JPS62297437A - Magnetic material having high saturation magnetic moment - Google Patents

Magnetic material having high saturation magnetic moment

Info

Publication number
JPS62297437A
JPS62297437A JP61140280A JP14028086A JPS62297437A JP S62297437 A JPS62297437 A JP S62297437A JP 61140280 A JP61140280 A JP 61140280A JP 14028086 A JP14028086 A JP 14028086A JP S62297437 A JPS62297437 A JP S62297437A
Authority
JP
Japan
Prior art keywords
powder
magnetic
magnetic material
thin
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61140280A
Other languages
Japanese (ja)
Other versions
JPH0567703B2 (en
Inventor
Masao Iguchi
征夫 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP61140280A priority Critical patent/JPS62297437A/en
Publication of JPS62297437A publication Critical patent/JPS62297437A/en
Publication of JPH0567703B2 publication Critical patent/JPH0567703B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a magnetic material having extremely high magnetic properties, particularly saturation magnetic moment, by constituting the above material of a foil, thin film, or powder of a steel containing respectively prescribed amounts of C, O, and one or more elements among Ti, V, Cr, Mn, Ni, Co, Cu, Al, etc., and also by providing a precipitated phase of Fe16N2 to the inside of the above. CONSTITUTION:The magnetic material is composed of a foil, thin film, or powder of a steel containing, by weight, <=0.02% C, <=0.01% O, and <=10.0% of one or more elements among Ti, V, Cr, Mn, Ni, Co, Cu, Al, Zr, Nb, and Mo and is provided with a precipitated phase of Fe16N2 inside. Further, the above foil usually means a thin steel strip of about 20-500mum thickness, the above thin film means the one as thin as about 1,000-50,000Angstrom , and further the above powder means that of <=300mum grain size, particularly of <=150mum. According to this invention, the magnetic material having extremely high saturation magnetization and further saturation magnetic moment can easily be obtained by effectively precipitating the Fe16N2 phase in an iron matrix.

Description

【発明の詳細な説明】 3、発明の詳細な説明 (産業上の利用分野) この発明は、飽和磁気モーメントが極めて高い磁性材料
に関し、と(に鉄合金中にFe16N2鉄窒化物相を効
果的に析出させることによって、飽和磁化ひいては飽和
磁気モーメントの有利な改善を図ろうとするものである
[Detailed Description of the Invention] 3. Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a magnetic material with an extremely high saturation magnetic moment, and the present invention relates to a magnetic material having an extremely high saturation magnetic moment. By precipitating it, the saturation magnetization and thus the saturation magnetic moment are advantageously improved.

(従来の技術) 近年の電子工業の飛躍的発展は、磁性材料の開発研究に
負うところが極めて大きいが、とくに最近では、鉄心、
磁気録音、電子機器の小型化および情報の高密度化など
のため飽和磁気モーメントが高い良好な磁性材料が求め
られている。
(Conventional technology) The rapid development of the electronics industry in recent years has been greatly influenced by the research and development of magnetic materials.
A good magnetic material with a high saturation magnetic moment is required for magnetic recording, miniaturization of electronic equipment, and increase in information density.

従来、磁気モーメントの高い材料を得るためには、鉄を
合金化することによってその飽和磁化を増大させようと
する試みが主になされてきたが、かような合金化添加元
素はptJ?0)pdなど高価な元素ばかりであるため
工業的に利用されるまでには至っていない。
Conventionally, in order to obtain materials with high magnetic moment, attempts have been made to increase the saturation magnetization by alloying iron, but such alloying additive elements are ptJ? 0) Since they are all expensive elements such as PD, they have not been used industrially.

1972年に高橋らは、(高橋実:固体物理。In 1972, Takahashi et al. (Minoru Takahashi: Solid State Physics.

Vol、7(1972)、483 ) 、 (T、に、
Kim and M、Takahashr:Appl、
Phys、Lett、 、 Vol、20 (1972
) 、 492)および(高橋実:学術月報、Vo1.
24(1972)、719 )において、2X10−’
〜2 X 1O−3Torrの窒素雰囲気中で蒸着した
鉄薄膜の飽和磁化の値は26400〜29000 Ga
ussであり、純鉄薄膜の飽和磁化の値21500 G
aussに比較してはるかに裔いというきわめて興味深
い実験結果を示した。そしてこの高い飽和磁化は、鉄薄
膜中に優先形成したFe16Nzの鉄窒化物に由来する
ことを電子回折による結晶構造解析から明らかにした。
Vol. 7 (1972), 483), (T.,
Kim and M, Takahashr: Appl;
Phys, Lett, Vol. 20 (1972
), 492) and (Minoru Takahashi: Academic Monthly Report, Vol. 1.
24 (1972), 719), 2X10-'
The saturation magnetization value of an iron thin film deposited in a nitrogen atmosphere of ~2×1O−3 Torr is 26,400 to 29,000 Ga.
uss, and the saturation magnetization value of the pure iron thin film is 21500 G.
The results showed very interesting experimental results, showing that it is far more descended from the auss. Crystal structure analysis using electron diffraction revealed that this high saturation magnetization originates from iron nitride of Fe16Nz, which is preferentially formed in the iron thin film.

