, there is a trade-off relationship between magnetic permeability improvement and electrical resistivity improvement. This is related to the fact that generally spherical particles are used as the insulating coated magnetic particles used. In other words, if the magnetic particles are spherical, the demagnetizing field between the particles and the porosity between the particles are large, so the magnetic permeability does not increase, or heat treatment is performed to reduce the demagnetizing field and the insulation coating and the magnetic particles If they are interdiffused, the resistivity will decrease.

一方、磁性粒子として扁平粒子を用いた場合、反磁界は扁平面に垂直な方向に大きくなり、水平な方向に小さくなるために、相互拡散をさせなくても透磁率を大きくできる可能性はある。しかし、これらの扁平粒子は、型に入れた状態ではその扁平方向は様々な方向を向いている。これをそのままプレスした場合、扁平面を磁場の方向に水平にしたり垂直にしたりなど全粒子の方向を完全に制御することができず、結局は球状粒子を用いた場合とほぼ同じレベルの特性しか得られない。   On the other hand, when flat particles are used as magnetic particles, the demagnetizing field increases in the direction perpendicular to the flat surface and decreases in the horizontal direction, so there is a possibility that the permeability can be increased without mutual diffusion. . However, the flat direction of these flat particles is in various directions when placed in a mold. If this is pressed as it is, the direction of all particles cannot be completely controlled, such as making the flat surface horizontal or perpendicular to the direction of the magnetic field, and in the end, only the characteristics at the same level as when using spherical particles are used. I can't get it.

また、特許文献10に開示されている圧粉磁心の製造方法では、2種類の磁性粉末の粒径比と混合比について、実施例に関する数値は挙げられているものの、適切な粒径比と混合比をどのように求めればよいかについては示されていない。粒径比や混合比が適当でないと、以下の不具合が生じてしまう。(なお、混合比に関しては、非特許文献1の表2.4に2種類の球に関するHudson充填の空隙率が示されている。)   In addition, in the method of manufacturing a powder magnetic core disclosed in Patent Document 10, although the numerical values related to the examples are given for the particle size ratio and mixing ratio of the two types of magnetic powder, an appropriate particle size ratio and mixing It is not shown how to determine the ratio. If the particle size ratio and the mixing ratio are not appropriate, the following problems occur. (Regarding the mixing ratio, Table 2.4 of Non-Patent Document 1 shows the Hudson filling porosity for two types of spheres.)

すなわち、降伏応力の小さい粒子が少ないと、降伏応力の大きい粒子を塑性変形させないと充填率が上がらない。降伏応力の小さい粒子が多すぎると、余計な分の降伏応力小の粒子まで塑性変形させなくてはいけない。粒径比が不適当だと、加圧前の充填率が低いため、降伏応力の大きい粒子間の隙間でないところに多くの降伏応力小の粒子を置いておく必要があり、加圧時にその粒子を隙間にもっていくのに余計な圧力がかかる、もしくは隙間に行き着かない粒子が出て最終的な充填率を上げることができない、といった課題が生じる。   That is, if the number of particles having a small yield stress is small, the filling rate cannot be increased unless the particles having a large yield stress are plastically deformed. If there are too many particles with a small yield stress, it is necessary to plastically deform to particles with a small yield stress. If the particle size ratio is inappropriate, the filling rate before pressurization is low, so it is necessary to place many particles with low yield stress in the gaps between particles with large yield stress. However, there is a problem that excessive pressure is applied to bring the particles into the gap, or particles that do not reach the gap come out and the final filling rate cannot be increased.

本発明はこのような問題に鑑みてなされたもので、その目的とするところは、高透磁率で、かつ、良好な直流重畳特性を有する圧粉磁心を提供することにある。   The present invention has been made in view of such problems, and an object of the present invention is to provide a dust core having high magnetic permeability and good DC superposition characteristics.

即ち、本発明の圧粉磁心の製造方法は、金属磁性粒子を圧縮成形する圧粉磁心の製造方法において、前記金属磁性粒子が材質および平均粒径が互いに異なる2種類の金属磁性粒子A、Bからなり、前記2種類の金属磁性粒子の平均粒径の比が1:0.15〜1:0.22であり、平均粒径の大きい金属磁性粒子Aの降伏応力が平均粒径の小さい金属磁性粒子Bの降伏応力より大きいことを特徴とする。   That is, the method for producing a dust core of the present invention is a method for producing a dust core in which metal magnetic particles are compression-molded. The metal magnetic particles are made of two types of metal magnetic particles A and B having different materials and average particle sizes. The ratio of the average particle diameter of the two types of metal magnetic particles is 1: 0.15 to 1: 0.22, and the metal magnetic particles A having a large average particle diameter have a low yield stress. It is characterized by being larger than the yield stress of the magnetic particles B.

本発明によれば、磁性粒子の充填率を高度に高めた圧粉磁心を得ることができ、高い透磁率を有し、特に高周波帯域における高透磁率を維持でき、直流重畳特性に優れた圧粉磁心を提供できる。   According to the present invention, it is possible to obtain a powder magnetic core with a highly increased filling rate of magnetic particles, a high magnetic permeability, a high magnetic permeability particularly in a high frequency band, and an excellent DC superposition characteristic. A powder magnetic core can be provided.

