JP2016134583A - Iron-nitride-based magnet - Google Patents

Iron-nitride-based magnet Download PDF

Info

Publication number
JP2016134583A
JP2016134583A JP2015010138A JP2015010138A JP2016134583A JP 2016134583 A JP2016134583 A JP 2016134583A JP 2015010138 A JP2015010138 A JP 2015010138A JP 2015010138 A JP2015010138 A JP 2015010138A JP 2016134583 A JP2016134583 A JP 2016134583A
Authority
JP
Japan
Prior art keywords
iron nitride
iron
magnet
particles
nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015010138A
Other languages
Japanese (ja)
Other versions
JP6485066B2 (en
Inventor
美香 神宮
Mika Jingu
美香 神宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2015010138A priority Critical patent/JP6485066B2/en
Publication of JP2016134583A publication Critical patent/JP2016134583A/en
Application granted granted Critical
Publication of JP6485066B2 publication Critical patent/JP6485066B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide an iron-nitride-based magnet having a high residual magnetic flux, and a high coercive force.SOLUTION: An iron-nitride-based magnet including FeNphase has a relative density of 60% or more, and contains 0.1-4.5 at% or more of P. More preferably, the average grain size of FeNparticles composing the iron-nitride-based magnet is 20-60 nm.SELECTED DRAWING: None

Description

本発明は、Fe16化合物相を主相とし、高い残留磁束密度かつ高い保磁力を有する窒化鉄系磁石を提供する。 The present invention provides an iron nitride magnet having a Fe 16 N 2 compound phase as a main phase and having a high residual magnetic flux density and a high coercive force.

近年、電気自動車やハイブリッド自動車などのモーター用磁石として、Nd−Fe−B系の磁石が広く使われている。しかしながら、Ndに代表されるレアアースは、産業分野を支える高付加価値な部材の原料であり、近年需要が拡大しているため、資源の枯渇や原料価格が不安定であることが懸念されている。さらには、途上国においても著しく需要が拡大していることや、その偏在性ゆえに特定の産出国への依存度が高いことから、安定供給確保に対する問題が生じている。 In recent years, Nd-Fe-B magnets have been widely used as motor magnets for electric vehicles and hybrid vehicles. However, rare earths typified by Nd are raw materials for high-value-added members that support the industrial field, and since demand is increasing in recent years, there are concerns that resource depletion and raw material prices are unstable. . Furthermore, there is a problem in securing a stable supply because the demand is growing significantly in developing countries and the dependence on specific producing countries is high due to its uneven distribution.

上記の問題より、自然界に無尽蔵に存在する元素(鉄、窒素)からなるFe16は、Feよりも巨大な飽和磁化を示す材料のひとつとして注目されている。 Due to the above problems, Fe 16 N 2 made of elements (iron, nitrogen) inexhaustible in nature has attracted attention as one of materials exhibiting a larger saturation magnetization than Fe.

また,Fe16は準安定化合物であり、この化合物を単離した粉末として化学的に合成することは難しい。特許文献1では,共沈法により酸化鉄を合成し、還元・窒化する手法で窒化鉄系磁性粉末を合成している。しかしながら,得られた窒化鉄粉末の保磁力が低く、この磁性粉末を用いてバルク磁石を作成しても、高保磁力かつ高飽和磁化が要求されるモーター用途の磁性材料としての使用は困難である。 Fe 16 N 2 is a metastable compound, and it is difficult to chemically synthesize this compound as an isolated powder. In Patent Document 1, iron oxide is synthesized by a coprecipitation method, and iron nitride magnetic powder is synthesized by a technique of reduction and nitriding. However, the obtained iron nitride powder has a low coercive force, and even if a bulk magnet is made using this magnetic powder, it is difficult to use it as a magnetic material for motor applications that require high coercive force and high saturation magnetization. .

特開2009−84115号公報JP 2009-84115 A

本発明は、上記を鑑みたものであり、残留磁束密度(Br)350 mT以上を有し、かつ保磁力(HcJ)2.5 kOe以上を有する窒化鉄系磁石の提供を目的とする。 The present invention has been made in view of the above, and an object thereof is to provide an iron nitride-based magnet having a residual magnetic flux density (Br) of 350 mT or more and a coercive force (HcJ) of 2.5 kOe or more.

本発明は、Fe16相を含む窒化鉄系磁石であり、前記窒化鉄系磁石の相対密度が60%以上であり、Pを0.1〜4.5at%含有している、窒化鉄系磁石に関するものである。 The present invention is an iron nitride magnet including an Fe 16 N 2 phase, wherein the iron nitride magnet has a relative density of 60% or more and contains 0.1 to 4.5 at% P. It relates to a system magnet.

本発明によれば、主成分としてFe16相を含む窒化鉄系磁石であり、前記Fe16相についてPを0.1〜4.5at%含有し、さらに窒化鉄系磁石がFe16相の理論密度に対し十分高い相対密度を有するため、350mT以上の高い残留磁束密度を維持しつつ、保磁力2.5 kOe 以上を示す前記窒化鉄系磁石を得ることができる。 According to the present invention, an iron nitride-based magnet containing an Fe 16 N 2 phase as a main component, containing 0.1 to 4.5 at% P in the Fe 16 N 2 phase, and further the iron nitride-based magnet is Fe Since it has a sufficiently high relative density relative to the theoretical density of 16 N 2 phase, it is possible to obtain the iron nitride-based magnet exhibiting a coercive force of 2.5 kOe or higher while maintaining a high residual magnetic flux density of 350 mT or higher.

この理由については定かではないが、PがFe16の格子間に侵入する、またはPがFe16を構成するNの一部を置換することにより、Fe16の格子が歪み、窒化鉄磁性粉末の異方性が増したため、高い残留磁束密度を維持しつつ、高い保磁力を得ることができたと考えられる。 Although not clear about this reason, P enters between the lattice of Fe 16 N 2, or by P to replace a portion of the N constituting the Fe 16 N 2, the lattice distortion of the Fe 16 N 2 Since the anisotropy of the iron nitride magnetic powder is increased, it is considered that a high coercive force could be obtained while maintaining a high residual magnetic flux density.