その後光間らおよび遅角は、(光岡勝也。After that, Mitsuma et al. and Retard (Katsuya Mitsuoka).

宮島英紀、遅角聡信:第2日本回応用磁気学会学術講演
概要集、 (1978)P、176 )  (および遅
角聡信:応用物理、53(1984)、291 )にお
いて、Fe、、N、鉄窒化物はB、C,T、(Body
 Centered Tetragonal)構造であ
るためN原子の侵入による格子の伸びによって磁化が増
加することを示された。
Hideki Miyajima, Satoshi Saikaku: Abstracts of the 2nd Japanese Society of Applied Magnetics Academic Conference, (1978) P, 176) (and Satoshi Saikaku: Applied Physics, 53 (1984), 291) Fe, N, Iron Nitride is B, C, T, (Body
Since it has a centered tetragonal structure, it was shown that the magnetization increases due to the elongation of the lattice due to the intrusion of N atoms.

また上記の技術とは別に発明者らは、(Y、Inoku
ti+N、N15hida and N、0hashi
:Met、Trans16A(1975)、773 )
および(井ロ征夫:日本金属学会会報、 15(197
5)。
In addition to the above technology, the inventors (Y, Inoku
ti+N, N15hida and N, 0hashi
:Met, Trans16A (1975), 773)
and (Yukio Iro: Bulletin of the Japan Institute of Metals, 15 (197)
5).

101)において、(100)面方位純鉄単結晶を、4
50℃カラ500℃の温度範囲においてアンモニアと水
素ガスとの窒化雰囲気中で処理すると、単結晶試料表面
近傍に0.5〜3μm程度のFe1Jzが優先析出する
こと、またFe、、、IJ、と地鉄マトリックス<to
o>、  、□/ <100>。を満足することを示し
た。
101), a (100)-oriented pure iron single crystal is
When treated in a nitriding atmosphere of ammonia and hydrogen gas in the temperature range from 50°C to 500°C, Fe1Jz of about 0.5 to 3 μm is preferentially precipitated near the single crystal sample surface, and Fe,..., IJ. Subway Matrix <to
o>, , □/ <100>. It was shown that it satisfies the following.

以上Fe+Jzに関する最近の一連の研究について要約
したが、このFe、、N、の析出物が観察される温度は
200〜250℃の比較的低温であること、またこのF
e、、N、だけを抽出しようとしても、現在の化学的溶
媒ではFe、、N、の鉄窒化物が先にとけてしまい抽出
はほとんど不可能であることが明らかにされている。
The recent series of studies on Fe+Jz have been summarized above, and it is clear that the temperature at which this Fe, N, precipitate is observed is relatively low, 200 to 250°C, and that this F
Even if an attempt is made to extract only e,,N, it has been revealed that with current chemical solvents, the iron nitrides of Fe,,N, dissolve first, making extraction almost impossible.

(この発明が解決しようとする問題点)この発明は、地
鉄マトリックス中におけるFe+Jzの挙動を解明し、
磁気特性とくに飽和磁気モーメントに秀でた磁性材料を
提案することを目的とする。
(Problems to be solved by this invention) This invention elucidates the behavior of Fe+Jz in the base metal matrix,
The purpose of this study is to propose magnetic materials with excellent magnetic properties, especially saturation magnetic moment.

(問題点を解決するための手段) このような状況下で発明者らは、上記のFe16Nzの
鉄窒化物をより高温側でマトリックス中に安定して析出
させることが磁気特性の改善にとって必須条件であると
の認識に立って、数多くの試行実験を開始した。その結
果、Fe、、N2は、TitV、Cr、Mn。
(Means for Solving the Problems) Under these circumstances, the inventors realized that stably precipitating the Fe16Nz iron nitride in the matrix at higher temperatures is an essential condition for improving magnetic properties. Recognizing this, we began a number of trial experiments. As a result, Fe, N2, TitV, Cr, Mn.

Ni+ Co、 Cu、 A l t Zr、 Nbお
よび一〇のうち少なくとも一種の元素を10.0wt%
(以下単に%で示す)以下で含有する鉄合金薄帯、薄膜
あるいは粉末中に安定して析出すること、そしてかかる
Pe+Jg析出相の存在により飽和磁気モーメントの極
めて高い材料が得られることを見出し、この発明を完成
させるに至ったものである。
10.0 wt% of at least one element among Ni+ Co, Cu, Al t Zr, Nb and 10
(hereinafter simply expressed in %) It has been found that the following iron alloys are stably precipitated in iron alloy ribbons, thin films, or powders, and that the presence of such a Pe+Jg precipitated phase makes it possible to obtain a material with an extremely high saturation magnetic moment. This led to the completion of this invention.

すなわちコノ発明は、C: 0.02%以下、O: 0
.01%以下ならびにTi、V、Cr、Mn、Ni、C
o、Cu、A It +Zr、NbおよびMoのうち少
なくとも一種1O10%以下を含み、をそなえることか
らなる飽和磁気モーメントが高い磁性材料である。
In other words, in the invention, C: 0.02% or less, O: 0
.. 01% or less and Ti, V, Cr, Mn, Ni, C
It is a magnetic material with a high saturation magnetic moment, containing 10% or less of at least one of O, Cu, A It +Zr, Nb, and Mo.