本発明の圧粉磁心の製造方法は、2種類の金属磁性粒子A、Bを用いる。この金属磁性粒子としては、純鉄、Fe−Si系合金、Fe−Si−Al系合金(センダストなど)、Fe−Ni系合金(パーマロイ、スーパーマロイなど)、Fe−Co系合金などの軟質強磁性体を挙げることができる。本発明においては、これらの中から降伏応力の異なる2種の軟質強磁性体を選択し、降伏応力の大きい方の金属磁性粒子(A)の平均粒子径を他方の金属磁性粒子(B)のそれより大きいものとする。降伏応力の差は、それぞれの金属粒子を単独でプレス成型したときの成型体の粒子充填率を測定することにより、金属粒子の塑性変形のしにくさの大小、即ち降伏応力の大小を判別することができる。   The method for producing a dust core of the present invention uses two types of metal magnetic particles A and B. The metal magnetic particles include soft iron, Fe-Si alloys, Fe-Si-Al alloys (Sendust, etc.), Fe-Ni alloys (Permalloy, Supermalloy, etc.), Fe-Co alloys, etc. A magnetic material can be mentioned. In the present invention, two types of soft ferromagnets having different yield stresses are selected from these, and the average particle diameter of the metal magnetic particles (A) having the larger yield stress is selected from that of the other metal magnetic particles (B). Larger than that. The difference in yield stress is determined by measuring the particle filling rate of the molded body when each metal particle is press-molded alone, thereby determining the degree of difficulty of plastic deformation of the metal particles, that is, the magnitude of the yield stress. be able to.

前記金属磁性粒子A、Bの平均粒径の比は1:0.15〜1:0.22になるようにする。平均粒径の比をこのようにすることによって、加圧前(塑性変形前)でも粒子Bが、粒子A間の隙間に入り込み、粒子A間の隙間でないところに存在する粒子Bの量を減らすことができ、圧粉成形時の圧力を下げることや、加圧後の充填率を高くすることが可能になる。   The ratio of the average particle diameter of the metal magnetic particles A and B is 1: 0.15 to 1: 0.22. By making the ratio of the average particle diameters in this way, the particles B enter the gaps between the particles A even before pressurization (before plastic deformation), and the amount of the particles B existing in the gaps between the particles A is reduced. It is possible to reduce the pressure at the time of compacting and to increase the filling rate after pressurization.

これらの金属磁性粒子A,Bをできるだけ均一になるように混合し、この混合物を用いて圧縮成形し、圧粉磁心を成型する。金属磁性粒子A,Bの混合比は、1:0.35あるいは金属磁性粒子Bの量がこれより多めにすることが好ましい。これは、同じ粒径の粒子だけを用いて最密充填させたときの空隙率は0.2595であることが知られていることから、金属磁性粒子Aの最密充填時に形成された空隙を金属磁性粒子Bで埋めることを意図して、AとBの体積比を(1−0.2595):0.2595≒1:0.35とするよう、あるいは金属磁性粒子Bの量がこれより多めにするようにしたものである。   These metal magnetic particles A and B are mixed so as to be as uniform as possible, and the mixture is compression-molded to form a dust core. The mixing ratio of the metal magnetic particles A and B is preferably 1: 0.35 or the amount of the metal magnetic particles B is larger than this. This is because it is known that the porosity when close-packed using only particles of the same particle size is 0.2595, so the voids formed during the close-packing of metal magnetic particles A The volume ratio of A and B is set to (1-0.2595): 0.2595≈1: 0.35 with the intention of filling with metal magnetic particles B, or the amount of metal magnetic particles B is I tried to make it a lot.

圧縮成形方法としては、金型を用いて、例えば上下方向から加圧圧縮する単軸圧縮成形、圧縮圧延成形、電気絶縁性非磁性被膜を有する軟磁性粒子をゴム型などにつめて全方向から加圧圧縮する静圧圧縮成形、これらを温間で行う温間単軸圧縮成形、温間静圧圧縮成形(WIP)、熱間で行う熱間単軸圧縮成形および熱間静圧圧縮成形(HIP)など通常、酸化物被覆金属磁性粒子の圧縮成形に採用される圧縮成形法であればいずれも採用できる。   As a compression molding method, using a mold, for example, uniaxial compression molding that compresses and compresses in the vertical direction, compression rolling molding, soft magnetic particles having an electrically insulating nonmagnetic coating are packed in a rubber mold and the like from all directions. Hydrostatic compression molding that compresses and compresses, warm uniaxial compression molding that performs these in warm, warm hydrostatic compression molding (WIP), hot uniaxial compression molding that performs hot, and hot hydrostatic compression molding ( Any compression molding method generally employed for compression molding of oxide-coated metal magnetic particles such as HIP) can be employed.

本発明においては、得られた圧粉成形体を熱処理することが好ましい。熱処理することにより成型加工された圧粉磁心の成型加工歪が消失すると共に、透磁率が向上し、透磁率が高く(μ’(透磁率の実部)が大きく)、損失の小さい(μ”(透磁率の虚部)が小さい)成形体を得ることができる。熱処理の最高到達温度は400〜700℃であることが好ましい。熱処理の最高到達温度が高ければ粒子の歪を除去することができ、μ’を上げることができる。ただし、粒子間の拡散で抵抗率も低下することから、μ’とρ(抵抗率)の必要数値から最適な温度を設定すればよい。   In the present invention, it is preferable to heat-treat the obtained green compact. Molding distortion of the dust core molded by heat treatment disappears, the permeability is improved, the permeability is high (μ ′ (the real part of the permeability) is large), and the loss is small (μ ” (A small imaginary part of magnetic permeability) can be obtained.The maximum temperature of the heat treatment is preferably 400 to 700 ° C. If the maximum temperature of the heat treatment is high, the distortion of the particles can be removed. However, μ ′ can be raised, but since the resistivity also decreases due to diffusion between particles, an optimum temperature may be set from the necessary values of μ ′ and ρ (resistivity).

この熱処理時の雰囲気は、粒子の酸化を防ぐため、窒素、アルゴンなどの不活性ガス雰囲気下、あるいは真空下で行うことが好ましい。   The atmosphere during the heat treatment is preferably performed under an inert gas atmosphere such as nitrogen or argon or under vacuum in order to prevent oxidation of particles.

