JP3352599B2 - Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density - Google Patents

Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density

Info

Publication number
JP3352599B2
JP3352599B2 JP34776296A JP34776296A JP3352599B2 JP 3352599 B2 JP3352599 B2 JP 3352599B2 JP 34776296 A JP34776296 A JP 34776296A JP 34776296 A JP34776296 A JP 34776296A JP 3352599 B2 JP3352599 B2 JP 3352599B2
Authority
JP
Japan
Prior art keywords
skin pass
cold rolling
annealing
oriented electrical
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34776296A
Other languages
Japanese (ja)
Other versions
JPH10183247A (en
Inventor
智之 阿部
聖一 妹尾
政広 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP34776296A priority Critical patent/JP3352599B2/en
Publication of JPH10183247A publication Critical patent/JPH10183247A/en
Application granted granted Critical
Publication of JP3352599B2 publication Critical patent/JP3352599B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、低磁化力での磁束
密度が高い無方向性電磁鋼板の製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a non-oriented electrical steel sheet having a low magnetic force and a high magnetic flux density.

【0002】[0002]

【従来の技術】従来、鉄損を下げる目的で、スキンパス
冷延がおこなわれてきた。そのうち、スキンパス冷延前
の結晶粒径が開示されている従来技術として、以下の先
行技術が挙げられる。特開平2-179823号公報では、冷延
後の仕上連続焼鈍を再結晶以上〜平均結晶粒径20μm 未
満となる条件でおこなった後、3 〜15% の最終スキンパ
ス冷延を施す無方向性電磁鋼板の製造方法が提示されて
いる。
2. Description of the Related Art Conventionally, skin pass cold rolling has been performed for the purpose of reducing iron loss. Among them, the following prior arts are disclosed as prior arts in which the crystal grain size before skin pass cold rolling is disclosed. In Japanese Patent Application Laid-Open No. H2-179823, a non-directional electromagnetic treatment is performed in which the finish continuous annealing after cold rolling is performed under conditions of not less than recrystallization to an average crystal grain size of less than 20 μm, and then a final skin pass cold rolling of 3 to 15% is performed. A method for manufacturing a steel sheet is presented.

【0003】また、特開平1-191741号公報では、熱延板
を焼鈍後、3 〜15% スキンパス冷延し、さらに熱延板を
焼鈍し、冷間圧延する無方向性電磁鋼板の製造方法が提
示されている。これは、熱延板にスキンパス冷延した
後、熱延板の結晶粒径をある値以上にし、磁性を改善す
る技術である。
Japanese Patent Application Laid-Open No. 1-191741 discloses a method for producing a non-oriented electrical steel sheet in which a hot-rolled sheet is annealed, then cold-rolled by a 3 to 15% skin pass, and further the hot-rolled sheet is annealed and cold-rolled. Is presented. This is a technique for improving the magnetism by cold rolling a skin-passed sheet to a hot-rolled sheet and then increasing the crystal grain size of the hot-rolled sheet to a certain value or more.

【0004】[0004]

【発明が解決しようとする課題】モータの高効率化の要
求が高まるにつれ、モータの設計磁束密度を下げてでも
高効率化をはかるモータが必要になってきた。その結
果、それらモータに使用される無方向性電磁鋼板に対し
て、低磁化力での磁束密度の高い素材が求められるよう
になってきた。この要求を満足するには、最終製品(ス
キンパス冷延に続く焼鈍後の材料)の結晶粒径を十分に
粗大化する必要がある。
As the demand for higher motor efficiency has increased, it has become necessary to increase the efficiency of the motor even if the design magnetic flux density of the motor is reduced. As a result, there has been a demand for a non-oriented electrical steel sheet used for such motors, a material having a low magnetizing force and a high magnetic flux density. In order to satisfy this requirement, it is necessary to sufficiently increase the crystal grain size of the final product (material after annealing subsequent to skin pass cold rolling).