以下この発明を由来するに至った実験結果に基づき、こ
の発明を具体的に説明する。
This invention will be specifically explained below based on the experimental results that led to this invention.

純鉄(電解鉄)中に0〜15%の種々の範囲においてC
rを含有させた種々の鋼塊を、1250℃に加熱後分塊
圧延してシートバーとしたのち、熱間圧延により1.8
mm厚の熱延板とした。その後300〜500℃の温間
圧延を施しながら1.0mm、0.8mm、0.5mm
C in pure iron (electrolytic iron) in various ranges from 0 to 15%
Various steel ingots containing r were heated to 1250°C, bloomed and rolled into sheet bars, and then hot rolled to 1.8
It was made into a hot-rolled plate with a thickness of mm. After that, while performing warm rolling at 300-500℃, the
.

0.30mm及び0.10mmの種々の厚みの冷延板を
作成した。またこれらの試料の冷延途中には、L方向(
熱延時と同じ圧延方向)とC方向(熱延時の方向と直角
な方向)の冷間圧延をくりかえし行なった。ついで冷延
板の表面を脱脂して表面を清浄にしたあと、水素中で8
00℃、3分間の焼鈍を施して(100)面方位の強い
1次再結晶組織を発達させた後、550℃のNH,(5
χ)と82(95χ)ガスとの窒化雰囲気中で30〜6
0分間の窒化処理を行なったのち急冷処理、した。その
後100℃から400 ’Cの温度範囲で時効処理を行
なったのち、透過電子顕微鏡(加速電圧200KV)に
よりFe16Nzの鉄窒化物の析出状態を観察した。
Cold rolled sheets with various thicknesses of 0.30 mm and 0.10 mm were created. Also, during the cold rolling of these samples, the L direction (
Cold rolling was repeated in the C direction (the same rolling direction as during hot rolling) and in the C direction (direction perpendicular to the direction during hot rolling). Next, after degreasing the surface of the cold-rolled sheet to make the surface clean, it was heated in hydrogen for 8 hours.
After annealing at 00°C for 3 minutes to develop a primary recrystallized structure with a strong (100) orientation, NH, (5
30 to 6 in a nitriding atmosphere of χ) and 82 (95χ) gas
After performing nitriding treatment for 0 minutes, rapid cooling treatment was performed. Thereafter, an aging treatment was performed in a temperature range of 100° C. to 400° C., and then the precipitation state of Fe16Nz iron nitride was observed using a transmission electron microscope (acceleration voltage 200 KV).

1.0〜0.10mmの種々の板厚のうちで、Fe+J
zが板厚方面にわたって均一に析出していたのは、板子
の薄い0.10mm厚の試料であった。この点、板厚の
厚い1.0や0 、8mmの試料では、表面近傍のみし
か窒化されてなく、その後拡散析出処理を施しても表面
近傍にFe、、NあるいはFe4.Nなどの鉄窒化物が
形成され、またFe+ 6N2とFeaNとが同時に析
出している状態も観察された。
Among various plate thicknesses from 1.0 to 0.10 mm, Fe+J
The sample in which z was uniformly precipitated over the thickness of the plate was a sample with a thin plate of 0.10 mm thickness. In this regard, in the case of thick samples of 1.0, 0, and 8 mm, only the vicinity of the surface is nitrided, and even if a subsequent diffusion precipitation treatment is performed, Fe, N, or Fe4. Iron nitrides such as N were formed, and a state in which Fe+ 6N2 and FeaN were simultaneously precipitated was also observed.

上記の実験結果から、FeいN2の析出現象の追跡には
板厚の薄い0.1■厚が最適であることが判明したが、
第1図にかかる板厚0.1mmの試料を用いて析出状況
とCr含有量との関係について調べた結果を示す。
From the above experimental results, it was found that a thin plate thickness of 0.1 mm is optimal for tracking the precipitation phenomenon of FeN2.
The results of an investigation into the relationship between the precipitation state and the Cr content using the 0.1 mm plate thickness sample shown in FIG. 1 are shown.

第1図から明らかなように、Feb、、Nzの安定析出
Crf3度は10%以下より好ましくは6%以下であっ
て、この範囲においてマトリックス中に数多くのFe1
6N、が析出すると共に、析出温度も350〜400℃
の高温側に移行することが判明した。
As is clear from FIG. 1, the stable precipitated Crf3 degree of Feb, Nz is 10% or less, preferably 6% or less, and within this range, a large number of Fe1 are present in the matrix.
6N is precipitated, and the precipitation temperature is also 350-400℃.
It was found that the temperature shifted to the high temperature side.

なおCrが0.01%の少量であってもFe16N2の
安定析出温度は高温側に移行していた。
Note that even when Cr was in a small amount of 0.01%, the stable precipitation temperature of Fe16N2 shifted to the high temperature side.