高周波特性を良好にするという観点からは、前記金属磁性粒子の表面には絶縁被膜が形成されていることが好ましい。この絶縁被膜は金属酸化物からなることが好ましい。被膜を設けるとその分磁性体の占有率が低下し、透磁率が低下するので、この絶縁被膜は薄いほうが好ましい。高周波特性と透磁率の兼ね合いから、この絶縁被膜の厚さは5〜30nmであることが好ましい。この絶縁被膜は均一に金属磁性粒子表面に付着していることが好ましい。   From the viewpoint of improving the high frequency characteristics, it is preferable that an insulating coating is formed on the surface of the metal magnetic particles. This insulating coating is preferably made of a metal oxide. If a coating is provided, the occupancy of the magnetic material is reduced by that amount, and the magnetic permeability is reduced. Therefore, it is preferable that the insulating coating is thin. In view of the balance between high frequency characteristics and magnetic permeability, the thickness of the insulating coating is preferably 5 to 30 nm. It is preferable that this insulating coating adheres uniformly to the surface of the metal magnetic particles.

この絶縁被膜は湿式成膜法でも形成できるが、乾式成膜法で形成された被膜(乾式絶縁被膜)であってもよい。乾式成膜法によれば、湿式法におけるように被膜材料をスラリー状にしないため、不純物の混入、不均一性、組成変化、ハロゲンイオンによる腐食を防ぐことができる。   The insulating film can be formed by a wet film forming method, but may be a film (dry insulating film) formed by a dry film forming method. According to the dry film forming method, the coating material is not made into a slurry as in the wet method, so that it is possible to prevent contamination with impurities, nonuniformity, composition change, and corrosion due to halogen ions.

乾式成膜法としては、蒸着法、スパッタ法、アブレーション法、メカノフュージョン法などを挙げることができ、いずれの手法も用いることができる。   Examples of the dry film forming method include a vapor deposition method, a sputtering method, an ablation method, a mechanofusion method, and the like, and any method can be used.

<実施例1>
図1〜5に本実施例の工程の概略を示す。まず、図1に示すように、水アトマイズ法で形成したFe−Co系合金であるコバルト鉄(Fe−Co合金、重量比50:50)からなるほぼ球状の金属磁性粒子11をふるい掛けにより分級し、平均粒径8μmの粒子(金属磁性粒子A)のみを抽出した。次に、水アトマイズ法で形成したFe−Ni系合金であるスーパーマロイ(Fe−Ni−Mo合金、重量比17:78:5)からなるほぼ球状の金属磁性粒子12をふるい掛けにより分級し、平均粒径1.4μmの粒子(金属磁性粒子B)のみを抽出した。ここで、金属磁性粒子Bの降伏応力は、金属磁性粒子Aの降伏応力より小さく、金属磁性粒子Bの方が塑性変形し易いものになっている。
<Example 1>
1 to 5 schematically show the steps of this example. First, as shown in FIG. 1, substantially spherical metal magnetic particles 11 made of cobalt iron (Fe—Co alloy, weight ratio 50:50), which is an Fe—Co alloy formed by a water atomization method, are classified by sieving. Then, only particles (metal magnetic particles A) having an average particle diameter of 8 μm were extracted. Next, the substantially spherical metal magnetic particles 12 made of supermalloy (Fe—Ni—Mo alloy, weight ratio 17: 78: 5), which is an Fe—Ni alloy formed by the water atomization method, are classified by sieving, Only particles having an average particle diameter of 1.4 μm (metal magnetic particles B) were extracted. Here, the yield stress of the metal magnetic particles B is smaller than the yield stress of the metal magnetic particles A, and the metal magnetic particles B are more easily plastically deformed.

1.4μm/8μm=0.175であることから、金属磁性粒子Aと金属磁性粒子Bの粒径比率8μm:0.14μmは1:0.1716に近いものになっている。これは、理想モデルに対する理論式から算出した、粒子を最密充填するための粒径比率になるようにしたものである。非特許文献1に示されているHudsonの計算結果(2次粒子まで考慮)によると、1:0.1716の比率のときが最も充填嵩密度が高くなり、90%に近い値が得られるからである。しかし、充填率85%以上(空隙率15%以下)であれば良好な磁気特性が得られることを考慮すれば、非特許文献1の表2.4で空隙率15%以下が得られる1:0.15〜1:0.22の範囲の粒径比率であればよい。   Since 1.4 μm / 8 μm = 0.175, the particle size ratio 8 μm: 0.14 μm between the metal magnetic particles A and the metal magnetic particles B is close to 1: 0.1716. This is a particle size ratio for closest packing of particles calculated from a theoretical formula for the ideal model. According to the calculation results of Hudson shown in Non-Patent Document 1 (considering up to secondary particles), the packing bulk density is highest when the ratio is 1: 0.1716, and a value close to 90% is obtained. It is. However, considering that good magnetic properties can be obtained if the filling rate is 85% or more (porosity 15% or less), a porosity of 15% or less is obtained in Table 2.4 of Non-Patent Document 1: The particle size ratio may be in the range of 0.15 to 1: 0.22.

次に、図2に示すように、平均粒径の異なる金属磁性粒子A11と金属磁性粒子B12とを混合機で混合攪拌する。本実施例では、自動乳鉢13を用い、20分間攪拌/混合した。金属磁性粒子A11と金属磁性粒子B12との混合比(容積比)は1:0.35より金属磁性粒子Bの粒子が若干多目になるようにし、各粒子の密度を考慮して所定量を計量した。
混合時間については、長すぎると混合粉体が分離したり、塑性変形したりする可能性があるため数十分にとどめておいた。
Next, as shown in FIG. 2, the metal magnetic particles A11 and the metal magnetic particles B12 having different average particle diameters are mixed and stirred by a mixer. In this example, the automatic mortar 13 was used and stirred / mixed for 20 minutes. The mixing ratio (volume ratio) of metal magnetic particles A11 and metal magnetic particles B12 is 1: 0.35 so that the number of metal magnetic particles B is slightly larger, and a predetermined amount is set in consideration of the density of each particle. Weighed.
Regarding the mixing time, if it was too long, the mixed powder could be separated or plastically deformed, so it was kept in the tens of minutes.