【0005】ところが、特開平2-179823号公報や特開平
1-191741号公報に開示されているような従来の技術で
は、この要求に応えられない。特開平2-179823号公報の
方法では、スキンパス冷延に続く焼鈍後の結晶粒径が充
分に粗大にならず、低磁化力での磁束密度が向上しな
い。また、特開平1-191741号公報では、熱延板の結晶粒
径は粗大化するものの最終製品の粒径を粗大化する技術
ではない。
However, Japanese Patent Application Laid-Open Nos.
The conventional technology as disclosed in Japanese Patent Application Laid-Open No. 1-191741 cannot meet this demand. In the method disclosed in Japanese Patent Application Laid-Open No. H2-179823, the crystal grain size after annealing subsequent to skin pass cold rolling is not sufficiently large, and the magnetic flux density at low magnetizing force is not improved. Also, in Japanese Patent Application Laid-Open No. 1-191741, although the crystal grain size of the hot-rolled sheet is coarsened, this is not a technique for increasing the grain size of the final product.

【0006】[0006]

【課題を解決するための手段】そこで、本発明者らは、
上記問題に鑑み、鋭意検討を行った結果、スキンパス冷
延前の結晶粒径とスキンパス冷延圧下率を制御すること
により、上記課題を解決できることを究明した。その内
容は以下の通りである。重量% で、C ≦0.010%、0.1%≦
Si≦2.0%、Mn≦1.5%、Al≦1.0%、P ≦0.15% 、S ≦0.01
% 、N ≦0.01%、を含有し、残部はFe及び不可避的不純
物からなる鋼を、熱間圧延後、そのまま熱延板焼鈍なし
に、もしくは熱延板焼鈍、もしくは、自己焼鈍を施し、
一回または中間焼鈍を挟む二回以上の冷間圧延をおこな
った後、焼鈍を行ない、引続きスキンパス冷延後に焼鈍
を施す無方向性電磁鋼板の製造方法において、スキンパ
ス前の結晶粒径が、20μm 以上50μm 未満の場合にはス
キンパス冷延率3%以上12% 以下、または、50μm 以上20
0 μm 以下の場合は、12% ≧スキンパス冷延率[%] ≧0.
04×スキンパス前結晶粒径[ μm]+1の条件でスキンパス
冷延することを特徴とする磁束密度が高い無方向性電磁
鋼板の製造方法である。
Means for Solving the Problems Accordingly, the present inventors have:
In view of the above problems, as a result of intensive studies, it has been found that the above problems can be solved by controlling the crystal grain size before skin pass cold rolling and the rolling reduction of skin pass cold rolling. The contents are as follows. Weight%, C ≤ 0.010%, 0.1% ≤
Si ≦ 2.0%, Mn ≦ 1.5%, Al ≦ 1.0%, P ≦ 0.15%, S ≦ 0.01
%, N ≤ 0.01%, the balance is steel consisting of Fe and unavoidable impurities, after hot rolling, without hot-rolled sheet annealing, or hot-rolled sheet annealing, or subjected to self-annealing,
After performing one or two or more cold rollings sandwiching the intermediate annealing, perform the annealing, then in the method of manufacturing a non-oriented electrical steel sheet subjected to annealing after skin pass cold rolling, the crystal grain size before skin pass, 20μm Not less than 50 μm and skin pass cold rolling reduction of 3% or more and 12% or less, or 50 μm or more and 20% or less
If it is 0 μm or less, 12% ≧ skin pass cold rolling reduction [%] ≧ 0.
Non-directional electromagnetic with high magnetic flux density characterized by cold rolling of skin pass under the condition of 04 × grain size before skin pass [μm] + 1
This is a method for manufacturing a steel sheet.

【0007】また、上記鋼に重量% で、Ni≦2.0%、Sn≦
0.50% 、Cu≦1.0%を含有することを特徴とする上記記載
磁束密度が高い無方向性電磁鋼板の製造方法である。
In addition, Ni ≦ 2.0%, Sn ≦
A method for producing a non-oriented electrical steel sheet having a high magnetic flux density as described above, characterized by containing 0.50% and Cu ≦ 1.0% .

【0008】[0008]

【発明の実施の形態】以下に本発明の詳細を説明する。
まず、本発明の成分限定理由について述べる。C は、鉄
損を増加させる有害な成分で、磁気時効の原因となるの
で、0.010%以下とする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below.
First, the reasons for limiting the components of the present invention will be described. C is a harmful component that increases iron loss and causes magnetic aging. Therefore, the content of C is set to 0.010% or less.

