JP7087539B2 - Soft magnetic material and dust core - Google Patents

Soft magnetic material and dust core Download PDF

Info

Publication number
JP7087539B2
JP7087539B2 JP2018058632A JP2018058632A JP7087539B2 JP 7087539 B2 JP7087539 B2 JP 7087539B2 JP 2018058632 A JP2018058632 A JP 2018058632A JP 2018058632 A JP2018058632 A JP 2018058632A JP 7087539 B2 JP7087539 B2 JP 7087539B2
Authority
JP
Japan
Prior art keywords
soft magnetic
magnetic powder
foil
foil piece
magnetic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018058632A
Other languages
Japanese (ja)
Other versions
JP2019169688A (en
Inventor
誠吾 野老
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2018058632A priority Critical patent/JP7087539B2/en
Publication of JP2019169688A publication Critical patent/JP2019169688A/en
Application granted granted Critical
Publication of JP7087539B2 publication Critical patent/JP7087539B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、軟磁性材料および圧粉磁心に関する。 The present invention relates to soft magnetic materials and dust cores.

より高透磁率な軟磁性材料および圧粉磁心を得ることは現在においても重要な課題である。近年では、扁平形状の粉末からなる軟磁性材料を用いることで、球形の粉末からなる軟磁性材料を用いる場合よりも高透磁率を得ることが知られている。 Obtaining a soft magnetic material and a dust core with higher magnetic permeability is still an important issue. In recent years, it has been known that by using a soft magnetic material made of flat powder, higher magnetic permeability can be obtained than in the case of using a soft magnetic material made of spherical powder.

特許文献1には、粒子径が小さくアスペクト比が大きい軟磁性粉末と粒子径が大きくアスペクト比が小さい軟磁性粉末との両方を同時に用いる圧粉磁心用軟磁性材が記載されている。 Patent Document 1 describes a soft magnetic material for a dust core that simultaneously uses both a soft magnetic powder having a small particle size and a large aspect ratio and a soft magnetic powder having a large particle size and a small aspect ratio.

しかし、現在では、さらに初透磁率μrが高くコアロスtanδが低い圧粉磁心が求められている。さらに、耐電圧および耐湿性も両立した圧粉磁心が求められている。 However, at present, there is a demand for a dust core having a higher initial permeability μr and a lower core loss tan δ. Further, there is a demand for a dust core having both withstand voltage and moisture resistance.

特許第4909312号Patent No. 4909312

本発明は、初透磁率μrが高くコアロスtanδが小さく、耐電圧が高く、耐湿性が大きい圧粉磁心、および、当該圧粉磁心に含まれる軟磁性材料を提供することを目的とする。 An object of the present invention is to provide a powder magnetic core having a high initial magnetic permeability μr, a small core loss tan δ, a high withstand voltage, and a large moisture resistance, and a soft magnetic material contained in the powder magnetic core.

上記の目的を達成するために、本発明の軟磁性材料は、
表面に絶縁処理が施された軟磁性粉末と、表面に絶縁処理が施された箔片とを有する軟磁性材料であって、
前記軟磁性粉末は平均粒径が10μm以上100μm以下であり、
前記箔片は平均長さが3.0μm以下であり、
(前記箔片の平均長さ/前記箔片の平均厚み)が2.0以上であり、
(前記箔片の平均長さ/前記軟磁性粉末の平均粒径)が0.300以下であることを特徴とする。
In order to achieve the above object, the soft magnetic material of the present invention is used.
A soft magnetic material having a soft magnetic powder whose surface is insulated and a foil piece whose surface is insulated.
The soft magnetic powder has an average particle size of 10 μm or more and 100 μm or less.
The foil pieces have an average length of 3.0 μm or less and have an average length of 3.0 μm or less.
(Average length of the foil piece / average thickness of the foil piece) is 2.0 or more.
(The average length of the foil pieces / the average particle size of the soft magnetic powder) is 0.300 or less.

本発明の軟磁性材料は上記の特徴を有することで、圧粉磁心に用いられる場合に初透磁率μrが高くコアロスtanδが小さく、耐電圧が高く、耐湿性が大きい圧粉磁心とすることができる。 Since the soft magnetic material of the present invention has the above-mentioned characteristics, it can be used as a dust core having a high initial magnetic permeability μr, a small core loss tan δ, a high withstand voltage, and a high moisture resistance when used for a dust core. can.

本発明の軟磁性材料は、前記軟磁性材料全体に対する前記箔片の添加割合が10vol%以上40vol%以下であってもよい。 In the soft magnetic material of the present invention, the addition ratio of the foil pieces to the entire soft magnetic material may be 10 vol% or more and 40 vol% or less.

本発明の圧粉磁心は、上記の軟磁性材料からなる。 The dust core of the present invention is made of the above-mentioned soft magnetic material.

本発明の圧粉磁心は上記の特徴を有することで、初透磁率μrが高くコアロスtanδが小さく、耐電圧が高く、耐湿性が大きい圧粉磁心となる。 The dust core of the present invention has the above-mentioned characteristics, so that the dust core has a high initial magnetic permeability μr, a small core loss tan δ, a high withstand voltage, and a high moisture resistance.

本発明の圧粉磁心は、それぞれの前記箔片の長さ方向と、基準方向との間の角度が平均10°以下であってもよい。 In the dust core of the present invention, the angle between the length direction of each of the foil pieces and the reference direction may be 10 ° or less on average.

本実施形態に係る軟磁性材料の模式図である。It is a schematic diagram of the soft magnetic material which concerns on this embodiment. 本実施形態に係る圧粉磁心および箔片の断面図の模式図である。It is a schematic diagram of the sectional view of the dust core and the foil piece which concerns on this embodiment.

以下、本発明を、図面に示す実施形態に基づき説明する。 Hereinafter, the present invention will be described based on the embodiments shown in the drawings.

図1に示すように、本実施形態に係る軟磁性材料は、軟磁性粉末11および箔片13を含む。 As shown in FIG. 1, the soft magnetic material according to the present embodiment includes the soft magnetic powder 11 and the foil piece 13.