次に、図3に示すように、上記混合粒子をリングコア成形用の金型14に入れ、混合粒子を入れた金型に振動を与えることにより、金属磁性粒子A11同士の間の空隙に金属磁性粒子B12が存在するように充填した。   Next, as shown in FIG. 3, the mixed particles are put into a ring core molding die 14, and vibration is applied to the die containing the mixed particles, whereby metal magnetic particles are formed in the gaps between the metal magnetic particles A <b> 11. Packed so that particle B12 was present.

次に図4に示すように、1177MPa(12ton/cm2)の一軸プレスにより内径3mmφ、外形8mmφ、高さ約3mmのリングコア形状に成型した。
得られたリングコアを図5(a)に示し、その粒子充填状況を図5(b)に示す。図5(b)に見られるように成形体中の粒子充填率は単一の粒径の粒子を用いて成形した場合の90%程度よりも格段に向上している。
Next, as shown in FIG. 4, it was molded into a ring core shape having an inner diameter of 3 mmφ, an outer diameter of 8 mmφ, and a height of about 3 mm by uniaxial pressing of 1177 MPa (12 ton / cm 2 ).
The obtained ring core is shown in FIG. 5 (a), and the particle filling state is shown in FIG. 5 (b). As can be seen in FIG. 5B, the particle filling rate in the molded body is significantly improved from about 90% in the case of molding using particles having a single particle size.

次に、このリングコア成形体を電気マッフル炉に入れて、最高到達温度500℃、熱処理時間(最高到達温度での保持時間)2時間の条件で熱処理した。なお、粒子の酸化を防ぐために、雰囲気は真空とした(真空度0.001Pa)。   Next, this ring core compact was put in an electric muffle furnace and heat-treated under conditions of a maximum temperature of 500 ° C. and a heat treatment time (holding time at the maximum temperature) of 2 hours. In order to prevent the oxidation of the particles, the atmosphere was vacuum (vacuum degree 0.001 Pa).

このリングコアに1次および2次巻線をそれぞれ5ターン巻回し、B−Hアナライザにて1kHz〜10MHzの周波数領域で測定した複素透磁率μ=μ’+iμ”の実効透磁率μ’を図6の21に示し、その直流重畳特性を図7の25に示す。   The effective permeability μ ′ of the complex permeability μ = μ ′ + iμ ″ measured by the BH analyzer in the frequency region of 1 kHz to 10 MHz is wound around the ring core for 5 turns. 21 and the DC superposition characteristics thereof are shown in FIG.

<比較例1>
金属磁性粒子として金属磁性粒子A11のみを用いた以外は実施例1と同様にして同様のリングコアを成形し、熱処理した。得られたリングコアに1次および2次巻線をそれぞれ5ターン巻回し、B−Hアナライザにて1kHz〜10MHzの周波数領域で測定した複素透磁率μ=μ’+iμ”の実効透磁率μ’を図6の22に示し、その直流重畳特性を図7の26に示す。
<Comparative Example 1>
A similar ring core was molded and heat-treated in the same manner as in Example 1 except that only the metal magnetic particles A11 were used as the metal magnetic particles. The primary and secondary windings are wound around the obtained ring core for 5 turns, respectively, and the effective permeability μ ′ of the complex permeability μ = μ ′ + iμ ″ measured in the frequency region of 1 kHz to 10 MHz with a BH analyzer is obtained. This is indicated by 22 in FIG. 6 and its DC superposition characteristics are indicated by 26 in FIG.

<比較例2>
金属磁性粒子として金属磁性粒子B12のみを用いた以外は実施例1と同様にして同様のリングコアを成形し、熱処理した。得られたリングコアに1次および2次巻線をそれぞれ5ターン巻回し、B−Hアナライザにて1kHz〜10MHzの周波数領域で測定した複素透磁率μ=μ’+iμ”の実効透磁率μ’を図6の23に示し、その直流重畳特性を図7の27に示す。
<Comparative example 2>
A similar ring core was formed and heat-treated in the same manner as in Example 1 except that only the metal magnetic particle B12 was used as the metal magnetic particle. The primary and secondary windings are wound around the obtained ring core for 5 turns, respectively, and the effective permeability μ ′ of the complex permeability μ = μ ′ + iμ ″ measured in the frequency region of 1 kHz to 10 MHz with a BH analyzer is obtained. This is indicated by 23 in FIG. 6 and its DC superposition characteristics are indicated by 27 in FIG.

<比較例3>
コバルト鉄からなる金属磁性粒子11およびスーパーマロイからなる金属磁性粒子12の平均粒径を同一の8μmとした以外は実施例1と同様にして混合粒子を得、これを用いてリングコアを形成し、熱処理した。得られたリングコアに1次および2次巻線をそれぞれ5ターン巻回し、B−Hアナライザにて1kHz〜10MHzの周波数領域で測定した複素透磁率μ=μ’+iμ”の実効透磁率μ’を図6の24に示し、その直流重畳特性を図7の28に示す。
<Comparative Example 3>
A mixed particle was obtained in the same manner as in Example 1 except that the average particle diameter of the metal magnetic particle 11 made of cobalt iron and the metal magnetic particle 12 made of supermalloy was the same 8 μm, and a ring core was formed using this mixed particle. Heat treated. The primary and secondary windings are wound around the obtained ring core for 5 turns, respectively, and the effective permeability μ ′ of the complex permeability μ = μ ′ + iμ ″ measured in the frequency region of 1 kHz to 10 MHz with a BH analyzer is obtained. The direct current superimposition characteristics are shown at 24 in FIG. 6 and at 28 in FIG.