以下、本発明の好適な実施形態について説明する。なお、本発明は以下に記載の実施形態及び実施例の内容により限定されるものではない。また、以下に記載の実施形態及び実施例にて示された構成要素は適宜組み合わせても良いし、適宜選択してもよい。 Hereinafter, preferred embodiments of the present invention will be described. The present invention is not limited by the contents of the embodiments and examples described below. In addition, the constituent elements shown in the embodiments and examples described below may be appropriately combined or may be appropriately selected.

本発明に記載の窒化鉄磁石は、主相がFe16粒子からなる。また、前記主相以外に、Fe、Fe及びFeO等の酸化鉄相、FeN等の窒化鉄相、FeP等のリン化鉄相を有していてもよい。 In the iron nitride magnet according to the present invention, the main phase is composed of Fe 16 N 2 particles. In addition to the main phase, it may have an iron oxide phase such as Fe 2 O 3 , Fe 3 O 4 and FeO, an iron nitride phase such as Fe 4 N, and an iron phosphide phase such as Fe 3 P. .

前記Fe16粒子が、Mn、Ni、Co、Ti、Zn等の遷移金属を含んでいてもよい。 The Fe 16 N 2 particles may contain a transition metal such as Mn, Ni, Co, Ti, Zn.

前記Fe16粒子の主相であるFe16相について、Pを0.1〜4.5at%含有している。Pの含有量がこの範囲にあることにより、高い残留磁束密度を維持しつつ、高い保磁力を得ることができる。前記Fe16相に含有されるPが0.1at%未満であると、Pの侵入もしくは置換による格子歪みが小さいために,十分な結晶磁気異方性を有さず,高い保磁力を得られない。4.5at%超では、Fe16の一部が不純物であるFePに変化してしまい、飽和磁化と保磁力の両方が低下する。また、Pは窒化鉄粒子内に存在しており、表面や特定箇所の偏析はない。 For the Fe 16 N 2 Fe 16 N 2 phase is the main phase of the particles, containing 0.1~4.5At% of P. When the content of P is in this range, a high coercive force can be obtained while maintaining a high residual magnetic flux density. When P contained in the Fe 16 N 2 phase is less than 0.1 at%, lattice distortion due to penetration or substitution of P is small, so that there is no sufficient magnetocrystalline anisotropy and high coercive force. I can't get it. If it exceeds 4.5 at%, part of Fe 16 N 2 changes to Fe 3 P as an impurity, and both the saturation magnetization and the coercive force are reduced. Further, P exists in the iron nitride particles, and there is no segregation of the surface or a specific portion.

本発明に記載の窒化鉄系磁石は、相対密度が60%以上である。前記窒化鉄系磁石の相対密度が60%未満の場合、磁石素体に含まれる磁性成分密度が低くなり、十分な残留磁束密度を有さない。 The iron nitride magnet described in the present invention has a relative density of 60% or more. When the relative density of the iron nitride-based magnet is less than 60%, the magnetic component density contained in the magnet body is low, and the residual magnetic flux density is not sufficient.

本実施形態に係る窒化鉄系磁性粉末の平均粒径は、20nm以上60nm以下であることが好ましい。平均粒径が20nm未満では、粒子表面の酸化被膜の割合が大きくなるため窒化鉄系磁性粉末に含まれるFe16相が少なくなり、最終的に得られる残留磁束密度が低下する。また粒径が小さいことによって超常磁性が発現するため、保磁力が低下する傾向にある。平均粒径が60nm超では粒径が大きいため、単磁区臨界径以上の粒子割合が大きく、保磁力が低下する傾向にある。 The average particle size of the iron nitride magnetic powder according to this embodiment is preferably 20 nm or more and 60 nm or less. If the average particle size is less than 20 nm, the proportion of the oxide film on the particle surface increases, so that the Fe 16 N 2 phase contained in the iron nitride-based magnetic powder decreases, and the finally obtained residual magnetic flux density decreases. In addition, since the superparamagnetism is manifested when the particle size is small, the coercive force tends to decrease. If the average particle size exceeds 60 nm, the particle size is large, so the proportion of particles larger than the single domain critical diameter is large, and the coercive force tends to decrease.

本実施形態に係る窒化鉄系磁石の好適な製造法について述べる。本実施形態に係る窒化鉄系磁石は、酸化鉄粒子を合成した後、前記酸化鉄粒子に還元処理およびアンモニアガスとホスフィンガスの混合ガスによる窒化処理、を順に施して得た窒化鉄系磁性粒子を圧縮成形することにより得られる。 A suitable method for manufacturing the iron nitride magnet according to this embodiment will be described. The iron nitride-based magnet according to the present embodiment is obtained by synthesizing iron oxide particles, and then subjecting the iron oxide particles to reduction treatment and nitriding treatment with a mixed gas of ammonia gas and phosphine gas in order. Is obtained by compression molding.

前記酸化鉄粒子は、第一鉄塩および/または第二鉄塩を含む鉄塩水溶液と、アルカリ水溶液とを混合させた後、熟成し、洗浄することにより製造することができる。 The iron oxide particles can be produced by mixing an aqueous iron salt solution containing ferrous salt and / or ferric salt and an alkaline aqueous solution, aging and washing.

前記鉄塩としては、硫酸塩、塩化物、硝酸塩等を挙げることができ、これらを適宜組み合わせて使用してもよい。また、それらの水和物を使用することができる。 Examples of the iron salt include sulfate, chloride, nitrate and the like, and these may be used in appropriate combination. Moreover, those hydrates can be used.

前記アルカリ水溶液としては、水酸化ナトリウム水溶液、アンモニア水、アンモニア塩水溶液、および尿素水溶液を1つ以上用いることができるが、この限りではない。 As the alkaline aqueous solution, one or more of sodium hydroxide aqueous solution, ammonia water, ammonia salt aqueous solution, and urea aqueous solution can be used, but not limited thereto.

前記酸化鉄は、平均粒径が5〜25nmである。 The iron oxide has an average particle size of 5 to 25 nm.

平均粒径5〜10nmの酸化鉄は、前記沈殿反応時の液中熟成反応温度を制御することで作製できる。また、平均粒径10〜25nmの酸化鉄の粒径制御は、酸化鉄超微粒子を添加した溶液中で、第一鉄イオンを含有する溶液を等量以上のアルカリ存在下で酸化することで作製できる。 Iron oxide having an average particle diameter of 5 to 10 nm can be prepared by controlling the aging reaction temperature in the liquid during the precipitation reaction. Moreover, the particle size control of the iron oxide having an average particle size of 10 to 25 nm is made by oxidizing a solution containing ferrous ions in the presence of an alkali of an equal amount or more in a solution added with iron oxide ultrafine particles. it can.