以上の実験から、Fe16N2の最適析出条件は、■ 
Cr含有量が0.01−10.0%(特にCriが3〜
6%において350°Cの高温領域で析出)の範囲でF
eIbNzが高温において安定析出すること、■ 板厚
の薄い試料においてFe、、、Nzが均一にかつ大量に
析出すること が新たに見出されたが、かような新現象に加えて上述し
たようにFe16 N 2とマトリックスとの整合関係
が優先する集合組織、すなわち(100)面が鋼板面と
平行に強くなる集合組織を発達させることもFe1bN
zの安定析出に重要な因子であると考えられる。という
のはFe、、、Nzの結晶構造は、N原子がFe原子の
格子間八面体間隙におけるZ軸の侵入格子間位置を専有
したB、C,T、構造であり、従ってZ軸方向にとりわ
け著しく歪みの多い状態となっている。このためFeb
、、N2の安定析出を図るためには、鋼板を薄くするこ
とによってFeb bNzの歪を緩和する(100)面
を有する集合組織の優先形態を図ることが重要と考えら
れるわけである。
From the above experiments, the optimal precipitation conditions for Fe16N2 are:
Cr content is 0.01-10.0% (especially Cri is 3-10.0%)
F in the range of 6% (precipitated in the high temperature range of 350 °C
It was newly discovered that eIbNz precipitates stably at high temperatures, and that Fe, Nz precipitates uniformly and in large quantities in thin samples. It is also possible to develop a texture in which the matching relationship between Fe16N2 and the matrix takes precedence, that is, a texture in which the (100) plane is strong parallel to the steel plate surface.
This is considered to be an important factor for stable precipitation of z. This is because the crystal structure of Fe, ..., Nz is a B, C, T structure in which N atoms occupy interstitial positions on the Z axis in the interstitial octahedral gaps of Fe atoms, and therefore In particular, the state is markedly distorted. For this reason, Feb.
In order to achieve stable precipitation of N2, it is considered important to achieve a preferential morphology of the texture with the (100) plane that alleviates the strain of Feb bNz by making the steel sheet thinner.

次に上記のようなFe −Cr合今におけるFe16N
2の安定析出が他の合金系においても住じるのかどうか
の広範囲な実験を行った。すなわちTLνJn+N++
Co、八1 、 Cu、 Zr、 NbおよびMOをそ
れぞれ含有する鉄合金(50kg泪塊)を作成し、分塊
圧延後、熱間圧延(1,4im厚)ついで冷間圧延(0
,05mm厚)を施した。
Next, Fe16N in the Fe-Cr joint as described above
We conducted extensive experiments to determine whether the stable precipitation of 2 also exists in other alloy systems. That is, TLνJn+N++
Iron alloys (50 kg ingots) containing Co, 81, Cu, Zr, Nb and MO were prepared, and after blooming, hot rolling (1.4 mm thick) and cold rolling (0.5 mm thick) were made.
, 05mm thick) was applied.

なお冷間圧延途中にはL方向(熱間圧延と同じ方向)と
C方向(熱間圧延方向と直角方向)の圧延を交互にくり
かえして行った。このときの圧延温度は250〜400
℃の温間圧延とした。そのa 8o。
During the cold rolling, rolling was repeated alternately in the L direction (the same direction as the hot rolling) and the C direction (the direction perpendicular to the hot rolling direction). The rolling temperature at this time is 250 to 400
It was warm rolled at ℃. Its a 8o.

°Cで30分間の1次再結晶焼鈍を施した後、表面を酸
洗電解研暦により中心線平均粗さRaで0.05μmの
鏡面状態に仕上げた。
After performing primary recrystallization annealing at °C for 30 minutes, the surface was polished to a mirror-like state with a centerline average roughness Ra of 0.05 μm by pickling and electrolytic polishing.

その後第2図に示すIVD(イオンインプランテーショ
ン)装置を用いて、鋼板表面にN2イオンを注入しつつ
(イオン注入量:8X1016ion/cm2)鉄窒化
物相を形成させた。なおそのときの基板の温度は250
°C〜300℃に保持した。
Thereafter, using an IVD (ion implantation) apparatus shown in FIG. 2, an iron nitride phase was formed while N2 ions were implanted into the surface of the steel sheet (ion implantation amount: 8×10 16 ions/cm 2 ). The temperature of the substrate at that time was 250
The temperature was maintained between 300°C and 300°C.

表1に、N2イオン注入後の試料の飽和磁化と試料の析
出物のXwA回折結果を示すが、これらの鉄合金元素で
は飽和磁化が21800〜24900ガウス(G)と高
い値を示すと同時に、鋼板表面上の析出物はFeIbN
zが主で、Fe4Nが若干台まれている程度であること
が判明した。
Table 1 shows the saturation magnetization of the sample after N2 ion implantation and the XwA diffraction results of the precipitates in the sample. These iron alloy elements show a high saturation magnetization of 21,800 to 24,900 Gauss (G), and at the same time, The precipitates on the steel plate surface are FeIbN
It was found that z was the main component, and Fe4N was only slightly suppressed.