軟磁性粉末11の材質および箔片13の材質には特に制限はない。例えば、Fe単体またはFe合金であってもよい。なお、Fe合金とは、Feの含有割合が15at%以上である合金を指す。Fe合金としては、例えばFe-Si系合金、Fe-Ni系合金、Fe-Si-B系合金、Fe-Cu-Nb-Si-B系合金、Fe-Si-B-Cr系合金などが挙げられる。上記のFe-Si系合金とは、Feの含有割合が97at%以上、Siの含有割合が2at%以上であり、その他の元素の含有割合が合計1at%以下である合金を指す。上記のFe-Ni系合金とは、Feの含有割合が15at%以上、Niの含有割合が40at%以上であり、その他の元素の含有割合が合計45at%以下である合金を指す。上記のFe-Si-B系合金とは、Feの含有割合が79at%以上、Siの含有割合が9at%以上、Bの含有割合が9at%以上であり、その他の元素の含有割合が合計3at%以下である合金を指す。上記のFe-Cu-Nb-Si-B系合金とは、Feの含有割合が75.6at%以上、Cuの含有割合が0.6at%以上、Nbの含有割合が0.1at%以上、Siの含有割合が13.1at%以上、Bの含有割合が8.6at%以上であり、その他の元素の含有割合が合計2.0at%以下である合金を指す。上記のFe-Si-B-Cr系合金とは、Feの含有割合が75.5at%以上、Siの含有割合が10.5at%以上、Bの含有割合が10.5at%以上、Crの含有割合が1.5at%以上であり、その他の元素の含有割合が合計2.0at%以下である合金を指す。また、軟磁性粉末11の材質と箔片13の材質は同一であってもよく異なっていてもよい。 The material of the soft magnetic powder 11 and the material of the foil piece 13 are not particularly limited. For example, it may be Fe alone or Fe alloy. The Fe alloy refers to an alloy having an Fe content of 15 at% or more. Examples of Fe alloys include Fe—Si alloys, Fe—Ni alloys, Fe—Si—B alloys, Fe—Cu—Nb—Si—B alloys, Fe—Si—B—Cr alloys, and the like. Will be. The Fe-Si based alloy refers to an alloy in which the Fe content is 97 at% or more, the Si content is 2 at% or more, and the total content of other elements is 1 at% or less. The Fe—Ni-based alloy refers to an alloy in which the Fe content is 15 at% or more, the Ni content is 40 at% or more, and the total content of other elements is 45 at% or less. The above-mentioned Fe—Si—B alloy has a Fe content of 79 at% or more, a Si content of 9 at% or more, a B content of 9 at% or more, and a total of 3 at of other elements. Refers to alloys that are less than or equal to%. The above-mentioned Fe-Cu-Nb-Si-B alloy has a Fe content of 75.6 at% or more, a Cu content of 0.6 at% or more, an Nb content of 0.1 at% or more, and Si. Refers to an alloy in which the content of B is 13.1 at% or more, the content of B is 8.6 at% or more, and the total content of other elements is 2.0 at% or less. The above-mentioned Fe—Si—B—Cr alloy has a Fe content of 75.5 at% or more, a Si content of 10.5 at% or more, a B content of 10.5 at% or more, and a Cr content. An alloy having a ratio of 1.5 at% or more and a total content of other elements of 2.0 at% or less. Further, the material of the soft magnetic powder 11 and the material of the foil piece 13 may be the same or different.

また、本実施形態に係る軟磁性粉末11は表面に絶縁処理が施されている。絶縁処理の種類は任意である。例えば、軟磁性粉末11の表面に酸化膜を形成する絶縁処理や、非磁性金属の酸化物層を被覆させる絶縁処理等が挙げられる。箔片13についても同様に表面に絶縁処理が施されている。絶縁処理を施すことで本実施形態に係る軟磁性材料から作成される圧粉磁心の渦電流が低下し、コアロスtanδが低下する。 Further, the surface of the soft magnetic powder 11 according to the present embodiment is subjected to an insulating treatment. The type of insulation treatment is arbitrary. For example, an insulating treatment for forming an oxide film on the surface of the soft magnetic powder 11 and an insulating treatment for covering an oxide layer of a non-magnetic metal can be mentioned. The surface of the foil piece 13 is similarly insulated. By performing the insulation treatment, the eddy current of the dust core produced from the soft magnetic material according to the present embodiment is reduced, and the core loss tan δ is reduced.

ここで、本実施形態に係る軟磁性材料における軟磁性粉末11は粒径が最小で5μm以上であり、アスペクト比が2以下である形状を有する。なお、ここでの粒径およびアスペクト比は軟磁性材料をSEMまたはTEMで観察した場合における投影面積の円相当径を指す。また、箔片13は長辺の長さが最大で4μm以下であり、長辺の長さを短辺の長さで割った値が最小で1.8以上である直方体形状または略直方体形状を有する。ここでの長辺の長さおよび短辺の長さは軟磁性材料をSEMまたはTEMで観察した場合における長辺の長さおよび短辺の長さである。以下、箔片13の長辺の長さを単に長さとし、箔片13の短辺の長さを厚みとする。 Here, the soft magnetic powder 11 in the soft magnetic material according to the present embodiment has a shape having a minimum particle size of 5 μm or more and an aspect ratio of 2 or less. The particle size and aspect ratio here refer to the circle-equivalent diameter of the projected area when the soft magnetic material is observed by SEM or TEM. Further, the foil piece 13 has a rectangular parallelepiped shape or a substantially rectangular parallelepiped shape in which the length of the long side is 4 μm or less at the maximum and the value obtained by dividing the length of the long side by the length of the short side is 1.8 or more at the minimum. Have. The length of the long side and the length of the short side here are the length of the long side and the length of the short side when the soft magnetic material is observed by SEM or TEM. Hereinafter, the length of the long side of the foil piece 13 is simply referred to as the length, and the length of the short side of the foil piece 13 is referred to as the thickness.

そして、本実施形態に係る軟磁性材料において、軟磁性粉末11が平均粒径10μm以上100μm以下であり、箔片13が平均長さ3.0μm以下であり、(箔片13の平均長さ/箔片13の平均厚み)が2.0以上であり、(箔片13の平均長さ/軟磁性粉末11の平均粒径)が0.300以下である。なお、軟磁性材料全体に対する箔片13の添加量は任意であるが、10vol%以上40vol%以下であることが好ましい。 In the soft magnetic material according to the present embodiment, the soft magnetic powder 11 has an average particle size of 10 μm or more and 100 μm or less, and the foil piece 13 has an average length of 3.0 μm or less (average length of the foil piece 13 / The average thickness of the foil pieces 13) is 2.0 or more, and (the average length of the foil pieces 13 / the average diameter of the soft magnetic powder 11) is 0.300 or less. The amount of the foil piece 13 added to the entire soft magnetic material is arbitrary, but is preferably 10 vol% or more and 40 vol% or less.