本発明に係る粒子の平均粒径の測定方法は、得られた粉末を、Φ6mmのディスク型ケースに秤量し、融点50〜52℃のパラフィンを加え、ホットプレートで加熱し、パラフィンが融解したしたのち、パラフィンを放冷し固化させ、粉末を含むパラフィンを作製した。得られた粉末を含むパラフィンを、粉末の断面が出るように削り出し、その断面を磁場型電子顕微鏡(TEM、日本電子製JEM−2000FX)にて観察した。TEM観察像の中から1000個の粒子の円面積相当径を算出し、その平均を平均粒径とした。 In the method for measuring the average particle size of the particles according to the present invention, the obtained powder was weighed in a Φ6 mm disk-type case, paraffin having a melting point of 50 to 52 ° C. was added, and heated with a hot plate, and the paraffin was melted. After that, the paraffin was allowed to cool and solidified to produce paraffin containing powder. The paraffin containing the obtained powder was cut out so that a cross section of the powder appeared, and the cross section was observed with a magnetic field electron microscope (TEM, JEM-2000FX manufactured by JEOL). The equivalent circular area diameter of 1000 particles was calculated from the TEM observation image, and the average was taken as the average particle diameter.

酸化鉄製造後、結晶性改良や粒子形状制御のために、オートクレーブによる水熱処理など液中熟成反応を行ってもよい。 After iron oxide production, in order to improve crystallinity and control the particle shape, an aging reaction in liquid such as hydrothermal treatment with an autoclave may be performed.

酸化鉄製造後、水溶液をろ過し、必要に応じて水洗等の洗浄処理を施すことで酸化鉄粒子を回収することができる。 After the iron oxide production, the aqueous solution is filtered, and the iron oxide particles can be recovered by performing a washing treatment such as washing with water as necessary.

前記酸化鉄粒子は、還元処理によって粒子同士が焼結することを抑制するために、粒子表面をSi化合物で被覆する。Si化合物としては、コロイダルシリカ、シランカップリング剤、シラノール化合物等が使用できる。 The iron oxide particles coat the surface of the particles with a Si compound in order to suppress sintering of the particles due to reduction treatment. As the Si compound, colloidal silica, a silane coupling agent, a silanol compound, or the like can be used.

Si化合物の被覆量は、酸化鉄粒子に対しSi換算で0.1質量%以上20質量%以下である。0.1質量%未満の場合には熱処理時に粒子間の焼結を抑制する効果が十分得られないため、最終的に得られる窒化鉄系磁性粒子が大きくなる。20質量%を超える場合には熱処理時に粒子間の焼結を抑制する効果が過剰となり、最終的に得られる窒化鉄系磁性粒子が小さくなる。また、非磁性成分が増加することとなり好ましくない。より好ましい表面被覆量は0.15質量%以上15質量%以下、更により好ましくは0.2質量%以上10質量%以下である。 The coating amount of the Si compound is 0.1% by mass or more and 20% by mass or less in terms of Si with respect to the iron oxide particles. If the amount is less than 0.1% by mass, the effect of suppressing the sintering between particles during heat treatment cannot be obtained sufficiently, and the finally obtained iron nitride magnetic particles become large. If it exceeds 20% by mass, the effect of suppressing the sintering between particles during heat treatment becomes excessive, and the iron nitride-based magnetic particles finally obtained become small. Further, the nonmagnetic component increases, which is not preferable. A more preferable surface coating amount is 0.15% by mass or more and 15% by mass or less, still more preferably 0.2% by mass or more and 10% by mass or less.

前記酸化鉄粒子は、マグネタイト、γ−Fe、α−Fe、α−FeOOH、β−FeOOH、γ−FeOOH、FeOなどであるが、この限りではない。 Examples of the iron oxide particles include magnetite, γ-Fe 2 O 3 , α-Fe 2 O 3 , α-FeOOH, β-FeOOH, γ-FeOOH, and FeO, but are not limited thereto.

前記酸化鉄粒子の粒子形状に特に限定はないが、球状、針状、粒状、紡錘状、直方体状などいずれでもよい。 The particle shape of the iron oxide particles is not particularly limited, and may be any shape such as a spherical shape, a needle shape, a granular shape, a spindle shape, and a rectangular parallelepiped shape.

次に、得られた酸化鉄粒子の還元処理を行い、鉄粒子を得る。還元処理の温度は200〜400℃である。還元処理の温度が200℃未満の場合には酸化鉄粒子が十分に還元されない。還元処理の温度が400℃を超える場合には酸化鉄粒子は十分に還元されるが、粒子間の焼結が進行するため好ましくない。より好ましくは230〜350℃である。 Next, the obtained iron oxide particles are subjected to reduction treatment to obtain iron particles. The temperature of the reduction treatment is 200 to 400 ° C. When the temperature of the reduction treatment is less than 200 ° C., the iron oxide particles are not sufficiently reduced. When the temperature of the reduction treatment exceeds 400 ° C., the iron oxide particles are sufficiently reduced, but this is not preferable because sintering between the particles proceeds. More preferably, it is 230-350 degreeC.

還元処理の時間は特に限定されないが、1〜96時間が好ましい。96時間を超えると還元温度によっては焼結が進み後段の窒化処理が進みにくくなってしまう。1時間未満では十分に還元が進行しない。より好ましくは2〜72時間である。 The time for the reduction treatment is not particularly limited, but is preferably 1 to 96 hours. If it exceeds 96 hours, depending on the reduction temperature, the sintering proceeds and the subsequent nitriding process becomes difficult to proceed. If it is less than 1 hour, the reduction does not proceed sufficiently. More preferably, it is 2 to 72 hours.

還元処理の雰囲気は、水素雰囲気である。 The atmosphere for the reduction treatment is a hydrogen atmosphere.

還元処理を行った後、窒化処理を行う。窒化処理に使用するアンモニアとホスフィンガスの混合ガス中に占めるホスフィンガスの割合を制御することにより、本発明の窒化鉄系磁石を構成するFe16粒子のP含有量を制御することができる。 After the reduction treatment, nitriding treatment is performed. By controlling the ratio of the phosphine gas in the mixed gas of ammonia and phosphine gas used for the nitriding treatment, the P content of the Fe 16 N 2 particles constituting the iron nitride magnet of the present invention can be controlled. .