表   1 なおさらに上記元素を二種以上含有する合金鉄について
も同様の実験を行って、得られた試料の飽和磁化の測定
および析出相のX線回折を行ったが、表1に示した成績
とほぼ同様の結果が得られた。
Table 1 Furthermore, similar experiments were conducted on a ferroalloy containing two or more of the above elements, and the saturation magnetization of the obtained sample was measured and the precipitated phase was subjected to X-ray diffraction, but the results shown in Table 1 were Almost the same results were obtained.

次に表2に番号■〜■で示した組成の鉄およびFe−N
i合金の粉末試料を、500℃のNH3(52)とH8
(95χ)との混合ガス中で窒化処理を施したのち常温
まで急冷処理した。その後250℃で1時間の焼鈍処理
を施して得た後粉末試料の粒径ならびにトルク法による
飽和磁化の測定結果を表2に併せて示す。
Next, iron and Fe-N with the compositions shown in Table 2 with numbers ■ to ■.
A powder sample of i alloy was heated to NH3 (52) and H8 at 500℃.
After nitriding in a mixed gas with (95χ), the sample was rapidly cooled to room temperature. Table 2 also shows the measurement results of the particle size and saturation magnetization by the torque method of the obtained powder sample which was then annealed at 250° C. for 1 hour.

表2から明らかなように、■の試料では飽和磁化が24
800 Gと他の試料20000〜21500 Gにく
らべて高いことが注目される。
As is clear from Table 2, the saturation magnetization of the sample (■) is 24
800 G, which is higher than other samples of 20,000 to 21,500 G, is noteworthy.

この試料の飽和磁化が高い理由は、粉末中に4.2%の
Niを含有していること、しかも試料粉末の粒径が15
0μmと極めて小さいことによるものと考えられる。ち
なみに■の試料の飽和磁化は、21500 Gと■の試
料に比べるとかなり低いが、この理由は試料粉末中に3
.2%のNiを含有しているものの、粉末の粒径が10
00〜300μmと大きいため、粉末中に均一な窒化が
行なわれず、しかもFe、J2の歪(Fet6Nzの構
造はX、Y方向に歪が存在しなく、Z軸方向にのみ大き
な歪が存在する)を充分に解放できる状態で析出するこ
とが極めて困難なためと考えられる。
The reason for the high saturation magnetization of this sample is that the powder contains 4.2% Ni and the particle size of the sample powder is 15%.
This is thought to be due to the extremely small size of 0 μm. By the way, the saturation magnetization of the sample (■) is considerably lower than that of the sample (21,500 G and ■), but the reason for this is that 3.
.. Although it contains 2% Ni, the particle size of the powder is 10%.
Because of the large size of 00 to 300 μm, uniform nitriding is not performed in the powder, and the strain of Fe and J2 (the structure of Fet6Nz has no strain in the X and Y directions, and large strain exists only in the Z axis direction). This is thought to be because it is extremely difficult to precipitate in a state where it can be sufficiently released.

上述したところから明らかなように、飽和磁気モーメン
トの高いFe+Jz鉄窒化物の安定析出を図るには、 ■ 素材中に10.0%以下の範囲でTi、 V、 C
r、 Mn。
As is clear from the above, in order to achieve stable precipitation of Fe+Jz iron nitride with a high saturation magnetic moment, ■ Ti, V, and C must be added to the material in a range of 10.0% or less.
r, Mn.

Ni、Co、Cu、A j2 、Zr、NbおよびMo
のうち少なくとも一種を含有させること、 ■ Fet6Nzとマトリックスとの整合関係が良好な
(100)面の強い集合Mi fitiを発達させるこ
と、 ■ Fe+、、Nzの歪み解放に役立つように薄帯、薄
膜あるいは細粒の粉末を用いること が必要であることが新たに究明されたのである。
Ni, Co, Cu, A j2 , Zr, Nb and Mo
■ Developing a strong set of (100) planes Mi fiti with a good matching relationship between Fet6Nz and the matrix; ■ Forming thin strips or thin films to help release the strain of Fe+, Nz. Alternatively, it has been newly discovered that it is necessary to use fine-grained powder.

なお、ここで述べる薄帯とは、通常20〜500μm厚
程度Φ薄鋼帯を、また薄膜とは1000〜50000人
程度のきわめて藩いものを、さらに粉末とは粒径300
μm以下望ましくは150μm以下の試料を意味する。
Note that the thin strip mentioned here refers to a Φ thin steel strip that is usually about 20 to 500 μm thick, the thin film refers to a very thin steel strip with a particle size of about 1,000 to 50,000, and the powder refers to a thin steel strip with a particle size of 300 μm.
It means a sample with a diameter of 150 μm or less, preferably 150 μm or less.

(作 用) 次に素材成分の限定理由について述べる。(for production) Next, we will discuss the reasons for limiting the material components.

Ti、V、Cr、Mn、Ni+Co、Cu、’A l 
、Zr、Nbおよび門。はいずれも、10.0%以下の
範囲においてFe、、、Nzが安定して大量に析出する
ので、これらの元素は単独または併用いずれの場合にお
いても10.0%以下好ましくは0.5〜6.0%の範
囲で含有させるものとした。
Ti, V, Cr, Mn, Ni+Co, Cu, 'Al
, Zr, Nb and phylum. In each case, Fe, ..., Nz are stably precipitated in large amounts in the range of 10.0% or less, so whether these elements are used alone or in combination, the content is 10.0% or less, preferably 0.5 to 0.5%. The content was set to be within a range of 6.0%.