【0009】Siは周知のように鉄損を下げるのに有効な
元素であり、この効果を得るためには0.1%以上含有させ
る必要がある。一方、その含有量が増えると磁束密度が
低下し、また、圧延作業性の劣化、仕上げ焼鈍温度の上
昇を招き、さらにはコスト高ともなるので2.0%以下とす
る。MnはSiと同様に鉄損を下げるのに有効な元素ではあ
るが、1.5%超になると磁束密度が下がるので1.5%以下と
する。Mnが0.05% 以下では磁気特性が劣化するので下限
は0.05% とする。
As is well known, Si is an element effective in reducing iron loss, and it is necessary to contain 0.1% or more to obtain this effect. On the other hand, when the content increases, the magnetic flux density decreases, the rolling workability deteriorates, the finish annealing temperature increases, and the cost increases, so that the content is set to 2.0% or less. Mn is an element effective in reducing iron loss like Si, but when it exceeds 1.5%, the magnetic flux density decreases, so it is set to 1.5% or less. If Mn is less than 0.05%, the magnetic characteristics deteriorate, so the lower limit is made 0.05%.

【0010】AlはSiと同様に、固有抵抗を高めて鉄損を
下げる効果があるため、含有させても良いが、本発明に
おいてはSiにより固有抵抗を高めればよいので特に下限
はもうけない。一方、Al含有量が増えると磁束密度が低
下するので、1.0%以下とする。また、Alには、固溶N を
低減させ、窒化物の微細析出を抑制する効果ももたせて
いるため、Alの少ない場合にはB を添加し、N をBNの形
で粗大析出させて無害化させることも本発明を損なわな
い。
Al, like Si, has the effect of increasing the specific resistance and lowering the iron loss, and therefore may be included. However, in the present invention, there is no particular lower limit since the specific resistance may be increased by using Si. On the other hand, when the Al content increases, the magnetic flux density decreases. In addition, since Al has the effect of reducing solid solution N and suppressing the fine precipitation of nitrides, B is added when the amount of Al is low, and N is coarsely precipitated in the form of BN to be harmless. This does not impair the present invention.

【0011】P は、0.15% を越えると鉄損を大きくする
ので0.15% 以下とする。S は0.01% を越えるとMnS など
の硫化物が微細に析出し、仕上げ焼鈍時の粒成長を阻害
し、鉄損を大きくするので0.01% 以下とする。N は0.01
% を越えるとAlN などの窒化物が微細に析出し、仕上げ
焼鈍時の粒成長を阻害し、鉄損を大きくするので0.01%
以下とする。
If P exceeds 0.15%, iron loss increases, so P is set to 0.15% or less. If S exceeds 0.01%, sulfides such as MnS precipitate finely, hindering grain growth during finish annealing and increasing iron loss. N is 0.01
%, Nitrides such as AlN precipitate finely, hindering grain growth during finish annealing and increasing iron loss.
The following is assumed.

【0012】Niは飽和磁化を向上させ、集合組織を改善
するので添加するが、過剰添加はコストアップを招くの
で2%以下とする。Snは集合組織を改善するので添加する
が、過剰添加はコストがアップし、脆性が悪化するので
0.5%以下とする。Cuは集合組織を改善するので添加する
が、過剰添加は熱延時の表面疵が増加するので1.0%以下
とする。
[0012] Ni is added to improve the saturation magnetization and improve the texture, but excessive addition causes an increase in cost, so Ni is set to 2% or less. Sn is added to improve the texture, but excessive addition increases the cost and deteriorates the brittleness.
0.5% or less. Cu is added because it improves the texture, but excessive addition is made 1.0% or less because surface flaws during hot rolling increase.