窒化処理は、アンモニアガスとホスフィンガスの混合ガスを使用する。アンモニアガスとホスフィンガスの混合ガス中に占めるホスフィンガスの割合が、0.8〜29mol%が望ましい。0.8mol% 以下では前記Fe16相に含有されるPを0.1 %以下となり、PのFe16への侵入および置換の十分な効果が得られない。ホスフィンガスの割合が29 mol% を超える場合は、前記Fe16相に含有されるPが4.5 %超となり、Fe16の一部が不純物であるFePに変化してしまう。 The nitriding treatment uses a mixed gas of ammonia gas and phosphine gas. The proportion of phosphine gas in the mixed gas of ammonia gas and phosphine gas is preferably 0.8 to 29 mol%. If it is 0.8 mol% or less, P contained in the Fe 16 N 2 phase is 0.1% or less, and sufficient effects of penetration and substitution of P into Fe 16 N 2 cannot be obtained. When the ratio of phosphine gas exceeds 29 mol%, P contained in the Fe 16 N 2 phase exceeds 4.5%, and a part of Fe 16 N 2 is changed to Fe 3 P which is an impurity. End up.

窒化処理の温度は100〜200℃である。窒化処理の温度が100℃未満の場合には窒化処理が十分に進行しない。窒化処理の温度が200℃を超える場合には、窒化が過剰に進行するため、磁気特性が低下する。より好ましくは120〜180℃である。 The temperature of the nitriding treatment is 100 to 200 ° C. When the nitriding temperature is less than 100 ° C., the nitriding does not proceed sufficiently. When the temperature of the nitriding process exceeds 200 ° C., nitriding proceeds excessively, so that the magnetic characteristics are deteriorated. More preferably, it is 120-180 degreeC.

窒化処理の時間は特に限定されないが、1〜48時間が好ましい。48時間を超えると窒化温度によっては磁気特性が低下する。1時間未満では十分な還元ができない場合が多い。より好ましくは3〜24時間である。 The nitriding time is not particularly limited, but is preferably 1 to 48 hours. If it exceeds 48 hours, the magnetic properties will deteriorate depending on the nitriding temperature. In many cases, sufficient reduction cannot be achieved in less than 1 hour. More preferably, it is 3 to 24 hours.

この時、窒化鉄系磁性粒子が、粒子表面に酸化鉄相を有していてもよい。 At this time, the iron nitride magnetic particles may have an iron oxide phase on the particle surface.

得られた窒化鉄系磁性粒子を十分に脱水した有機溶剤と混合し、さらに分散剤を添加し、窒化鉄系磁性粒子を含むスラリーを作製する。 The obtained iron nitride magnetic particles are mixed with a sufficiently dehydrated organic solvent, and a dispersant is further added to produce a slurry containing iron nitride magnetic particles.

前記有機溶剤にはヘキサン、シクロヘキサン、オクタン等のアルカン類や、シクロヘキサノン、MEK等のケトン類等のいずれか一つ以上を用いた、単体液体もしくは混合液体を用いることができるが、この限りではない。 The organic solvent may be a single liquid or a mixed liquid using any one or more of alkanes such as hexane, cyclohexane and octane, and ketones such as cyclohexanone and MEK, but is not limited thereto. .

前記分散剤には、オレイン酸、オレイルアミン、トリオクチルアミン等の何れか一つ以上を用いることができるが、この限りではない。 As the dispersant, any one or more of oleic acid, oleylamine, trioctylamine and the like can be used, but not limited thereto.

次に、得られた窒化鉄系磁性粒子を含むスラリーを任意の形状及びサイズの金型に投入し、3〜20kgf/cmの荷重をかけながら溶剤を揮発させ、相対密度60%以上の窒化鉄系磁石を作製する。 Next, the obtained slurry containing iron nitride-based magnetic particles is put into a mold having an arbitrary shape and size, and the solvent is volatilized while applying a load of 3 to 20 kgf / cm 2 , thereby nitriding with a relative density of 60% or more. An iron-based magnet is produced.

圧縮成形の荷重が3kgf/cm未満の場合は、窒化鉄系磁石の相対密度が60%未満となり、20kgf/cmより大きい場合は残留応力が大きくなるため窒化鉄系磁石にクラックが発生する。 When the compression molding load is less than 3 kgf / cm 2, the relative density of the iron nitride magnet is less than 60%, and when it is greater than 20 kgf / cm 2, the residual stress increases, and thus the iron nitride magnet is cracked. .

溶剤を揮発させる際は、金型を50〜150℃に加熱することが好ましい。50℃未満の場合は、溶剤を十分に揮発させることができず、150℃以上ではFe16相の分解が始まり磁気特性が低下する。 When volatilizing the solvent, the mold is preferably heated to 50 to 150 ° C. When the temperature is lower than 50 ° C., the solvent cannot be sufficiently volatilized, and when the temperature is 150 ° C. or higher, the decomposition of the Fe 16 N 2 phase starts and the magnetic properties deteriorate.

さらに、溶剤を揮発させる際は、加熱に加え真空ポンプ等を用いて減圧することにより、より短時間で溶剤を揮発させることができる。前記真空ポンプはドライポンプやロータリーポンプを用いることができるがこの限りではない。 Furthermore, when volatilizing the solvent, the solvent can be volatilized in a shorter time by reducing the pressure using a vacuum pump or the like in addition to the heating. The vacuum pump may be a dry pump or a rotary pump, but is not limited thereto.

窒化鉄系磁石の形状は特に限定されるものではなく、用途に応じて、例えば平板状、柱状、断面形状がリング状等、変更することができる。また、得られた窒化鉄系磁石は、その表面上に酸化層や樹脂層等の劣化を防止するためにめっきや塗装を施すようにしてもよい。 The shape of the iron nitride-based magnet is not particularly limited, and can be changed, for example, in a plate shape, a column shape, or a cross-sectional shape such as a ring shape, depending on the application. Further, the obtained iron nitride magnet may be plated or painted on the surface in order to prevent deterioration of the oxide layer, the resin layer, and the like.