軟磁性粉末11の平均粒径の測定においては、少なくとも1000個以上の軟磁性粉末11の粒径を測定し、平均する。また、箔片13の平均長さおよび平均厚みの測定においては、少なくとも500個以上の箔片13の平均長さおよび平均厚みを測定する。 In the measurement of the average particle size of the soft magnetic powder 11, the particle size of at least 1000 or more soft magnetic powders 11 is measured and averaged. Further, in the measurement of the average length and the average thickness of the foil pieces 13, the average length and the average thickness of at least 500 or more foil pieces 13 are measured.

なお、軟磁性粉末11の平均粒径はXRDを用いて測定することもでき、投影面積の円相当径と実質的に同一な値が得られる。 The average particle size of the soft magnetic powder 11 can also be measured using XRD, and a value substantially the same as the circle-equivalent diameter of the projected area can be obtained.

本実施形態に係る軟磁性材料では軟磁性粉末11と箔片13との間で大きさが異なる。このため、図2に示す成形方向23の方向に加圧することで圧粉磁心1を製造する場合には、軟磁性粉末11が成形方向23の方向につぶれ、軟磁性粉末11同士の間の隙間を箔片13が埋める構造となる。そして、箔片13の長さ方向13aが成形方向23に略垂直な方向となる。具体的には、圧粉磁心1を成形方向23に平行な断面で切断し、SEMまたはTEMで観察した場合において、箔片13の長さ方向13aと成形方向23に垂直な方向である基準方向21との間の角度θの平均が10°以下であることが好ましい。なお、少なくとも10個以上の軟磁性粉末11が観察される測定範囲を設定する。また、箔片13の厚み方向13bは成形方向23に略平行な方向となる。 In the soft magnetic material according to the present embodiment, the sizes of the soft magnetic powder 11 and the foil piece 13 are different. Therefore, when the dust core 1 is manufactured by applying pressure in the direction of the molding direction 23 shown in FIG. 2, the soft magnetic powder 11 is crushed in the direction of the molding direction 23, and the gap between the soft magnetic powders 11 is crushed. The structure is such that the foil piece 13 fills the space. Then, the length direction 13a of the foil piece 13 is a direction substantially perpendicular to the molding direction 23. Specifically, when the dust core 1 is cut in a cross section parallel to the molding direction 23 and observed by SEM or TEM, the length direction 13a of the foil piece 13 and the reference direction which is the direction perpendicular to the molding direction 23. It is preferable that the average angle θ between 21 and 21 is 10 ° or less. The measurement range in which at least 10 or more soft magnetic powders 11 are observed is set. Further, the thickness direction 13b of the foil piece 13 is a direction substantially parallel to the molding direction 23.

軟磁性粉末11が成形方向23の方向につぶれる場合には軟磁性粉末11のアスペクト比は大きくなる。しかし、軟磁性粉末11の円相当径は実質的に変化しない。 When the soft magnetic powder 11 is crushed in the molding direction 23, the aspect ratio of the soft magnetic powder 11 becomes large. However, the equivalent circle diameter of the soft magnetic powder 11 does not substantially change.

また、圧粉磁心1を成形方向23に平行な断面で切断し、SEMまたはTEMで観察することで軟磁性粉末11の平均粒径、箔片13の平均長さおよび箔片13の平均厚みを特定することが可能である。 Further, the dust core 1 is cut in a cross section parallel to the molding direction 23, and the average particle size of the soft magnetic powder 11, the average length of the foil piece 13, and the average thickness of the foil piece 13 are obtained by observing with SEM or TEM. It is possible to identify.

そして、箔片13は長さ方向13aに磁束を誘導する効果を有し、圧粉磁心1全体としてみれば箔片13が概ね基準方向21の方向に磁束を誘導する。この結果、比透磁率μrが著しく向上する。 The foil piece 13 has the effect of inducing a magnetic flux in the length direction 13a, and the foil piece 13 generally induces the magnetic flux in the direction of the reference direction 21 when viewed as the dust core 1 as a whole. As a result, the relative permeability μr is significantly improved.

なお、ここでの基準方向21は圧粉磁心の断面図をSEM観察することにより、軟磁性粉末11がつぶれている方向から特定することができる。さらに具体的には、各軟磁性粉末11がつぶれて長辺となっている方向を平均することで基準方向21を特定することができる。 The reference direction 21 here can be specified from the direction in which the soft magnetic powder 11 is crushed by observing the cross-sectional view of the powder magnetic core by SEM. More specifically, the reference direction 21 can be specified by averaging the directions in which each soft magnetic powder 11 is crushed and has a long side.

軟磁性粉末11の平均粒径が大きすぎる場合には、渦電流が大きくなり、コアロスtanδが増大する。また、箔片13が基準方向21の方向に並びづらくなり、角度θの平均が大きくなる。この結果、比透磁率μrが低下する。さらに、軟磁性粉末11間の隙間が拡大することで封止効果が低下し、耐電圧が低下し、耐湿性も低下する。 If the average particle size of the soft magnetic powder 11 is too large, the eddy current becomes large and the core loss tan δ increases. Further, it becomes difficult for the foil pieces 13 to line up in the direction of the reference direction 21, and the average of the angles θ becomes large. As a result, the relative permeability μr decreases. Further, the expansion of the gap between the soft magnetic powders 11 lowers the sealing effect, lowers the withstand voltage, and lowers the moisture resistance.

軟磁性粉末11の平均粒径が小さすぎる場合には、比透磁率μrが低下する。 If the average particle size of the soft magnetic powder 11 is too small, the relative magnetic permeability μr decreases.

箔片13の平均長さが長すぎる場合には、箔片13が基準方向21の方向に並びづらくなり、角度θの平均が大きくなる。この結果、比透磁率μrが低下する。 If the average length of the foil pieces 13 is too long, it becomes difficult for the foil pieces 13 to line up in the reference direction 21, and the average of the angles θ becomes large. As a result, the relative permeability μr decreases.

(箔片13の平均長さ/箔片13の平均厚み)が小さすぎる場合には、箔片13の向きが加圧時に変化しにくくなり、圧粉磁心1全体からみて箔片13が磁束を誘導する効果が小さくなる。この結果、比透磁率μrが低下する。 If (the average length of the foil piece 13 / the average thickness of the foil piece 13) is too small, the orientation of the foil piece 13 is unlikely to change during pressurization, and the foil piece 13 exerts a magnetic flux when viewed from the entire dust core 1. The effect of inducing is reduced. As a result, the relative permeability μr decreases.