図6から明らかなように、比較例1のリングコアの初期透磁率は80程度、比較例3のリングコアの初期透磁率は160程度と低い。比較例2のリングコアの初期透磁率は220程度である。比較例1,2では透磁率が20kHz程度から低下し始める。直流重畳特性に関しては、図7に見られるように、比較例1のリングコアは、Fe−Co系合金の飽和磁束密度が大きいことから2000A/m程度までは初期値を維持しているが、透磁率は80程度と低い。比較例2のリングコアでは透磁率の初期値は高いが、飽和磁束密度が小さいため、重畳磁場の増加につれて透磁率が急激に減少する。比較例3のリングコアは、直流重畳特性に優れるが、透磁率は十分高いといえるほどではない。これに対して、実施例1のリングコアは充填率が向上しており、そのため、透磁率の初期値は180程度まで向上しており、かつ、直流重畳特性に優れたものとなっている。   As is apparent from FIG. 6, the initial permeability of the ring core of Comparative Example 1 is as low as about 80, and the initial permeability of the ring core of Comparative Example 3 is as low as about 160. The initial permeability of the ring core of Comparative Example 2 is about 220. In Comparative Examples 1 and 2, the magnetic permeability starts to decrease from about 20 kHz. Regarding the DC superposition characteristics, as shown in FIG. 7, the ring core of Comparative Example 1 maintains the initial value up to about 2000 A / m because the saturation magnetic flux density of the Fe—Co alloy is large. Magnetic susceptibility is as low as about 80. In the ring core of Comparative Example 2, the initial value of the magnetic permeability is high, but since the saturation magnetic flux density is small, the magnetic permeability rapidly decreases as the superimposed magnetic field increases. The ring core of Comparative Example 3 is excellent in DC superposition characteristics, but the magnetic permeability is not high enough. On the other hand, the filling rate of the ring core of Example 1 is improved, so that the initial value of the magnetic permeability is improved to about 180, and the direct current superposition characteristics are excellent.

<実施例2>
実施例1と同様の金属磁性粒子A11及び金属磁性粒子B12を得た。本実施例では金属磁性粒子A11及び金属磁性粒子B12の双方の表面に、水ガラス法を用いてSiO2被膜を平均被膜厚さが10nmになるように形成した。即ち、Na2O・xSiO2・nH2O(x=2〜4)の組成の水ガラス(この水ガラスの水溶液はアルカリ性を示す)を水に溶かした水溶液に軟磁性金属粒子を入れ、塩酸を溶液に加え、pHをコントロールして加水分解してゲル状の珪酸(H2SiO3)を軟磁性金属粒子表面に付着させた。この後、この軟磁性金属粒子を乾燥させることでSiO2被膜を形成した。水ガラス水溶液の濃度を調節することで、SiO2被膜の膜厚を20nmに制御した。
<Example 2>
The same metal magnetic particles A11 and metal magnetic particles B12 as in Example 1 were obtained. In this example, an SiO 2 film was formed on the surfaces of both the metal magnetic particles A11 and the metal magnetic particles B12 using a water glass method so that the average film thickness was 10 nm. That is, soft magnetic metal particles are put into an aqueous solution in which water glass having a composition of Na 2 O.xSiO 2 .nH 2 O (x = 2 to 4) (the aqueous solution of this water glass shows alkalinity) is dissolved in water. Was added to the solution and hydrolyzed by controlling the pH to attach gel-like silicic acid (H 2 SiO 3 ) to the surface of the soft magnetic metal particles. Thereafter, the SiO 2 film was formed by drying the soft magnetic metal particles. The film thickness of the SiO 2 film was controlled to 20 nm by adjusting the concentration of the water glass aqueous solution.

金属磁性粒子A,Bとしてこれらの粒子を用いた以外は実施例1と同様にしてリングコアを成形し、熱処理を施した。このときの抵抗率は10Ωcmであった。   A ring core was formed and heat-treated in the same manner as in Example 1 except that these particles were used as the metal magnetic particles A and B. The resistivity at this time was 10 Ωcm.

このリングコアに1次および2次巻線をそれぞれ5ターン巻回し、B−Hアナライザにて1kHz〜10MHzの周波数領域で測定した複素透磁率μ=μ’+iμ”の実効透磁率μ’を図8の31に示す。   The effective permeability μ ′ of the complex permeability μ = μ ′ + iμ ″ measured in the frequency range of 1 kHz to 10 MHz with the BH analyzer by winding the primary and secondary windings 5 turns on this ring core is shown in FIG. 31.

<比較例4>
金属磁性粒子として金属磁性粒子A11のみを用いた以外は実施例2と同様にして表面に絶縁被膜を形成し、絶縁被膜を形成したこの金属磁性粒子を用いた以外は実施例2と同様にしてリングコアを成形し、熱処理した。得られたリングコアに1次および2次巻線をそれぞれ5ターン巻回し、B−Hアナライザにて1kHz〜10MHzの周波数領域で測定した複素透磁率μ=μ’+iμ”の実効透磁率μ’を図8の32に示す。
<Comparative example 4>
An insulating film is formed on the surface in the same manner as in Example 2 except that only the metal magnetic particles A11 are used as the metal magnetic particles, and the same method as in Example 2 except that this metal magnetic particle having an insulating film is used. A ring core was molded and heat treated. The primary and secondary windings are wound around the obtained ring core for 5 turns, respectively, and the effective permeability μ ′ of the complex permeability μ = μ ′ + iμ ″ measured in the frequency region of 1 kHz to 10 MHz with a BH analyzer is obtained. It is shown at 32 in FIG.