【0013】なお、Ni、Sn、Cuの下限の量については磁気
特性を左右する集合組織改善効果の観点から、それぞれ
Ni:0.1%、Sn:0.01%、Cu:0.05% を下限とする。次に製造方
法の限定理由について述べる。本発明者らは、スキンパ
ス冷延前の結晶粒径[ μm]とスキンパス冷延率[%] につ
いて検討した結果、図1に示すように両者の間には一定
の関係があることが分った。すなわち、スキンパス圧下
率は、高すぎると、引続く焼鈍において新たに再結晶核
が生成し、スキンパス冷延に続く焼鈍後の結晶粒径が微
細になり、ΔB1が向上しないので12% 以下とする。スキ
ンパス圧下率が低すぎると続く焼鈍において、粒成長の
駆動力が下がり、スキンパス冷延に続く焼鈍後の結晶粒
径が粗大化せず、ΔB1が向上しないので3%以上とする。
スキンパス冷延前の粒径が小さすぎると、スキンパス冷
延に続く焼鈍で粒成長する核が増加し、スキンパス冷延
に続く焼鈍後の結晶粒径が微細になるために、20μm 以
上とする。スキンパス冷延前の粒径を大きくしすぎる
と、スキンパス冷延あとの形状が悪化するので200 μm
以下とする。それら効果の間には、実施例で示すよう
に、スキンパス冷延前の結晶粒径が50〜200 μm のとき
は12% ≧スキンパス冷延率[%] ≧0.04×スキンパス前結
晶粒径[ μm]+1の範囲で良好となるのでこの範囲とす
る。ここで、B1とは、H が100[A/m]での磁束密度[T] を
示す。また、ΔB1とは、冷延、焼鈍後の材料を、スキン
パス冷延を行なわずに焼鈍したときのB1と、スキンパス
冷延を行なって焼鈍したときのB1の差を意味する。
The lower limit amounts of Ni, Sn, and Cu are determined from the viewpoint of the texture improvement effect that affects the magnetic properties.
Ni: 0.1%, Sn: 0.01%, Cu: 0.05% are the lower limits. Next, the reasons for limiting the manufacturing method will be described. The present inventors examined the crystal grain size [μm] before skin pass cold rolling and the skin pass cold rolling rate [%], and found that there was a certain relationship between the two as shown in FIG. Was. That is, if the skin pass rolling reduction is too high, recrystallization nuclei are newly generated in subsequent annealing, and the crystal grain size after annealing subsequent to skin pass cold rolling becomes fine, and ΔB1 does not improve. . If the skin pass rolling reduction is too low, the driving force for grain growth decreases in the subsequent annealing, and the crystal grain size after annealing subsequent to the skin pass cold rolling does not become coarse and ΔB1 does not improve.
If the grain size before skin pass cold rolling is too small, the number of nuclei that grow in the grain size after annealing after skin pass cold rolling increases, and the crystal grain size after annealing after skin pass cold rolling becomes fine. 200 μm
The following is assumed. Between these effects, as shown in Examples, when the crystal grain size before skin pass cold rolling is 50 to 200 μm, 12% ≧ skin pass cold rolling rate [%] ≧ 0.04 × crystal grain size before skin pass [μm This range is used because it is better in the range of [+1]. Here, B1 indicates the magnetic flux density [T] when H is 100 [A / m]. ΔB1 means the difference between B1 when the material after cold rolling and annealing is annealed without skin pass cold rolling and B1 when the material is annealed with skin pass cold rolling.

【0014】[0014]

【実施例】【Example】

(実施例1)以下に実施例を示す。出発素材を表1 に示
す成分の鋼とし、工程を、熱延、冷延、焼鈍、スキンパ
ス冷延後、750 ℃で2 時間保定後、炉冷とした。
(Example 1) An example is shown below. The starting material was steel having the components shown in Table 1, and the process was hot-rolled, cold-rolled, annealed, skin-pass cold-rolled, held at 750 ° C for 2 hours, and then cooled in the furnace.

【0015】[0015]

【表1】 [Table 1]

【0016】表2 にスキンパス冷延前の結晶粒径とスキ
ンパス冷延圧下率を様々に変化させた時のΔB1を示す。
スキンパス冷延前の粒径が20μm 以上50μm 未満の場合
には、スキンパス冷延圧下率を3%以上12% 以下とするこ
とにより、ΔB1が向上することがわかる。また、50μm
以上200 μm 以下の場合は、12% ≧スキンパス率[%]≧
0.04×スキンパス前結晶粒径[ μm]+1とすることにより
ΔB1が向上する。
Table 2 shows the crystal grain size before skin pass cold rolling and ΔB1 when the skin pass cold rolling reduction was variously changed.
When the particle size before skin pass cold rolling is 20 μm or more and less than 50 μm, ΔB1 is improved by setting the skin pass cold rolling reduction to 3% or more and 12% or less. Also, 50μm
12% ≧ Skin pass ratio [%] ≧ 200 μm
ΔB1 is improved by setting 0.04 × the crystal grain size before skin pass [μm] +1.