なお、軟磁性材料全体に対する箔片13の添加量が10vol%以上である場合には、比透磁率μrが十分に向上しやすくなる。また、箔片13の添加量が40vol%以下である場合には、軟磁性粉末11が成形時の加圧により十分に変形しやすくなる。また、箔片13も基準方向21の方向に並びやすくなる。 When the amount of the foil piece 13 added to the entire soft magnetic material is 10 vol% or more, the relative magnetic permeability μr is likely to be sufficiently improved. Further, when the amount of the foil piece 13 added is 40 vol% or less, the soft magnetic powder 11 is sufficiently easily deformed by the pressure during molding. Further, the foil pieces 13 can be easily arranged in the reference direction 21.

なお、軟磁性粉末11および箔片13は、組成が異なる場合には、組成の違いにより区別することが可能である。組成が同一である場合には、形状の違いおよび/またはサイズの違いから区別することが可能である。 When the soft magnetic powder 11 and the foil piece 13 have different compositions, they can be distinguished by the difference in composition. When the composition is the same, it is possible to distinguish from the difference in shape and / or the difference in size.

圧粉磁心を製造する際には、必要に応じて軟磁性材料にその他の化合物を添加してもよい。例えば、結合剤として樹脂を添加してもよい。しかし、樹脂を添加しすぎると箔片13が基準方向21の方向に並びづらくなり、角度θの平均が大きくなる。この結果、比透磁率μrが低下する。 When producing the dust core, other compounds may be added to the soft magnetic material as needed. For example, a resin may be added as a binder. However, if too much resin is added, it becomes difficult for the foil pieces 13 to line up in the reference direction 21, and the average angle θ becomes large. As a result, the relative permeability μr decreases.

ここで、圧粉磁心1における軟磁性粉末11および箔片13の合計の充填率には特に制限はない。75vol%以上が好ましい。また、充填率の算出方法に特に制限はない。例えば以下に示す方法が挙げられる。 Here, the total filling rate of the soft magnetic powder 11 and the foil piece 13 in the dust core 1 is not particularly limited. It is preferably 75 vol% or more. Further, there is no particular limitation on the method of calculating the filling rate. For example, the method shown below can be mentioned.

まず、磁心を成形方向に平行に切断して得られた断面を研磨して観察面を作製する。次に、当該観察面に対して電子顕微鏡(SEM)を用いて観察する。観察面全体の面積に対する軟磁性粉末11と箔片13との合計の面積割合を算出する。そして、本実施形態では当該面積割合と充填率とが等しいとみなし、当該面積割合を充填率とする。 First, the magnetic core is cut in parallel with the molding direction, and the cross section obtained is polished to prepare an observation surface. Next, the observation surface is observed using an electron microscope (SEM). The total area ratio of the soft magnetic powder 11 and the foil piece 13 to the total area of the observation surface is calculated. Then, in the present embodiment, it is considered that the area ratio and the filling rate are equal to each other, and the area ratio is defined as the filling rate.

また、充填率は、原料となる軟磁性粉末11および箔片13の真密度および配合比から充填率が100%であると仮定した場合の密度(理想密度)を算出し、実際に圧粉磁心の寸法と重量から算出した実測密度を理想密度で割ることにより充填率を算出してもよい。SEMから算出した充填率と実測密度及び理想密度から算出した充填率とでは実質的に一致する。 Further, for the filling rate, the density (ideal density) when the filling rate is assumed to be 100% is calculated from the true density and the compounding ratio of the soft magnetic powder 11 and the foil piece 13 as raw materials, and the actual dust core is actually used. The filling factor may be calculated by dividing the measured density calculated from the dimensions and weight of the above by the ideal density. The filling rate calculated from the SEM and the filling rate calculated from the measured density and the ideal density are substantially the same.

また、充填率を算出する上で、観察面は、軟磁性粉末11と箔片13との合計で100個以上含む大きさとする。なお、観察面は複数であってもよく、合計で1000個以上含む大きさとしていればよい。 Further, in calculating the filling rate, the observation surface has a size including 100 or more in total of the soft magnetic powder 11 and the foil piece 13. It should be noted that the number of observation surfaces may be multiple, and may be large enough to include 1000 or more in total.

以下、本実施形態に係る軟磁性材料および圧粉磁心の製造方法について説明するが、本実施形態に係る軟磁性材料および圧粉磁心の製造方法は以下の方法に限定されない。 Hereinafter, the method for producing the soft magnetic material and the dust core according to the present embodiment will be described, but the method for producing the soft magnetic material and the dust core according to the present embodiment is not limited to the following methods.

まず、目的とする組成を有する軟磁性粉末を作製する。軟磁性粉末の作製方法は任意であり、例えば、ガスアトマイズ法、水アトマイズ法など本技術分野における通常の方法を用いることができる。軟磁性粉末の作製後に、粒径が10μm以下の微粉を分級により除去することが好ましい。微粉を除去することで、後述する絶縁処理後において軟磁性粉末全体に対する絶縁処理した表面の面積が小さくなり、被覆性が向上しやすくなる。 First, a soft magnetic powder having a desired composition is produced. The method for producing the soft magnetic powder is arbitrary, and for example, a usual method in the present technical field such as a gas atomizing method and a water atomizing method can be used. After producing the soft magnetic powder, it is preferable to remove fine powder having a particle size of 10 μm or less by classification. By removing the fine powder, the area of the surface of the heat-insulated surface with respect to the entire soft magnetic powder becomes smaller after the insulation treatment described later, and the covering property is easily improved.

次に、軟磁性粉末の表面に絶縁処理を行う。絶縁処理の方法は任意である。例えば、軟磁性粉末の表面を酸化させることで酸化膜を形成する方法、非磁性金属を添加した後に加熱還元を行うことで非磁性金属の酸化物層を被覆させる方法、ガラス粉(ガラスフリット)をコーティングする方法等が挙げられる。また、軟磁性粉末が実質的に鉄のみからなる場合には、リン酸処理により軟磁性粉末の表面にリン酸鉄膜を形成する方法もある。絶縁処理を施すことで本実施形態に係る軟磁性材料から作成される圧粉磁心の渦電流が低下し、コアロスが低下する。なお、通常は絶縁処理の前後で軟磁性粉末の平均粒径は実質的に変化しない。 Next, the surface of the soft magnetic powder is insulated. The method of insulation treatment is arbitrary. For example, a method of forming an oxide film by oxidizing the surface of a soft magnetic powder, a method of covering an oxide layer of a non-magnetic metal by heating and reducing after adding a non-magnetic metal, a glass powder (glass frit). A method of coating the above can be mentioned. Further, when the soft magnetic powder is substantially composed of iron only, there is also a method of forming an iron phosphate film on the surface of the soft magnetic powder by phosphoric acid treatment. By performing the insulation treatment, the eddy current of the dust core created from the soft magnetic material according to the present embodiment is reduced, and the core loss is reduced. Normally, the average particle size of the soft magnetic powder does not substantially change before and after the insulation treatment.