Cは、磁気特性に有害な元素であるためできる限り低い
方が望ましいが、0.02%以下の範囲で許容できる。
Since C is an element harmful to magnetic properties, it is desirable that the content be as low as possible, but a range of 0.02% or less is acceptable.

0は、鋼中で酸化物を形成し磁気特性の劣化を招くので
極力低減することが望ましいが、0.01%以下の範囲
で許容される。
0 forms oxides in the steel and causes deterioration of magnetic properties, so it is desirable to reduce it as much as possible, but it is acceptable within a range of 0.01% or less.

その他通常の鉄合金に不純物として不可避に混入する元
素、たとえばB、 S、 Sb、 SnおよびPなどを
少量含有しても何らさしつかえない。
There is no problem in containing small amounts of other elements that are inevitably mixed as impurities in ordinary iron alloys, such as B, S, Sb, Sn, and P.

さらにこれらの鉄合金薄帯、薄膜および粉末中に析出さ
せたFeIbNzの鉄窒化物は、通常、薄帯および薄膜
については電子顕微鏡観察やX線回折によるFe、、、
N、の析出物とマトリックスとの比で決定され、また粉
末においてはX線回折によるFe、、N2の主要回折ピ
ーク高さから決定されるが、Fe、、N2の析出量は0
.5%以上(全窒化鉄析出相中の50%以上)程度とす
ることが望ましい。
Furthermore, FeIbNz iron nitride precipitated in these iron alloy ribbons, thin films, and powders is usually detected by electron microscopy or X-ray diffraction for ribbons and thin films.
It is determined by the ratio of N precipitates to the matrix, and in the case of powder, it is determined from the height of the main diffraction peak of Fe, N2 by X-ray diffraction, but the amount of precipitated Fe, N2 is 0.
.. It is desirable that the content be about 5% or more (50% or more of the total iron nitride precipitated phase).

(実施例) 実藷炭上 C:0.003 χ、Si:0.009%、Mn:0.
06X、Ti 二2.6X、P:0.00B!。
(Example) C on charcoal: 0.003 χ, Si: 0.009%, Mn: 0.
06X, Ti 2.6X, P:0.00B! .

N:0.002χおよび0:0.0045χを含有する
銅塊を、1250℃に加熱後分塊圧延を施してジードパ
 −としたのち、熱間圧延により1.5mm厚の熱延板
とした。
Copper ingots containing N: 0.002χ and 0:0.0045χ were heated to 1250°C and subjected to blooming rolling to obtain jidopa, which were then hot rolled to form hot rolled sheets with a thickness of 1.5 mm.

その後表面を酸洗したのち冷間圧延を施した。この試料
の冷間圧延途中にはL方向とC方向の冷間圧延をくりか
えし行ない0.05mm厚の冷延薄帯を作成した。つい
で薄帯表面を脱脂したのち、水素中で800℃5分間の
焼鈍を施した。その後 500℃のNH3(5χ)とN
2(95χ)ガスとの窒化雰囲気中で窒化処理後、室温
へ急冷したのち、300℃で3時間の時効焼鈍を行なっ
た、 かくして得られた試料を電子顕微鏡観察およびX線回折
したところ、Fe16N2析出相の大きなピークがみら
れ、その他には若干のFe4.N相のピークがみられた
にすぎなかった。またトルク法により測定した飽和磁化
は、23200 Gというきわめて高い値を示した。
Thereafter, the surface was pickled and then cold rolled. During the cold rolling of this sample, cold rolling was repeated in the L direction and the C direction to produce a cold rolled ribbon with a thickness of 0.05 mm. After degreasing the surface of the ribbon, it was annealed in hydrogen at 800°C for 5 minutes. After that, NH3 (5χ) and N at 500℃
After nitriding in a nitriding atmosphere with 2(95χ) gas, the sample was rapidly cooled to room temperature and then subjected to aging annealing at 300°C for 3 hours. Electron microscopy and X-ray diffraction of the sample thus obtained revealed that it was Fe16N2. A large peak of the precipitated phase was observed, and a small amount of Fe4. Only an N-phase peak was observed. Furthermore, the saturation magnetization measured by the torque method showed an extremely high value of 23,200 G.

実施1− C:0.003χ、Co:4.IZ、Mn:0.065
χ、P:0.007Z、S:0.006Z。
Implementation 1 - C: 0.003χ, Co: 4. IZ, Mn: 0.065
χ, P: 0.007Z, S: 0.006Z.

N:0.040XおよびO:O,0O13X。N: 0.040X and O: O,0O13X.

の、組成になる厚み     の研暦試料を用い、前掲
第2図に模式で示したようなN2イオンのイオンプラン
テーション法により、N2イオンを注入して鉄窒化物薄
膜を作成した。このときの基板の温度は270℃に保定
した。
An iron nitride thin film was created by implanting N2 ions by the ion plantation method of N2 ions as schematically shown in FIG. The temperature of the substrate at this time was maintained at 270°C.