次に、本発明に記載の窒化鉄系磁石について、実施例・比較例を用いてさらに詳細に説明するが、本発明は実施例に示す態様に限定されるものではない。 Next, the iron nitride magnet described in the present invention will be described in more detail using examples and comparative examples, but the present invention is not limited to the embodiments shown in the examples.

(実施例1)
1mol/Lの硫酸第一鉄水溶液600mLと、1mol/Lの塩化第二鉄水溶液300mLとを30℃で混合撹拌し、これに5mol/Lの水酸化ナトリウム水溶液を500mL加えた後、液中熟成反応として70℃で一定となるように温度コントロールし、30分撹拌後、ろ別、水洗し、平均粒径10nmの酸化鉄スラリーを作製した。
Example 1
600 mL of 1 mol / L ferrous sulfate aqueous solution and 300 mL of 1 mol / L ferric chloride aqueous solution were mixed and stirred at 30 ° C., and 500 mL of 5 mol / L sodium hydroxide aqueous solution was added thereto, followed by aging in the liquid As a reaction, the temperature was controlled to be constant at 70 ° C., and the mixture was stirred for 30 minutes, filtered and washed with water to prepare an iron oxide slurry having an average particle size of 10 nm.

前記酸化鉄スラリーに、テトラエトキシシラン2.5g、エタノール21g、ジエチレングリコールモノブチルエーテル78gを添加し、Si被着処理を施した。この酸化鉄スラリーを85℃で24時間乾燥し、Feを含む酸化鉄粒子を作製した。 To the iron oxide slurry, 2.5 g of tetraethoxysilane, 21 g of ethanol, and 78 g of diethylene glycol monobutyl ether were added to perform Si deposition treatment. This iron oxide slurry was dried at 85 ° C. for 24 hours to produce iron oxide particles containing Fe 2 O 3 .

前記酸化鉄粒子2gを焼成ボートに入れ、熱処理炉に静置した。炉内に窒素ガスを充填した後、水素ガスを1L/minの流量で流しながら、5℃/minの昇温速度で250℃まで昇温し、48時間保持して還元処理を行った。その後、水素ガスの供給を止めて窒素ガスを2L/minの流量で流しながら140℃まで降温し、鉄粉末を作製した。 2 g of the iron oxide particles were placed in a firing boat and left in a heat treatment furnace. After filling the furnace with nitrogen gas, the temperature was raised to 250 ° C. at a temperature rising rate of 5 ° C./min while flowing hydrogen gas at a flow rate of 1 L / min, and the reduction treatment was performed for 48 hours. Thereafter, the supply of hydrogen gas was stopped, and the temperature was lowered to 140 ° C. while flowing nitrogen gas at a flow rate of 2 L / min to produce iron powder.

続いて,アンモニアガス198mL/min,ホスフィンガス2mL/minの混合ガスを流し,140℃で24時間窒化処理を行った。その後,窒素ガスを2L/minの流量で流しながら50℃まで降温し,空気置換を24時間実施し,窒化鉄系磁性粉末を作製した。 Subsequently, a mixed gas of 198 mL / min of ammonia gas and 2 mL / min of phosphine gas was flowed, and nitriding was performed at 140 ° C. for 24 hours. Thereafter, the temperature was lowered to 50 ° C. while flowing nitrogen gas at a flow rate of 2 L / min, and air replacement was carried out for 24 hours to produce an iron nitride magnetic powder.

得られた窒化鉄系磁性粒子100gを十分に脱水したオクタン60gと混合し、さらに分散剤としてオレイルアミンを3g添加し、窒化鉄系磁性粒子を含むスラリーを作製した。 100 g of the obtained iron nitride magnetic particles were mixed with 60 g of sufficiently dehydrated octane, and 3 g of oleylamine was further added as a dispersant to prepare a slurry containing iron nitride magnetic particles.

次に得られた窒化鉄系磁性粒子を含むスラリーをΦ10mmの円柱形状の金型に投入し、10kgf/cmの荷重をかけながら溶剤を加熱及び減圧雰囲気で揮発させ、窒化鉄系磁石を作製した。この時、荷重方向に対して垂直方向に磁場をかけることにより、窒化鉄系磁石を磁気配向させた。 Next, the obtained slurry containing iron nitride-based magnetic particles is put into a cylindrical mold having a diameter of 10 mm, and the solvent is volatilized in a heated and reduced-pressure atmosphere while applying a load of 10 kgf / cm 2 to produce an iron nitride-based magnet. did. At this time, the iron nitride magnet was magnetically oriented by applying a magnetic field in a direction perpendicular to the load direction.

(実施例2)
アンモニアガスを188mL/min、ホスフィンガスを12mL/minとした以外は,実施例1と同様にして作製した。
(Example 2)
It was produced in the same manner as in Example 1 except that ammonia gas was 188 mL / min and phosphine gas was 12 mL / min.

(実施例3)
アンモニアガスを180mL/min、ホスフィンガスを20mL/minとした以外は,実施例1と同様にして作製した。
Example 3
It was produced in the same manner as in Example 1 except that ammonia gas was 180 mL / min and phosphine gas was 20 mL / min.

(実施例4)
アンモニアガスを169mL/min、ホスフィンガスを31mL/minとした以外は,実施例1と同様にして作製した。
Example 4
It was produced in the same manner as in Example 1 except that ammonia gas was 169 mL / min and phosphine gas was 31 mL / min.

(実施例5)
アンモニアガスを155mL/min、ホスフィンガスを45mL/minとした以外は,実施例1と同様にして作製した。
(Example 5)
It was produced in the same manner as in Example 1 except that the ammonia gas was 155 mL / min and the phosphine gas was 45 mL / min.

(実施例6)
アンモニアガスを142mL/min、ホスフィンガスを58mL/minとした以外は,実施例1と同様にして作製した。
(Example 6)
It was produced in the same manner as in Example 1 except that ammonia gas was 142 mL / min and phosphine gas was 58 mL / min.

(実施例7、8、9、10)
圧縮成形の荷重を3、5、15、20kgf/cmとした以外は、実施例4と同様の方法で窒化鉄系磁石を作製した。
(Examples 7, 8, 9, 10)
An iron nitride magnet was produced in the same manner as in Example 4 except that the compression molding load was set to 3, 5, 15, 20 kgf / cm 2 .