また、目的とする組成を有する箔片を作製する。箔片の作製方法は任意であり、例えば、ストリップキャスト法が挙げられる。以下、ストリップキャスト法による作製方法について説明する。 In addition, a foil piece having a desired composition is produced. The method for producing the foil piece is arbitrary, and examples thereof include a strip casting method. Hereinafter, a manufacturing method by the strip casting method will be described.

まず、目的とする組成を有する母合金を作製する。母合金の作製方法は任意であり、本技術分野において通常用いられている方法を用いることができる。次に、母合金を加熱して溶融させた後に、冷却ロールに噴射させ、薄帯を作成する。そして、薄帯を粉砕した後に分級することで任意の形状の箔片を得ることができる。 First, a mother alloy having a desired composition is produced. The method for producing the mother alloy is arbitrary, and a method usually used in the present art can be used. Next, the mother alloy is heated and melted, and then sprayed onto a cooling roll to form a thin band. Then, by crushing the thin strip and then classifying it, a foil piece having an arbitrary shape can be obtained.

次に、箔片の表面に絶縁処理を行う。絶縁処理の方法は任意である。例えば、箔片の表面を酸化させることで酸化膜を形成する方法や、非磁性金属を添加した後に加熱還元を行うことで非磁性金属の酸化物層を被覆させる方法等が挙げられる。絶縁処理を施すことで本実施形態に係る軟磁性材料から作成される圧粉磁心の渦電流が低下し、コアロスが低下する。なお、通常は絶縁処理の前後で箔片の平均粒径は実質的に変化しない。また、軟磁性粉末と箔片とで絶縁処理の種類を変化させてもよい。 Next, the surface of the foil piece is insulated. The method of insulation treatment is arbitrary. For example, a method of forming an oxide film by oxidizing the surface of a foil piece, a method of covering an oxide layer of a non-magnetic metal by heating and reducing after adding a non-magnetic metal, and the like can be mentioned. By performing the insulation treatment, the eddy current of the dust core created from the soft magnetic material according to the present embodiment is reduced, and the core loss is reduced. Normally, the average particle size of the foil pieces does not substantially change before and after the insulation treatment. Further, the type of insulation treatment may be changed between the soft magnetic powder and the foil piece.

そして、軟磁性粉末と箔片とを混合して本実施形態に係る軟磁性材料を作製する。なお、上記の製造方法では軟磁性粉末と箔片とで別個に絶縁処理を行っているが、軟磁性粉末と箔片とを混合後にまとめて絶縁処理を行ってもよい。 Then, the soft magnetic powder and the foil piece are mixed to produce the soft magnetic material according to the present embodiment. In the above manufacturing method, the soft magnetic powder and the foil piece are separately insulated, but the soft magnetic powder and the foil piece may be mixed and then collectively insulated.

そして、本実施形態に係る軟磁性材料から圧粉磁心を作製する。 Then, a dust core is produced from the soft magnetic material according to the present embodiment.

本実施形態に係る軟磁性材料から圧粉磁心を作製する場合には、軟磁性材料を少量、金型に投入する工程、金型を揺すって振動を加える工程、および成形方向に圧力を加えて成形する工程からなるサイクルを数回から数十回繰り返すことが好ましい。このように、少しずつ充填量を増やしながら成形することで、軟磁性粉末同士の間の隙間を箔片が埋めやすくなる。そして、透磁率μrを向上させることができる。さらに、封止効果が大きくなり耐電圧および耐湿性が向上しやすくなる。 When the powder magnetic core is produced from the soft magnetic material according to the present embodiment, a small amount of the soft magnetic material is put into the mold, the mold is shaken to apply vibration, and pressure is applied in the molding direction. It is preferable to repeat the cycle consisting of the molding steps several to several tens of times. By molding while increasing the filling amount little by little in this way, it becomes easier for the foil pieces to fill the gaps between the soft magnetic powders. Then, the magnetic permeability μr can be improved. Further, the sealing effect is increased, and the withstand voltage and moisture resistance are easily improved.

具体的には概ね高さ0.1mmずつ軟磁性材料を金型に投入することが好ましい。また、金型を揺すって振動を加えることが好ましく、箔片が下へ移動し、軟磁性粉末同士の間の隙間を埋める。成形時の圧力は任意である。 Specifically, it is preferable to put the soft magnetic material into the mold in increments of approximately 0.1 mm in height. Further, it is preferable to shake the mold to apply vibration, and the foil pieces move downward to fill the gaps between the soft magnetic powders. The molding pressure is arbitrary.

本実施形態に係る圧粉磁心の用途には特に制限はない。例えば、インダクタ、リアクトル、トランスなどが挙げられる。 There is no particular limitation on the use of the dust core according to the present embodiment. For example, inductors, reactors, transformers and the like can be mentioned.

次に、本発明を具体的な実施例に基づきさらに詳細に説明するが、本発明は、以下の実施例に限定されない。 Next, the present invention will be described in more detail based on specific examples, but the present invention is not limited to the following examples.

(実験例1)
まず、軟磁性粉末を作製した。最終的に得られる軟磁性粉末の組成が、原子数比でFe:Cu:Nb:Si:B=76:1:0.5:13.5:9となるようにした。また、軟磁性粉末の平均粒径が下表1に記載の値となるようにしてガスアトマイズ法で軟磁性粉末を作製した。その後、軟磁性粉末を分級し、粒径が10μm以下の微粉を除去した。分級後の平均粒径が下表1に記載の値であることを乾式粒度分布測定器を用いて確認した。
(Experimental Example 1)
First, a soft magnetic powder was prepared. The composition of the finally obtained soft magnetic powder was set to Fe: Cu: Nb: Si: B = 76: 1: 0.5: 13.5: 9 in terms of atomic number ratio. Further, the soft magnetic powder was prepared by the gas atomizing method so that the average particle size of the soft magnetic powder was as shown in Table 1 below. Then, the soft magnetic powder was classified, and fine powder having a particle size of 10 μm or less was removed. It was confirmed by using a dry particle size distribution measuring instrument that the average particle size after classification was the value shown in Table 1 below.