かくして得られた薄膜をX線回折したところ、主にFe
16N2からなっていることが判明した。その他若干の
FeJ、 Fe3Nが見られた。またトルク法により測
定した飽和磁化は、24300Gときわめて高い値を示
した。
When the thin film thus obtained was subjected to X-ray diffraction, it was found that mainly Fe
It turned out to be made up of 16N2. In addition, some FeJ and Fe3N were observed. Moreover, the saturation magnetization measured by the torque method showed an extremely high value of 24,300G.

夫籐拠主 C:0.O05χ、Mo:2.6χ、Mn:0.06χ
、P:0.008χ、S:0.009χ。
Futo base owner C: 0. O05χ, Mo: 2.6χ, Mn: 0.06χ
, P: 0.008χ, S: 0.009χ.

N:0.002χおよび0:0.009χを含有する微
細粉末(粒径100μm以下)を500℃のNnz(5
χ)とN2(95χ)の窒化雰囲気中で30分間窒化処
理したのち室温に急冷した。その後250°Cで1時間
の時効焼鈍を施した。
Fine powder (particle size 100 μm or less) containing N:0.002χ and 0:0.009χ was heated at 500°C with Nnz (5
After nitriding for 30 minutes in a nitriding atmosphere of χ) and N2 (95χ), it was rapidly cooled to room temperature. Thereafter, aging annealing was performed at 250°C for 1 hour.

かくして得られた試料の飽和磁化をトルク法によって測
定した結果、23600Gときわめて高い値を示した。
The saturation magnetization of the sample thus obtained was measured by the torque method and showed an extremely high value of 23,600G.

またこの粉末をX線回折したところほとんどFeいN2
で若干のFe4Nが見られた。
Furthermore, when this powder was subjected to X-ray diffraction, it was found that almost all of the powder contained Fe and N2.
Some amount of Fe4N was observed.

(発明の効果) かくしてこの発明によれば、鉄マトリックス中にFe1
bN2相を効果的に析出させることにより、飽和磁化ひ
いては飽和磁気モーメントが極めて高い磁性材料を容易
に得ることができる。
(Effect of the invention) Thus, according to this invention, Fe1 is contained in the iron matrix.
By effectively precipitating the bN2 phase, a magnetic material with an extremely high saturation magnetization and thus an extremely high saturation magnetic moment can be easily obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はFe16NZの析出状況を時効処理温度とCr
含有量との関係で示した図、 第2図はN2イオンのイオンインプランテーション法に
よる鉄窒化物の作成要領を示した模式図である。
Figure 1 shows the precipitation situation of Fe16NZ depending on aging treatment temperature and Cr.
Figure 2 is a schematic diagram showing the procedure for producing iron nitride by the ion implantation method of N2 ions.

Claims (1)

【特許請求の範囲】 1、C:0.02wt%以下 O:0.01wt%以下ならびに Ti、V、Cr、Mn、Ni、Co、Cu、Al、Zr
、NbおよびMoのうち少なくとも一種:10.0wt
%以下を含み、残部はFeおよび不可避的不純物の組成
になる薄帯、薄膜または粉末であって、内部にFe_1
_6N_2の析出相をそなえることを特徴とする飽和磁
気モーメントが高い磁性材料。
[Claims] 1. C: 0.02wt% or less O: 0.01wt% or less and Ti, V, Cr, Mn, Ni, Co, Cu, Al, Zr
, at least one of Nb and Mo: 10.0wt
% or less, with the remainder being Fe and unavoidable impurities.
A magnetic material with a high saturation magnetic moment characterized by having a precipitated phase of _6N_2.
JP61140280A 1986-06-18 1986-06-18 Magnetic material having high saturation magnetic moment Granted JPS62297437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61140280A JPS62297437A (en) 1986-06-18 1986-06-18 Magnetic material having high saturation magnetic moment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61140280A JPS62297437A (en) 1986-06-18 1986-06-18 Magnetic material having high saturation magnetic moment

Publications (2)

Publication Number Publication Date
JPS62297437A true JPS62297437A (en) 1987-12-24
JPH0567703B2 JPH0567703B2 (en) 1993-09-27

Family

ID=15265105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61140280A Granted JPS62297437A (en) 1986-06-18 1986-06-18 Magnetic material having high saturation magnetic moment

Country Status (1)

Country Link
JP (1) JPS62297437A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62253741A (en) * 1985-11-29 1987-11-05 Atsushi Ogura Sintered composite material and production thereof
WO1989012112A1 (en) * 1988-05-30 1989-12-14 Kawasaki Steel Corporation SINTERED MAGNETIC Fe-Co MATERIAL AND PROCESS FOR ITS PRODUCTION
JP2005268389A (en) * 2004-03-17 2005-09-29 Dowa Mining Co Ltd Iron-nitride magnetic powder and its manufacturing method
JP2007134614A (en) * 2005-11-14 2007-05-31 Dowa Electronics Materials Co Ltd Iron-based magnetic powder having high coercive force, and magnetic recording medium
CN104213047A (en) * 2014-08-05 2014-12-17 安徽荣达阀门有限公司 Alloy steel material for concrete pump truck tank body and preparing method of alloy steel material
JP2016134583A (en) * 2015-01-22 2016-07-25 Tdk株式会社 Iron-nitride-based magnet
JP2016134582A (en) * 2015-01-22 2016-07-25 Tdk株式会社 Iron-nitride-based magnetic powder and bond magnet provided therewith
JP2017122277A (en) * 2011-08-17 2017-07-13 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ Iron nitride permanent magnet, and formation technology of iron nitride permanent magnet
DE102018200373A1 (en) * 2018-01-11 2019-07-11 Robert Bosch Gmbh Soft magnetic composite material and method for its production