<比較例5>
金属磁性粒子として金属磁性粒子B12のみを用いた以外は実施例2と同様にして表面に絶縁被膜を形成し、絶縁被膜を形成したこの金属磁性粒子を用いた以外は実施例2と同様にしてリングコアを成形し、熱処理した。得られたリングコアに1次および2次巻線をそれぞれ5ターン巻回し、B−Hアナライザにて1kHz〜10MHzの周波数領域で測定した複素透磁率μ=μ’+iμ”の実効透磁率μ’を図8の33に示す。
<Comparative Example 5>
An insulating film is formed on the surface in the same manner as in Example 2 except that only the metal magnetic particles B12 are used as the metal magnetic particles, and the same manner as in Example 2 except that this metal magnetic particle having an insulating film is used. A ring core was molded and heat treated. The primary and secondary windings are wound around the obtained ring core for 5 turns, respectively, and the effective permeability μ ′ of the complex permeability μ = μ ′ + iμ ″ measured in the frequency region of 1 kHz to 10 MHz with a BH analyzer is obtained. This is shown at 33 in FIG.

<比較例6>
コバルト鉄からなる金属磁性粒子11およびスーパーマロイからなる金属磁性粒子12の平均粒径を同一の8μmとした以外は実施例1と同様にして混合粒子を得、これを用いてリングコアを形成し、熱処理した。得られたリングコアに1次および2次巻線をそれぞれ5ターン巻回し、B−Hアナライザにて1kHz〜10MHzの周波数領域で測定した複素透磁率μ=μ’+iμ”の実効透磁率μ’を図8の34に示す。
<Comparative Example 6>
A mixed particle was obtained in the same manner as in Example 1 except that the average particle diameter of the metal magnetic particle 11 made of cobalt iron and the metal magnetic particle 12 made of supermalloy was the same 8 μm, and a ring core was formed using this mixed particle. Heat treated. The primary and secondary windings are wound around the obtained ring core for 5 turns, respectively, and the effective permeability μ ′ of the complex permeability μ = μ ′ + iμ ″ measured in the frequency region of 1 kHz to 10 MHz with a BH analyzer is obtained. It is shown at 34 in FIG.

絶縁被膜を有する金属磁性粒子を用いた圧粉磁心である、実施例2、比較例4〜6のリングコアはいずれも高周波側で低下することがないので高周波特性に優れるが、比較例4、5のリングコアでは透磁率が30程度、50程度、比較例6のリングコアでは45程度と低いのに対し、実施例2のリングコアの透磁率は約90であり、高周波帯域まで高い透磁率を維持できるリングコアが本実施例により得られたことがわかる。   The ring cores of Example 2 and Comparative Examples 4 to 6, which are dust cores using metal magnetic particles having an insulating coating, are excellent in high frequency characteristics because they do not decrease on the high frequency side. The ring core of Example 2 has a permeability of about 30 or 50, and the ring core of Comparative Example 6 has a low permeability of about 45, whereas the permeability of the ring core of Example 2 is about 90, and can maintain a high permeability up to a high frequency band. It can be seen that was obtained by this example.

以上の結果から明らかなように、本発明によれば、互いに粒径と降伏応力の異なる金属磁性粒子を混合して用いることにより、磁性粒子を高い充填率で充填することができ、確実に圧粉磁心の高透磁率化と高周波率特性および直流重畳特性を向上させることができる。また、金属磁性粒子に絶縁被覆を設ければ、一層、高抵抗率を示す圧粉磁心を得ることができる。   As is clear from the above results, according to the present invention, magnetic metal particles having different particle sizes and yield stresses can be mixed and used so that the magnetic particles can be filled at a high filling rate, and the pressure can be reliably increased. It is possible to increase the permeability of the powder magnetic core, improve the high frequency characteristics, and the DC superposition characteristics. Moreover, if an insulating coating is provided on the metal magnetic particles, a dust core having a higher resistivity can be obtained.

本発明の圧粉磁心は、インダクタやトランスのコア材に用いることができ、従来のフェライトのコア材に比較して、同じインダクタンスを得るのに、体積が小さくて済み、小型化、薄型化が可能になる。これにより、ノート型パソコン、小型携帯機器、薄型CRT、テレビ等の電源として、従来にない小型、薄型のインダクタやトランス及びそれらを用いたスイッチング電源を作ることが可能になる。   The dust core according to the present invention can be used as a core material for inductors and transformers. Compared to a conventional ferrite core material, the same magnetic core can be obtained with a small volume, miniaturization and thinning. It becomes possible. As a result, it is possible to make an unprecedented small and thin inductor and transformer and a switching power supply using them as a power source for a notebook personal computer, a small portable device, a thin CRT, a television and the like.

実施例1の工程模式図のうち、分級により所定粒径の粒子を得る工程を示す図である。In the process schematic diagram of Example 1, it is a figure which shows the process of obtaining the particle | grains of a predetermined particle diameter by classification. 実施例1の工程模式図のうち、平均粒径の異なる金属磁性粒子A11と金属磁性粒子B12とを混合機で混合攪拌する工程を示す図である。In the process schematic diagram of Example 1, it is a figure which shows the process of mixing and stirring metal magnetic particle A11 and metal magnetic particle B12 from which average particle diameter differs with a mixer. 実施例1の工程模式図のうち、上記混合粒子を金型14に入れた状態を示す図である。In the process schematic diagram of Example 1, it is a figure which shows the state which put the said mixed particle in the metal mold | die 14. FIG. 実施例1の工程模式図のうち、圧縮工程を示す図である。It is a figure which shows a compression process among the process schematic diagrams of Example 1. FIG. 実施例1の工程模式図のうち、成形された圧粉磁心(a)とその粒子充填状況(b)を示す図である。In the process schematic diagram of Example 1, it is a figure which shows the shape | molded powder magnetic core (a) and its particle | grain filling condition (b). 実施例1、比較例1〜3で得られたリングコアの透磁率の周波数特性を示す図である。It is a figure which shows the frequency characteristic of the magnetic permeability of the ring core obtained in Example 1 and Comparative Examples 1-3. 実施例1、比較例1〜3で得られたリングコアの透磁率の直流重畳特性を示す図である。It is a figure which shows the direct current | flow superimposition characteristic of the magnetic permeability of the ring core obtained in Example 1 and Comparative Examples 1-3. 実施例2、比較例4〜6で得られたリングコアの透磁率の周波数特性を示す図である。It is a figure which shows the frequency characteristic of the magnetic permeability of the ring core obtained in Example 2 and Comparative Examples 4-6.