次に、軟磁性粉末の表面に絶縁処理を施した。具体的には、軟磁性粉末に対してガラスフリットコーティングを行った。 Next, the surface of the soft magnetic powder was subjected to an insulating treatment. Specifically, a glass frit coating was applied to the soft magnetic powder.

次に、箔片を作製した。箔片は以下に示すストリップキャスト法で作製した。 Next, a foil piece was produced. The foil pieces were prepared by the strip casting method shown below.

まず、金属Feである母合金を加熱して溶融させた後に、冷却ロールに噴射させ、薄帯を作成した。 First, the mother alloy, which is a metal Fe, was heated and melted, and then sprayed onto a cooling roll to create a thin band.

次に、薄帯を粉砕した後に分級することで箔片を得た。最終的に得られる箔片が下表1に示す平均長さおよび平均長さ/平均厚みを有するように分級した。 Next, the strips were crushed and then classified to obtain foil pieces. The finally obtained foil pieces were classified so as to have the average length and the average length / average thickness shown in Table 1 below.

次に、箔片の表面に絶縁処理を施した。具体的には、箔片に対して(酸化処理)を行った。 Next, the surface of the foil piece was insulated. Specifically, the foil pieces were subjected to (oxidation treatment).

そして、軟磁性粉末に箔片を添加し、混合して軟磁性材料を得た。軟磁性材料全体に対する箔片の添加量が下表1に示す量となるようにした。 Then, a foil piece was added to the soft magnetic powder and mixed to obtain a soft magnetic material. The amount of the foil piece added to the entire soft magnetic material was set to the amount shown in Table 1 below.

次に、軟磁性材料を金型に充填した。金型の形状は最終的に得られる圧粉磁心の形状が外径12mm、内径7mm、高さ2mmのトロイダル形状となるようにした。 Next, the soft magnetic material was filled in the mold. The shape of the mold is such that the shape of the powder magnetic core finally obtained is a toroidal shape having an outer diameter of 12 mm, an inner diameter of 7 mm, and a height of 2 mm.

軟磁性材料を金型に充填する際には、軟磁性材料を少量、金型に投入する工程、金型を揺すって振動を加える工程、および成形圧8ton/cmで成形する工程からなるサイクルを20回、繰り返した。なお、軟磁性材料を金型に投入する量は少しずつ増やしていった。最終的にトロイダル形状の圧粉磁心を得た。なお、成形方向はトロイダル形状の高さ方向となるようにした。 When filling a soft magnetic material into a mold, a cycle consisting of a step of charging a small amount of the soft magnetic material into the mold, a step of shaking the mold to apply vibration, and a step of molding at a molding pressure of 8 ton / cm 2 . Was repeated 20 times. The amount of soft magnetic material charged into the mold was gradually increased. Finally, a toroidal-shaped dust core was obtained. The molding direction was set to be the height direction of the toroidal shape.

各実施例および比較例について成形方向(高さ方向)に平行に切断した断面を観察した。具体的には、SEMを用いて軟磁性粒子が少なくとも1000個以上見える測定範囲で観察した。各軟磁性粒子の円相当径を測定して平均して得られた平均円相当径が軟磁性粉末の平均粒径と実質的に同一であることを確認した。さらに、軟磁性粒子のつぶれ具合から特定した基準方向が成形方向に垂直な方向と実質的に一致することを確認した。そして、測定範囲内に存在する全ての箔片について平均長さおよび平均長さ/平均厚みを算出し、軟磁性材料における平均長さおよび平均長さ/平均厚みと一致することを確認した。さらに、測定範囲内に存在する全ての箔片について長さ方向と基準方向との間の角度θを測定し、平均した。結果を表1に示す。 For each Example and Comparative Example, the cross section cut in parallel with the molding direction (height direction) was observed. Specifically, SEM was used to observe at least 1000 soft magnetic particles in the measurement range. It was confirmed that the average equivalent circle diameter obtained by measuring the equivalent circle diameter of each soft magnetic particle was substantially the same as the average particle size of the soft magnetic powder. Furthermore, it was confirmed that the reference direction specified from the degree of crushing of the soft magnetic particles substantially coincided with the direction perpendicular to the molding direction. Then, the average length and the average length / average thickness were calculated for all the foil pieces existing in the measurement range, and it was confirmed that they were in agreement with the average length and the average length / average thickness in the soft magnetic material. Further, the angle θ between the length direction and the reference direction was measured and averaged for all the foil pieces existing in the measurement range. The results are shown in Table 1.

各実施例および比較例の圧粉磁心について、SEMを用いて軟磁性粒子と箔片との合計の充填率を測定した。結果を下表1に示す。 For the dust cores of each Example and Comparative Example, the total filling rate of the soft magnetic particles and the foil pieces was measured using SEM. The results are shown in Table 1 below.

各実施例および比較例について、周波数100kHzとして比透磁率μrおよびコアロスtanδを測定した。比透磁率μrはインピーダンス/GAIN-PHASE ANALYZER(横川ヒューレットパッカード株式会社製、4194A)を用いて測定した。コアロスtanδはB-H ANALYZER(岩崎通信株式会社製 SY-8218)を用いて摂動法により測定した。本実施例では比透磁率μrは50以上を良好とした。コアロスtanδは1000kW/m3以下を良好とした。結果を下表1に示す。 For each Example and Comparative Example, the relative permeability μr and the core loss tan δ were measured at a frequency of 100 kHz. The relative permeability μr was measured using impedance / GAIN-PHASE ANALYZER (4194A, manufactured by Hewlett-Packard Co., Ltd., Yokokawa). Core loss tan δ was measured by a perturbation method using B-HANALYZER (SY-8218 manufactured by Iwatsu Electric Co., Ltd.). In this example, the relative magnetic permeability μr was set to 50 or more. The core loss tan δ was good at 1000 kW / m3 or less. The results are shown in Table 1 below.

各実施例および比較例について、耐電圧を測定した。各実施例および比較例についてトロイダル形状の圧粉磁心と同一の方法にて外径φ8mm、高さ5mmの円柱形状の圧粉磁心を作製した。そして、円柱形状の圧粉磁心の向かい合う外径φ8mmの円形の2面にInGaペーストを塗布した。ソースメーターの端子を塗布したInGaペーストに当てて電圧を印加し、1mAの電流が流れたときの電圧値を向かい合う2面の距離(5mm)で割った値を耐電圧とした。耐電圧が200V/mm以上である場合を良好とした。結果を下表1に示す。 Withstand voltage was measured for each Example and Comparative Example. For each Example and Comparative Example, a cylindrical dust core having an outer diameter of φ8 mm and a height of 5 mm was produced by the same method as the toroidal dust core. Then, InGa paste was applied to two circular surfaces having an outer diameter of φ8 mm facing each other in a cylindrical dust core. A voltage was applied to the InGa paste coated with the terminal of the source meter, and the value obtained by dividing the voltage value when a current of 1 mA flowed by the distance (5 mm) between the two facing surfaces was taken as the withstand voltage. The case where the withstand voltage was 200 V / mm or more was regarded as good. The results are shown in Table 1 below.