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62253741A (en) * 1985-11-29 1987-11-05 Atsushi Ogura Sintered composite material and production thereof
WO1989012112A1 (en) * 1988-05-30 1989-12-14 Kawasaki Steel Corporation SINTERED MAGNETIC Fe-Co MATERIAL AND PROCESS FOR ITS PRODUCTION
JP2005268389A (en) * 2004-03-17 2005-09-29 Dowa Mining Co Ltd Iron-nitride magnetic powder and its manufacturing method
JP4534059B2 (en) * 2004-03-17 2010-09-01 Dowaエレクトロニクス株式会社 Iron nitride magnetic powder and method for producing the same
JP2007134614A (en) * 2005-11-14 2007-05-31 Dowa Electronics Materials Co Ltd Iron-based magnetic powder having high coercive force, and magnetic recording medium
CN107103975A (en) * 2011-08-17 2017-08-29 明尼苏达大学董事会 Nitrided iron permanent magnet and the technology for forming nitrided iron permanent magnet
JP2017122277A (en) * 2011-08-17 2017-07-13 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ Iron nitride permanent magnet, and formation technology of iron nitride permanent magnet
US10068689B2 (en) 2011-08-17 2018-09-04 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
JP2020010039A (en) * 2011-08-17 2020-01-16 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ Iron nitride permanent magnet, and formation technology of iron nitride permanent magnet
US11742117B2 (en) 2011-08-17 2023-08-29 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
CN104213047A (en) * 2014-08-05 2014-12-17 安徽荣达阀门有限公司 Alloy steel material for concrete pump truck tank body and preparing method of alloy steel material
JP2016134583A (en) * 2015-01-22 2016-07-25 Tdk株式会社 Iron-nitride-based magnet
JP2016134582A (en) * 2015-01-22 2016-07-25 Tdk株式会社 Iron-nitride-based magnetic powder and bond magnet provided therewith
DE102018200373A1 (en) * 2018-01-11 2019-07-11 Robert Bosch Gmbh Soft magnetic composite material and method for its production

Also Published As

Publication number Publication date
JPH0567703B2 (en) 1993-09-27

Similar Documents

Publication Publication Date Title
KR910003977B1 (en) Fe-base soft magnetic alloy and method of producing same
CN108431243B (en) Annealing separating agent for directional electrical steel sheet, and method for producing directional electrical steel sheet
EP2940170B1 (en) Grain oriented electrical steel sheet having excellent core loss, and method for manufacturing same
JPS62297437A (en) Magnetic material having high saturation magnetic moment
JP2710948B2 (en) Ultrafine crystalline Fe-based alloy with excellent corrosion resistance and method for producing the same
JPS61143557A (en) Magnetic material having high saturation magnetic moment
US6123783A (en) Magnetic data-storage targets and methods for preparation
JP3021957B2 (en) Method for producing Fe16N2 iron nitride having high saturation magnetization
KR100973406B1 (en) Method of forming rotated cube texture at metal sheets and electrical steel sheets manufactured by using the same
KR920004678B1 (en) METHOD FOR MANUFACTURING Ni-Fe ALLOY SHEET HAVING EXCELLENT DC MAGNETIC PROPERTY AND EXCELLENT AC MAGNETIC PROPERTY
JP3243240B2 (en) Method of manufacturing thin cold rolled inner shield steel sheet with excellent magnetic field shielding properties
US20210381089A1 (en) Super soft magnetic fe-based amorphous alloy
JPS58123848A (en) Wear resistant high permeability alloy for magnetic recording and reproducing head, its manufacture and magnetic recording and reproducing head
JPS62188756A (en) Grain-oriented foil of high saturation magnetic flux density and its production
JPS637332A (en) Production of thin strip having high saturation magnetization
JP2898793B2 (en) Method for producing non-oriented electrical steel sheet having high magnetic flux density and low iron loss
JP4043613B2 (en) Fe-based hard magnetic alloy with supercooled liquid region
JPH076046B2 (en) Method for producing Ni-Fe alloy plate having excellent magnetic properties
JP3352599B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density
JP3176385B2 (en) Method for producing Ni-Fe-Cr soft magnetic alloy sheet
JPH04268027A (en) Production of magnetic strip having high saturating magnetization
JPH06158239A (en) Fe base soft magnetic alloy and its production
US3271202A (en) Process for producing silicon-iron thin tapes
JPS6324020A (en) Grain-oriented silicon steel sheet having high saturation magnetization and superior magnetostriction characteristic
JPH04202644A (en) Silicon steel sheet and its production