符号の説明Explanation of symbols

11 金属磁性粒子A
12 金属磁性粒子B
13 自動乳鉢
14 金型
21 実施例1のリングコアの透磁率−周波数曲線
22 比較例1のリングコアの透磁率−周波数曲線
23 比較例2のリングコアの透磁率−周波数曲線
24 比較例3のリングコアの透磁率−周波数曲線
25 実施例1のリングコアの透磁率−直流磁場曲線
26 比較例1のリングコアの透磁率−直流磁場曲線
27 比較例2のリングコアの透磁率−直流磁場曲線
28 比較例3のリングコアの透磁率−直流磁場曲線
31 実施例2のリングコアの透磁率−周波数曲線
32 比較例4のリングコアの透磁率−周波数曲線
33 比較例5のリングコアの透磁率−周波数曲線
34 比較例6のリングコアの透磁率−周波数曲線
11 Metal Magnetic Particle A
12 Metal Magnetic Particle B
13 Automatic Mortar 14 Mold 21 Permeability-Frequency Curve of Ring Core of Example 1 22 Permeability-Frequency Curve of Ring Core of Comparative Example 23 Permeability-Frequency Curve of Ring Core of Comparative Example 24 24 Permeation of Ring Core of Comparative Example 3 Magnetic permeability-frequency curve 25 Magnetic permeability-DC magnetic field curve of the ring core of Example 1 26 Magnetic permeability-DC magnetic field curve of the ring core of Comparative Example 27 Magnetic permeability-DC magnetic field curve of the ring core of Comparative Example 28 28 of the ring core of Comparative Example 3 Permeability-DC magnetic field curve 31 Permeability-frequency curve of the ring core of Example 2 32 Permeability-frequency curve of the ring core of Comparative Example 4 33 Permeability-frequency curve of the ring core of Comparative Example 34 34 Permeation of the ring core of Comparative Example 6 Magnetic susceptibility-frequency curve

Claims (2)

金属磁性粒子を圧縮成形する圧粉磁心の製造方法において、前記金属磁性粒子が材質および平均粒径が互いに異なる2種類の金属磁性粒子A、Bからなり、前記2種類の金属磁性粒子の平均粒径の比が1:0.15〜1:0.22であり、平均粒径の大きい金属磁性粒子Aの降伏応力が平均粒径の小さい金属磁性粒子Bの降伏応力より大きいことを特徴とする圧粉磁心の製造方法。   In the method of manufacturing a powder magnetic core in which metal magnetic particles are compression-molded, the metal magnetic particles are composed of two types of metal magnetic particles A and B having different materials and average particle sizes, and the average particle of the two types of metal magnetic particles The ratio of diameters is 1: 0.15 to 1: 0.22, and the yield stress of the metal magnetic particles A having a large average particle diameter is larger than the yield stress of the metal magnetic particles B having a small average particle diameter. Manufacturing method of a dust core. 前記金属磁性粒子Aの表面に絶縁被膜が形成されていることを特徴とする請求項1記載の圧粉磁心の製造方法。   2. The method of manufacturing a dust core according to claim 1, wherein an insulating coating is formed on the surface of the metal magnetic particles A.
JP2008001376A 2008-01-08 2008-01-08 Manufacturing method of dust core Pending JP2009164401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008001376A JP2009164401A (en) 2008-01-08 2008-01-08 Manufacturing method of dust core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008001376A JP2009164401A (en) 2008-01-08 2008-01-08 Manufacturing method of dust core

Publications (1)

Publication Number Publication Date
JP2009164401A true JP2009164401A (en) 2009-07-23

Family

ID=40966664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008001376A Pending JP2009164401A (en) 2008-01-08 2008-01-08 Manufacturing method of dust core

Country Status (1)

Country Link
JP (1) JP2009164401A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013110171A (en) * 2011-11-17 2013-06-06 Taiyo Yuden Co Ltd Laminated inductor
JP2014103265A (en) * 2012-11-20 2014-06-05 Seiko Epson Corp Composite particle, powder magnetic core, magnetic element and portable electronic apparatus
JP2014103266A (en) * 2012-11-20 2014-06-05 Seiko Epson Corp Composite particle, production method of composite particle, powder magnetic core, magnetic element and portable electronic apparatus
JP2015026812A (en) * 2013-07-29 2015-02-05 サムソン エレクトロ−メカニックス カンパニーリミテッド. Chip electronic component and manufacturing method thereof
JP2016027656A (en) * 2015-09-03 2016-02-18 日立金属株式会社 Manufacturing method of powder magnetic core
JP2017103287A (en) * 2015-11-30 2017-06-08 Tdk株式会社 Coil component
JP2018182203A (en) * 2017-04-19 2018-11-15 株式会社村田製作所 Coil component
WO2019163650A1 (en) * 2018-02-20 2019-08-29 Dowaエレクトロニクス株式会社 Silicon oxide-coated soft magnetic powder and method for producing same
JP2019169688A (en) * 2018-03-26 2019-10-03 Tdk株式会社 Soft magnetic material and dust core
JP2020136647A (en) * 2019-02-26 2020-08-31 Tdk株式会社 Magnetic core and magnetic component