各実施例および比較例について、耐湿試験を行った。具体的には、各実施例および比較例について温度85℃、湿度85%で1000時間放置した。そして、1000時間放置後の外観を評価した。1000時間後の外観を観察して、表面に錆びが無い場合を○、点錆があるが表面全体に対する錆の面積割合が10%未満である場合を△、表面全体に対する錆の面積割合が10%以上である場合を×とした。○、△、×の順に好ましく、○または△である場合を良好とした。結果を表1に示す。 Moisture resistance tests were performed on each Example and Comparative Example. Specifically, each Example and Comparative Example were left at a temperature of 85 ° C. and a humidity of 85% for 1000 hours. Then, the appearance after being left for 1000 hours was evaluated. Observing the appearance after 1000 hours, ○ if there is no rust on the surface, △ if there is spot rust but the area ratio of rust to the entire surface is less than 10%, and the area ratio of rust to the entire surface is 10. The case where it is% or more was set as x. The order of ◯, Δ, × was preferable, and the case of ◯ or Δ was considered to be good. The results are shown in Table 1.

Figure 0007087539000001
Figure 0007087539000001

表1より、本願発明の範囲内である軟磁性材料を用いて作製された実施例1~6の圧粉磁心は比透磁率μr、コアロスtanδ、耐電圧および耐湿試験の結果が良好であった。 From Table 1, the powder magnetic cores of Examples 1 to 6 produced by using the soft magnetic material within the range of the present invention had good results of the relative permeability μr, core loss tan δ, withstand voltage and moisture resistance test. ..

これに対し、軟磁性粉末の平均粒径が大きすぎる比較例1は箔片が基準方向に並びづらくなり、比透磁率μrが低下しコアロスtanδが上昇した。さらに、充填率が低下することで隙間が拡大し、封止効果が低下した。その結果、耐電圧が低下した。 On the other hand, in Comparative Example 1 in which the average particle size of the soft magnetic powder was too large, it became difficult for the foil pieces to line up in the reference direction, the relative permeability μr decreased, and the core loss tan δ increased. Further, as the filling rate decreased, the gap expanded and the sealing effect decreased. As a result, the withstand voltage decreased.

軟磁性粉末の平均粒径が小さすぎる比較例2は箔片が基準方向に並びづらくなり、比透磁率μrが低下した。 In Comparative Example 2 in which the average particle size of the soft magnetic powder was too small, it became difficult for the foil pieces to line up in the reference direction, and the relative magnetic permeability μr decreased.

箔片の平均長さが長すぎる比較例3および比較例5は箔片が基準方向に並びづらくなり、比透磁率μrが低下した。また、箔片の平均長さ/軟磁性粉末の平均粒径が大きすぎる比較例5は充填率が低下することで隙間が拡大し、封止効果が低下した。その結果、耐電圧が低下した。 In Comparative Example 3 and Comparative Example 5 in which the average length of the foil pieces was too long, it became difficult for the foil pieces to line up in the reference direction, and the relative magnetic permeability μr decreased. Further, in Comparative Example 5 in which the average length of the foil pieces / the average particle size of the soft magnetic powder was too large, the gap was widened due to the decrease in the filling rate, and the sealing effect was deteriorated. As a result, the withstand voltage decreased.

箔片の平均長さ/平均厚みが小さすぎる比較例4は箔片が基準方向に並びづらくなり、箔片の磁束を誘導する効果が低下した結果、比透磁率μrが低下した。 In Comparative Example 4 in which the average length / average thickness of the foil pieces was too small, the foil pieces became difficult to line up in the reference direction, and the effect of inducing the magnetic flux of the foil pieces decreased, resulting in a decrease in the relative permeability μr.

(実験例2)
実験例2では、軟磁性粉末の種類および/または箔片の種類を変化させた点以外は実施例1と同条件で実施した。結果を下表2に示す。
(Experimental Example 2)
In Experimental Example 2, the conditions were the same as those in Example 1 except that the type of the soft magnetic powder and / or the type of the foil piece was changed. The results are shown in Table 2 below.

なお、下表2のFe-Si-B-Cr合金組成は原子数比でFe:Si:B:Cr=76:11:11:2、Fe-Si合金の組成は原子数比でFe:Si=98:2、Fe-Ni合金の組成は重量比でFe:Ni=20:80、Fe-Si-B合金の組成は原子数比でFe:Si:B=80:10:10である。 The composition of the Fe—Si—B—Cr alloy in Table 2 below is Fe: Si: B: Cr = 76: 11: 11: 2 in terms of atomic number ratio, and the composition of Fe—Si alloy is Fe: Si in terms of atomic number ratio. = 98: 2, the composition of the Fe—Ni alloy is Fe: Ni = 20: 80 in weight ratio, and the composition of Fe—Si—B alloy is Fe: Si: B = 80: 10: 10 in atomic number ratio.

Figure 0007087539000002
Figure 0007087539000002

表2より、軟磁性粉末および/または箔片の種類を変化させても比透磁率μr、コアロスtanδ、耐電圧および耐湿試験の結果が良好な圧粉磁心が得られた。 From Table 2, even if the types of the soft magnetic powder and / or the foil piece were changed, good powder magnetic cores were obtained as the results of the specific magnetic permeability μr, core loss tan δ, withstand voltage and moisture resistance test.