(実施例11、12、13、14、)
テトラエトキシシランの添加量を1.0、2.0、3.0、3.5gとした以外は、実施例4と同様にして作製した。
(Examples 11, 12, 13, 14)
It was produced in the same manner as in Example 4 except that the addition amount of tetraethoxysilane was 1.0, 2.0, 3.0, and 3.5 g.

(比較例1)
アンモニアガスを200mL/min、ホスフィンガスを0mL/minとした以外は,実施例1と同様にして作製した。
(Comparative Example 1)
It was produced in the same manner as in Example 1 except that the ammonia gas was 200 mL / min and the phosphine gas was 0 mL / min.

(比較例2)
アンモニアガスを199mL/min、ホスフィンガスを1mL/minとした以外は,実施例1と同様にして作製した。
(Comparative Example 2)
It was produced in the same manner as in Example 1 except that ammonia gas was 199 mL / min and phosphine gas was 1 mL / min.

(比較例3)
アンモニアガスを135mL/min、ホスフィンガスを65mL/minとした以外は,実施例1と同様にして作製した。
(Comparative Example 3)
It was produced in the same manner as in Example 1 except that ammonia gas was 135 mL / min and phosphine gas was 65 mL / min.

(比較例4)
圧縮成形の荷重を、1kgf/cmとした以外は、実施例4と同様の方法で窒化鉄系磁石を作製した。
(Comparative Example 4)
An iron nitride magnet was produced in the same manner as in Example 4 except that the compression molding load was 1 kgf / cm 2 .

このようにして得られた窒化鉄系磁石の構成相、相対密度、残留磁束密度(Br)及び保磁力(HcJ)を以下の手法により測定した。結果を表1に示す。 The constituent phase, relative density, residual magnetic flux density (Br) and coercive force (HcJ) of the iron nitride magnet thus obtained were measured by the following method. The results are shown in Table 1.

≪窒化鉄系磁石の構成相≫
得られた窒化鉄系磁石の構成相は、粉末X線回折装置(XRD、リガク製RINT−2500)及びメスバウアー分光分析装置により同定を行った。メスバウアー測定は、アルゴン雰囲気のグローブボックス中で窒化鉄系磁石をラミネートパックに入れて封止した状態で行った。メスバウアースペクトルのピーク解析は、スペクトルを理想線型の足し合わせと仮定してカーブフィッティングを行い、ピーク位置を定めて各成分のピーク面積を算出した。ピークは左右対称のローレンツ型とし、成分毎のピーク半値幅はすべて等しく、対称位置にあるピーク高さはそれぞれ等しいと仮定した。
≪Phase of iron nitride magnet≫
The constituent phases of the obtained iron nitride magnet were identified by a powder X-ray diffractometer (XRD, RINT-2500, manufactured by Rigaku) and a Mossbauer spectrometer. Mossbauer measurement was performed in a glove box in an argon atmosphere with an iron nitride magnet placed in a laminate pack and sealed. In the peak analysis of the Mossbauer spectrum, curve fitting was performed on the assumption that the spectrum was an ideal linear addition, the peak position was determined, and the peak area of each component was calculated. The peaks were assumed to be symmetrical Lorentz type, and the peak half-value widths for each component were all equal, and the peak heights at the symmetrical positions were assumed to be equal.

≪窒化鉄系磁石の相対密度≫
得られた窒化鉄系磁石の相対密度は、窒化鉄系磁石をアルキメデス法による磁石素体の密度測定を行い、Fe16相の理論密度に対しての相対密度として求めた。
≪Relative density of iron nitride magnet≫
The relative density of the obtained iron nitride magnet was determined as a relative density with respect to the theoretical density of the Fe 16 N 2 phase by measuring the density of the magnet body of the iron nitride magnet by the Archimedes method.

≪窒化鉄系磁石の残留磁束密度及び保磁力≫
得られた窒化鉄系磁石の残留磁束密度と保磁力をB−Hトレーサー(東英工業製TRF−5BH)による減磁曲線の測定結果から求めた。残留磁束密度が350mT以上、かつ、保磁力が2.5kOe以上の窒化鉄系磁石を許容とした。
≪Residual magnetic flux density and coercive force of iron nitride magnets≫
The residual magnetic flux density and coercive force of the obtained iron nitride-based magnet were determined from the measurement results of the demagnetization curve using a BH tracer (TRF-5BH manufactured by Toei Kogyo). An iron nitride magnet having a residual magnetic flux density of 350 mT or more and a coercive force of 2.5 kOe or more was allowed.

≪窒化鉄系磁石中の平均粒径測定≫
得られた窒化鉄系磁石を、窒化鉄系磁性粉末の断面が出るように削り出し、その断面を磁場型電子顕微鏡(TEM、日本電子製JEM−2000FX)にて観察した。TEM観察像の中から1000個の粒子の円面積相当径を算出し、その平均を平均粒径とした。
≪Average particle size measurement in iron nitride magnets≫
The obtained iron nitride-based magnet was cut out so that a cross section of the iron nitride-based magnetic powder appeared, and the cross section was observed with a magnetic field type electron microscope (TEM, JEM-2000FX manufactured by JEOL). The equivalent circular area diameter of 1000 particles was calculated from the TEM observation image, and the average was taken as the average particle diameter.

≪窒化鉄系磁石のP含有量測定≫
前記窒化鉄系磁石の断面を走査透過型電子顕微鏡によるエネルギー分散型X線分析装置(STEM−EDS、日本電子製JEM2100F)を用いて元素マッピングを行い、窒化鉄系磁性粉末粒子内におけるPの分布が均一であることを確認したのち、1000個の粒子について、鉄とPの元素比の平均値を算出した。さらに、前記メスバウアー分光分析の結果を用いて、鉄、窒素及びPの元素比を算出した。


Figure 2016134583
≪Measurement of P content in iron nitride magnets≫
Elemental mapping is performed on the cross section of the iron nitride magnet using an energy dispersive X-ray analyzer (STEM-EDS, JEM2100F manufactured by JEOL) using a scanning transmission electron microscope, and the distribution of P in the iron nitride magnetic powder particles Was confirmed to be uniform, and the average value of the element ratio of iron to P was calculated for 1000 particles. Furthermore, the element ratio of iron, nitrogen, and P was calculated using the results of the Mossbauer spectroscopy.


Figure 2016134583

全ての実施例と比較例で、Fe16相が主相であることが確認された。 In all Examples and Comparative Examples, it was confirmed that the Fe 16 N 2 phase was the main phase.