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005167097A (en) * 2003-12-04 2005-06-23 Fuji Electric Holdings Co Ltd Magnetic component and method for manufacturing the same
JP2005303006A (en) * 2004-04-12 2005-10-27 Sumitomo Electric Ind Ltd Method of manufacturing dust core and dust core
JP2006294733A (en) * 2005-04-07 2006-10-26 Nec Tokin Corp Inductor and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005167097A (en) * 2003-12-04 2005-06-23 Fuji Electric Holdings Co Ltd Magnetic component and method for manufacturing the same
JP2005303006A (en) * 2004-04-12 2005-10-27 Sumitomo Electric Ind Ltd Method of manufacturing dust core and dust core
JP2006294733A (en) * 2005-04-07 2006-10-26 Nec Tokin Corp Inductor and its manufacturing method

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10490327B2 (en) 2010-04-19 2019-11-26 Murata Manufacturing Co., Ltd. Coil component
JP2013110171A (en) * 2011-11-17 2013-06-06 Taiyo Yuden Co Ltd Laminated inductor
JP2014103265A (en) * 2012-11-20 2014-06-05 Seiko Epson Corp Composite particle, powder magnetic core, magnetic element and portable electronic apparatus
JP2014103266A (en) * 2012-11-20 2014-06-05 Seiko Epson Corp Composite particle, production method of composite particle, powder magnetic core, magnetic element and portable electronic apparatus
CN103846427A (en) * 2012-11-20 2014-06-11 精工爱普生株式会社 Composite particle, method for producing composite particle, powder core, magnetic element, and electronic device
US9767956B2 (en) 2012-11-20 2017-09-19 Seiko Epson Corporation Composite particle of soft-magnetic metallic material, method for producing composite particle, powder core, magnetic element, and portable electronic device
TWI607459B (en) * 2012-11-20 2017-12-01 精工愛普生股份有限公司 Composite particle, powder magnetic core, magnetic element, and portable electronic device
TWI632566B (en) * 2012-11-20 2018-08-11 精工愛普生股份有限公司 Composite particle, method for producing composite particle, powder magnetic core, magnetic element, and portable electronic device
JP2015026812A (en) * 2013-07-29 2015-02-05 サムソン エレクトロ−メカニックス カンパニーリミテッド. Chip electronic component and manufacturing method thereof
JP2016027656A (en) * 2015-09-03 2016-02-18 日立金属株式会社 Manufacturing method of powder magnetic core
JP2017103287A (en) * 2015-11-30 2017-06-08 Tdk株式会社 Coil component
JP2018182203A (en) * 2017-04-19 2018-11-15 株式会社村田製作所 Coil component
US10796828B2 (en) 2017-04-19 2020-10-06 Murata Manufacturing Co., Ltd. Coil component
US11842833B2 (en) 2017-04-19 2023-12-12 Murata Manufacturing Co., Ltd. Coil component
JP2019143241A (en) * 2018-02-20 2019-08-29 Dowaエレクトロニクス株式会社 Silicon oxide-coated soft magnetic powder and method for producing the same
WO2019163650A1 (en) * 2018-02-20 2019-08-29 Dowaエレクトロニクス株式会社 Silicon oxide-coated soft magnetic powder and method for producing same
CN111683768A (en) * 2018-02-20 2020-09-18 同和电子科技有限公司 Soft magnetic powder coated with silicon oxide and method for producing same
JP2019169688A (en) * 2018-03-26 2019-10-03 Tdk株式会社 Soft magnetic material and dust core
JP7087539B2 (en) 2018-03-26 2022-06-21 Tdk株式会社 Soft magnetic material and dust core
JP2020136647A (en) * 2019-02-26 2020-08-31 Tdk株式会社 Magnetic core and magnetic component

Similar Documents

Publication Publication Date Title
JP2009164401A (en) Manufacturing method of dust core
JP6436082B2 (en) Powder magnetic core, coil component using the same, and method for manufacturing powder magnetic core
EP2518740B1 (en) Method for producing a reactor
KR101152042B1 (en) Powder magnetic core and production method thereof
EP2806433A1 (en) Dust core, coil component, and method for producing dust core
EP2696356A1 (en) Composite soft magnetic powder, method for producing same, and powder magnetic core using same
EP3171369B1 (en) Magnetic core, method for producing magnetic core, and coil component
JP5470683B2 (en) Metal powder for dust core and method for producing dust core
JP2013051329A (en) Magnetic material, method for manufacturing magnetic material, and inductor element using magnetic material
JP2008270368A (en) Dust core and method of manufacturing the same
WO2011016207A1 (en) Composite magnetic body and method for producing the same
JP2006351946A (en) Method for manufacturing soft magnetic compact
JP2015103719A (en) Powder-compact magnetic core, coil part, and method for manufacturing powder-compact magnetic core
JP6471881B2 (en) Magnetic core and coil parts
JP2007231330A (en) Methods for manufacturing metal powder for dust core and the dust core
JP2009158802A (en) Manufacturing method of dust core
JP2009295613A (en) Method of manufacturing dust core
JP2009147252A (en) Compound magnetic material and method of manufacturing thereof
JP2014170877A (en) Soft magnetic metal powder, and powder-compact magnetic core
JP2012222062A (en) Composite magnetic material
JP2012104573A (en) Powder for core, manufacturing method of the same, dust core using the same, and electromagnetic device
JP2010238930A (en) Composite soft magnetic material, method of manufacturing the composite soft magnetic material, and electromagnetic circuit component
JP2006100292A (en) Dust core manufacturing method and dust core manufactured thereby
JP2009235517A (en) Metal powder for dust core and method for producing dust core
JP2006080166A (en) Dust core

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20091112

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091112

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20101215

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120313