1・・・圧粉磁心
11・・・軟磁性粉末
13・・・箔片
13a・・・箔片の長さ方向
13b・・・箔片の厚み方向
21・・・基準方向
23・・・成形方向
1 ... Powder magnetic core 11 ... Soft magnetic powder 13 ... Foil piece 13a ... Foil piece length direction 13b ... Foil piece thickness direction 21 ... Reference direction 23 ... Molding direction

Claims (2)

表面に絶縁処理が施された軟磁性粉末と、表面に絶縁処理が施された箔片とを有する軟磁性材料からなる圧粉磁心であって、
前記軟磁性粉末は平均粒径が10μm以上100μm以下であり、
前記箔片は平均長さが3.0μm以下であり、
(前記箔片の平均長さ/前記箔片の平均厚み)が2.0以上であり、
(前記箔片の平均長さ/前記軟磁性粉末の平均粒径)が0.300以下であり、
それぞれの前記箔片の長さ方向と、基準方向との間の角度が平均10°以下であることを特徴とする圧粉磁心
A dust core made of a soft magnetic material having a soft magnetic powder whose surface is insulated and a foil piece whose surface is insulated.
The soft magnetic powder has an average particle size of 10 μm or more and 100 μm or less.
The foil pieces have an average length of 3.0 μm or less and have an average length of 3.0 μm or less.
(Average length of the foil piece / average thickness of the foil piece) is 2.0 or more.
(Average length of the foil piece / average particle size of the soft magnetic powder) is 0.300 or less .
A dust core characterized in that the angle between the length direction of each of the foil pieces and the reference direction is 10 ° or less on average .
前記軟磁性材料全体に対する前記箔片の添加割合が10vol%以上40vol%以下である請求項1に記載の圧粉磁心
The dust core according to claim 1, wherein the addition ratio of the foil pieces to the entire soft magnetic material is 10 vol% or more and 40 vol% or less.
JP2018058632A 2018-03-26 2018-03-26 Soft magnetic material and dust core Active JP7087539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018058632A JP7087539B2 (en) 2018-03-26 2018-03-26 Soft magnetic material and dust core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018058632A JP7087539B2 (en) 2018-03-26 2018-03-26 Soft magnetic material and dust core

Publications (2)

Publication Number Publication Date
JP2019169688A JP2019169688A (en) 2019-10-03
JP7087539B2 true JP7087539B2 (en) 2022-06-21

Family

ID=68107675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018058632A Active JP7087539B2 (en) 2018-03-26 2018-03-26 Soft magnetic material and dust core

Country Status (1)

Country Link
JP (1) JP7087539B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179621A (en) 2004-12-21 2006-07-06 Seiko Epson Corp Molding body and manufacturing method thereof
JP2006245055A (en) 2005-02-28 2006-09-14 Mitsubishi Materials Pmg Corp Dust core and its production process, and actuator and solenoid valve employing the dust core
JP2007281074A (en) 2006-04-04 2007-10-25 Hitachi Metals Ltd Noise suppression sheet
JP2009164401A (en) 2008-01-08 2009-07-23 Fuji Electric Device Technology Co Ltd Manufacturing method of dust core
JP2009252961A (en) 2008-04-04 2009-10-29 Kobe Steel Ltd Soft magnetic material for dust core and dust core
WO2009139368A1 (en) 2008-05-16 2009-11-19 日立金属株式会社 Powder magnetic core and choke
JP2014103265A (en) 2012-11-20 2014-06-05 Seiko Epson Corp Composite particle, powder magnetic core, magnetic element and portable electronic apparatus
JP2016012630A (en) 2014-06-27 2016-01-21 日立金属株式会社 Powder-compact magnetic core
JP2017220590A (en) 2016-06-08 2017-12-14 パナソニックIpマネジメント株式会社 Powder-compact magnetic core of iron-based magnetic material

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179621A (en) 2004-12-21 2006-07-06 Seiko Epson Corp Molding body and manufacturing method thereof
JP2006245055A (en) 2005-02-28 2006-09-14 Mitsubishi Materials Pmg Corp Dust core and its production process, and actuator and solenoid valve employing the dust core
JP2007281074A (en) 2006-04-04 2007-10-25 Hitachi Metals Ltd Noise suppression sheet
JP2009164401A (en) 2008-01-08 2009-07-23 Fuji Electric Device Technology Co Ltd Manufacturing method of dust core
JP2009252961A (en) 2008-04-04 2009-10-29 Kobe Steel Ltd Soft magnetic material for dust core and dust core
WO2009139368A1 (en) 2008-05-16 2009-11-19 日立金属株式会社 Powder magnetic core and choke
US20110080248A1 (en) 2008-05-16 2011-04-07 Kazunori Nishimura Dust core and choke
JP2014103265A (en) 2012-11-20 2014-06-05 Seiko Epson Corp Composite particle, powder magnetic core, magnetic element and portable electronic apparatus
JP2016012630A (en) 2014-06-27 2016-01-21 日立金属株式会社 Powder-compact magnetic core
JP2017220590A (en) 2016-06-08 2017-12-14 パナソニックIpマネジメント株式会社 Powder-compact magnetic core of iron-based magnetic material

Also Published As

Publication number Publication date
JP2019169688A (en) 2019-10-03

Similar Documents

Publication Publication Date Title
JP6459154B2 (en) Magnetic powder and manufacturing method thereof, magnetic core and manufacturing method thereof, and coil component
JP4723442B2 (en) Powder cores and iron-based powders for dust cores
JP6504287B1 (en) Soft magnetic metal powder, dust core and magnetic parts
JP6504288B1 (en) Soft magnetic metal powder, dust core and magnetic parts
JP6522462B2 (en) Coil parts
JP2009070914A (en) Soft magnetic material, powder magnetic core, manufacturing method of soft magnetic material, and manufacturing method of powder magnetic core
JP5372481B2 (en) Powder magnetic core and manufacturing method thereof
JP7128439B2 (en) Dust core and inductor element
JP6504289B1 (en) Soft magnetic metal powder, dust core and magnetic parts
JP2023158174A (en) Magnetic core and coil component
TW201939528A (en) Soft magnetic metal powder, dust core, and magnetic component
TWI667670B (en) Soft magnetic metal powder, powder magnetic core and magnetic components
US10541072B2 (en) Soft magnetic alloy
JP6519418B2 (en) Soft magnetic metal dust core
JP7087539B2 (en) Soft magnetic material and dust core
JP6245393B1 (en) Soft magnetic alloy
US20180096765A1 (en) Soft magnetic alloy
JP2002299114A (en) Dust core
JP2018190821A (en) Inductor element
JP2023124670A (en) Soft magnetic alloy powder, magnetic core, and magnetic component
JP2018142642A (en) Powder magnetic core
JP7367310B2 (en) Iron-based metal glass alloy powder
JP6972968B2 (en) Manufacturing method of soft magnetic powder magnetic core and soft magnetic powder magnetic core
JP2021057577A (en) Soft magnetic metal powder, powder magnetic core, and magnetic component
WO2021157352A1 (en) Metallic glass powder magnetic core having high density and high specific resisance, and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220523

R150 Certificate of patent or registration of utility model

Ref document number: 7087539

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150