窒化鉄系磁石の相対密度が60%以上で、Pを0.1〜4.5at%含有していることにより、残留磁束密度が350mT以上、保磁力が2.5kOe以上であることが確認できた。 When the relative density of the iron nitride magnet is 60% or more and 0.1 to 4.5 at% of P is contained, it can be confirmed that the residual magnetic flux density is 350 mT or more and the coercive force is 2.5 kOe or more. It was.

実施例1、2、3、4、5、6のように、窒化鉄系磁石を構成するFe16粒子のP含有量が0.1at%、0.7at%、1.2at%、2.0at%、3.2at%、4.5at%、窒化鉄系磁石の相対密度が65%、平均粒径が42nm、39nm、38nm、41nm、40nm、43nmの場合、残留磁束密度が350mT以上、保磁力が2.5kOe以上であることが確認できた。 As in Examples 1, 2, 3, 4, 5, 6, P content of Fe 16 N 2 particles constituting the iron nitride magnet is 0.1 at%, 0.7 at%, 1.2 at%, 2 0.0 at%, 3.2 at%, 4.5 at%, when the relative density of the iron nitride magnet is 65% and the average particle diameter is 42 nm, 39 nm, 38 nm, 41 nm, 40 nm, 43 nm, the residual magnetic flux density is 350 mT or more, It was confirmed that the coercive force was 2.5 kOe or more.

実施例7、8、9、10のように、窒化鉄系磁石を構成するFe16粒子のP含有量が2.0at%、窒化鉄系磁石の相対密度が60at%、63at%、67at%、70at%、平均粒径が41nmの場合、残留磁束密度が350mT以上、保磁力が2.8kOe以上であることが確認できた。 As in Examples 7, 8, 9, and 10, the P content of Fe 16 N 2 particles constituting the iron nitride magnet is 2.0 at%, and the relative density of the iron nitride magnet is 60 at%, 63 at%, and 67 at%. %, 70 at%, and an average particle diameter of 41 nm, it was confirmed that the residual magnetic flux density was 350 mT or more and the coercive force was 2.8 kOe or more.

実施例11、12、13、14のように、窒化鉄系磁石を構成するFe16粒子のP含有量が2.0at%、窒化鉄系磁石の相対密度が65%、平均粒径が16、22、59、74の場合、残留磁束密度が360mT以上、保磁力が2.6kOe以上であることが確認できた。特に平均粒径が20〜60nmの範囲において、残留磁束密度が370mT以上、保磁力が2.8kOe以上と良好な保磁力が確認できた。 As in Examples 11, 12, 13, and 14, the P content of Fe 16 N 2 particles constituting the iron nitride-based magnet is 2.0 at%, the relative density of the iron nitride-based magnet is 65%, and the average particle size is In the case of 16, 22, 59 and 74, it was confirmed that the residual magnetic flux density was 360 mT or more and the coercive force was 2.6 kOe or more. In particular, in the range where the average particle diameter is 20 to 60 nm, a good coercive force was confirmed with a residual magnetic flux density of 370 mT or more and a coercive force of 2.8 kOe or more.

比較例1、2のように、窒化鉄系磁石を構成するFe16粒子のP含有量が0at%、0.05at%、窒化鉄系磁石の相対密度が65%、平均粒径が42nmの場合、残留磁束密度が370mT、保磁力が2.3kOe、2.4kOeと、十分に高い保磁力を得ることができなかった。これは、窒化鉄系磁石を構成するFe16粒子のP含有量が少なく、Fe16相の結晶格子歪みが十分でなかったためであると考えられる。 As in Comparative Examples 1 and 2, the P content of Fe 16 N 2 particles constituting the iron nitride magnet is 0 at%, 0.05 at%, the relative density of the iron nitride magnet is 65%, and the average particle diameter is 42 nm. In this case, a sufficiently high coercive force such as a residual magnetic flux density of 370 mT and a coercive force of 2.3 kOe and 2.4 kOe could not be obtained. This is considered to be because the Fe 16 N 2 particles constituting the iron nitride-based magnet have a small P content and the crystal lattice distortion of the Fe 16 N 2 phase is not sufficient.

比較例3のように、窒化鉄系磁石を構成するFe16粒子のP含有量が4.6%、窒化鉄系磁石の相対密度が65%、平均粒径が43nmの場合、残留磁束密度が320mT、保磁力が2.4kOeと、十分に高い残留磁束密度、保磁力を得ることができなかった。これは、窒化鉄系磁石を構成するFe16粒子のP含有量が多く、不純物成分であるFePが過剰に生成して強磁性成分が減少したためであると考えられる。 As in Comparative Example 3, when the P content of Fe 16 N 2 particles constituting the iron nitride magnet is 4.6%, the relative density of the iron nitride magnet is 65%, and the average particle size is 43 nm, the residual magnetic flux The density was 320 mT and the coercive force was 2.4 kOe, and a sufficiently high residual magnetic flux density and coercive force could not be obtained. This is considered to be because the Fe content of Fe 16 N 2 constituting the iron nitride magnet is large, Fe 3 P being an impurity component is excessively generated, and the ferromagnetic component is reduced.

比較例4のように、窒化鉄系磁石の相対密度が58%、窒化鉄系磁石を構成するFe16粒子のP含有量が2.0at%、平均粒径が41nmの場合、残留磁束密度が320mT、保磁力が2.8kOeと、十分に高い残留磁束密度を得ることができなかった。これは、窒化鉄系磁石の相対密度が低いために,磁石素体に含まれるFe16相が少なくなったためであると考えられる。 When the relative density of the iron nitride magnet is 58%, the P content of Fe 16 N 2 particles constituting the iron nitride magnet is 2.0 at%, and the average particle size is 41 nm as in Comparative Example 4, the residual magnetic flux A sufficiently high residual magnetic flux density of 320 mT and a coercive force of 2.8 kOe could not be obtained. This is presumably because the Fe 16 N 2 phase contained in the magnet element was reduced because the relative density of the iron nitride magnet was low.

以上のように、本発明に係る、窒化鉄系磁石は、十分な残留磁束密度及び保磁力を有することから、レアアースを使用しない高性能磁石として有用である。 As described above, the iron nitride-based magnet according to the present invention has a sufficient residual magnetic flux density and coercive force, and thus is useful as a high-performance magnet that does not use a rare earth.

Claims (2)

Fe16相を含む窒化鉄系磁石であり、前記窒化鉄系磁石の相対密度が60%以上であり、Pを0.1〜4.5at%含有している、窒化鉄系磁石。 An iron nitride-based magnet comprising an Fe 16 N 2 phase, wherein the iron nitride-based magnet has a relative density of 60% or more and contains 0.1 to 4.5 at% P. 前記窒化鉄系磁石を構成するFe16粒子の平均粒径が20nm〜60nmである、請求項1に記載の窒化鉄系磁石。 The iron nitride magnet according to claim 1, wherein an average particle diameter of Fe 16 N 2 particles constituting the iron nitride magnet is 20 nm to 60 nm.
JP2015010138A 2015-01-22 2015-01-22 Iron nitride magnet Active JP6485066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015010138A JP6485066B2 (en) 2015-01-22 2015-01-22 Iron nitride magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015010138A JP6485066B2 (en) 2015-01-22 2015-01-22 Iron nitride magnet

Publications (2)

Publication Number Publication Date
JP2016134583A true JP2016134583A (en) 2016-07-25
JP6485066B2 JP6485066B2 (en) 2019-03-20

Family

ID=56434626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015010138A Active JP6485066B2 (en) 2015-01-22 2015-01-22 Iron nitride magnet

Country Status (1)

Country Link
JP (1) JP6485066B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018083732A (en) * 2016-11-22 2018-05-31 住友電気工業株式会社 Iron nitride grain and method for producing iron nitride grain
JP2018198281A (en) * 2017-05-24 2018-12-13 Tdk株式会社 Iron nitride magnet
CN112744795A (en) * 2021-02-01 2021-05-04 苏州大学张家港工业技术研究院 Method for enhancing magnetic response and Curie temperature of two-dimensional electronic compound material
JP7111549B2 (en) 2018-07-27 2022-08-02 Tdk株式会社 iron nitride magnet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62297437A (en) * 1986-06-18 1987-12-24 Kawasaki Steel Corp Magnetic material having high saturation magnetic moment
JPH0786013A (en) * 1993-06-30 1995-03-31 Victor Co Of Japan Ltd Magnetic powder material
JP2009009646A (en) * 2007-06-28 2009-01-15 Hitachi Maxell Ltd Magnetic recording medium
WO2014210027A1 (en) * 2013-06-27 2014-12-31 Regents Of The University Of Minnesota Iron nitride materials and magnets including iron nitride materials

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62297437A (en) * 1986-06-18 1987-12-24 Kawasaki Steel Corp Magnetic material having high saturation magnetic moment
JPH0786013A (en) * 1993-06-30 1995-03-31 Victor Co Of Japan Ltd Magnetic powder material
JP2009009646A (en) * 2007-06-28 2009-01-15 Hitachi Maxell Ltd Magnetic recording medium
WO2014210027A1 (en) * 2013-06-27 2014-12-31 Regents Of The University Of Minnesota Iron nitride materials and magnets including iron nitride materials

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018083732A (en) * 2016-11-22 2018-05-31 住友電気工業株式会社 Iron nitride grain and method for producing iron nitride grain
JP2018198281A (en) * 2017-05-24 2018-12-13 Tdk株式会社 Iron nitride magnet
JP7111549B2 (en) 2018-07-27 2022-08-02 Tdk株式会社 iron nitride magnet
CN112744795A (en) * 2021-02-01 2021-05-04 苏州大学张家港工业技术研究院 Method for enhancing magnetic response and Curie temperature of two-dimensional electronic compound material

Also Published As

Publication number Publication date
JP6485066B2 (en) 2019-03-20

Similar Documents

Publication Publication Date Title
JP5708454B2 (en) Alcohol solution and sintered magnet
TWI583465B (en) Strong magnetic particle powder and its manufacturing method and anisotropic magnet, bonded magnet and dust magnet
JP6155440B2 (en) Method for producing ferromagnetic iron nitride particle powder, method for producing anisotropic magnet, bonded magnet and dust magnet
JP5924657B2 (en) Method for producing ferromagnetic iron nitride particle powder, anisotropic magnet, bonded magnet and dust magnet
WO2013042721A1 (en) Method for manufacturing ferromagnetic iron nitride powder, anisotropic magnet, bond magnet, and compressed-powder magnet
WO2011049080A1 (en) Ferromagnetic particle powder, method for producing same, anisotropic magnet and bonded magnet
US9607740B2 (en) Hard-soft magnetic MnBi/SiO2/FeCo nanoparticles
CN103119664A (en) Ferromagnetic particle powder, method for producing same, anisotropic magnet, and bonded magnet
JP6485066B2 (en) Iron nitride magnet
JP2014194958A (en) Sintered magnet
JP6380736B2 (en) Iron nitride magnetic powder and magnet using the same
JP4623308B2 (en) Sm-Fe-N-based magnetic particle powder for bonded magnet and method for producing the same, resin composition for bonded magnet, and bonded magnet
JP2019080055A (en) Composite magnetic material, magnet, motor, and method of producing composite magnetic material
US9427805B2 (en) Method to prepare hard-soft magnetic FeCo/ SiO2/MnBi nanoparticles with magnetically induced morphology
JP6520168B2 (en) Iron nitride based magnetic powder and bonded magnet using the same
KR102356630B1 (en) Rare-earth magnet
JP2017183322A (en) Bond magnet arranged by use of iron nitride-based magnetic powder
JP6485065B2 (en) Iron nitride magnetic powder and bonded magnet using the same
JP6500470B2 (en) Iron nitride magnet
JP6344129B2 (en) Iron nitride magnetic powder and magnet using the same
JP4662061B2 (en) Method for producing Sm-Fe-N magnetic particle powder, resin composition for bonded magnet containing Sm-Fe-N magnetic particle powder, and bonded magnet
JP6519419B2 (en) Iron nitride based magnetic powder and bonded magnet using the same
WO2017191790A1 (en) Rare-earth permanent magnet, and method for manufacturing same
JP6225440B2 (en) Magnetic material, method for producing the same, and coating liquid used for the production
JP7111549B2 (en) iron nitride magnet

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160714

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190204

R150 Certificate of patent or registration of utility model

Ref document number: 6485066

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150