【0017】[0017]

【表2】 [Table 2]

【0018】(実施例2)出発素材を表3 に示す成分の
鋼とし、実施例1 と同様の工程で無方向性電磁鋼板を製
造した。表4に示すようにNi、Sn、Cuを添加しても実施
例1 と同様の効果があることがわかる。
Example 2 A non-oriented electrical steel sheet was manufactured in the same process as in Example 1, except that the starting material was steel having the components shown in Table 3. As shown in Table 4, it can be seen that the same effects as in Example 1 were obtained even when Ni, Sn, and Cu were added.

【0019】[0019]

【表3】 [Table 3]

【0020】[0020]

【表4】 [Table 4]

【0021】[0021]

【発明の効果】以上述べたように、本発明によれば、低
磁化力での磁束密度が高い無方向性電磁鋼板が得られ、
高効率モータ用鉄心材料として用いられる無方向性電磁
鋼板に対する要望に十分にこたえることができ、その工
業的効果は非常に大きい。
As described above, according to the present invention, a non-oriented electrical steel sheet having a low magnetic force and a high magnetic flux density can be obtained.
It can sufficiently meet the demand for non-oriented electrical steel sheets used as core materials for high-efficiency motors, and its industrial effect is very large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】スキンパス冷延前の結晶粒径とスキンパス冷延
圧下率の関係を示す。
FIG. 1 shows the relationship between the crystal grain size before skin pass cold rolling and the rolling reduction of skin pass cold rolling.

フロントページの続き (56)参考文献 特開 昭62−130259(JP,A) 特開 平2−179823(JP,A) 特開 平5−140648(JP,A) 特開 平2−263952(JP,A) 特開 平6−287640(JP,A) (58)調査した分野(Int.Cl.7,DB名) C21D 8/12 C22C 38/00 303 C22C 38/06 H01F 1/16 Continuation of the front page (56) References JP-A-62-130259 (JP, A) JP-A-2-179823 (JP, A) JP-A-5-140648 (JP, A) JP-A-2-263952 (JP) (A) JP-A-6-287640 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C21D 8/12 C22C 38/00 303 C22C 38/06 H01F 1/16

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量% で、 C ≦0.010%、 0.1%≦Si≦2.0%、 Mn≦1.5%、 Al≦1.0%、 P ≦0.15% 、 S ≦0.01% 、 N ≦0.01% 、 を含有し、残部はFe及び不可避的不純物からなる鋼を、
熱間圧延後、そのまま熱延板焼鈍なしに、もしくは熱延
板焼鈍、もしくは、自己焼鈍を施し、一回または中間焼
鈍を挟む二回以上の冷間圧延をおこなった後、焼鈍を行
ない、引続きスキンパス冷延後に焼鈍を施す無方向性電
磁鋼板の製造方法において、スキンパス前の結晶粒径
が、 20μm 以上50μm 未満の場合には、スキンパス冷延率3%
以上12% 以下、または、 50μm 以上200 μm 以下の場合は、12% ≧スキンパス冷
延率[%] ≧0.04×スキンパス前結晶粒径[ μm]+1の条件
でスキンパス冷延することを特徴とする磁束密度が高い
無方向性電磁鋼板の製造方法。
(1) In terms of% by weight, C ≦ 0.010%, 0.1% ≦ Si ≦ 2.0%, Mn ≦ 1.5%, Al ≦ 1.0%, P ≦ 0.15%, S ≦ 0.01%, N ≦ 0.01%. , The rest being steel consisting of Fe and unavoidable impurities,
After hot rolling, as it is, without hot-rolled sheet annealing, or hot-rolled sheet annealing, or self-annealing, perform cold rolling once or twice or more with intermediate annealing, then perform annealing, and then continue In the method for producing a non-oriented electrical steel sheet subjected to annealing after skin pass cold rolling, if the crystal grain size before skin pass is 20 μm or more and less than 50 μm, the skin pass cold rolling rate is 3%.
If it is not less than 12% or not less than 50 μm or not more than 200 μm, cold rolling of skin pass is performed under the condition of 12% ≧ skin pass cold rolling rate [%] ≧ 0.04 × crystal grain size before skin pass [μm] +1. High magnetic flux density
Manufacturing method of non-oriented electrical steel sheet.
【請求項2】 重量% で、更に前記鋼が、 Ni≦2.0%、 Sn≦0.50% 、 Cu≦1.0%、 を含有することを特徴とする請求項1 記載の磁束密度が
高い無方向性電磁鋼板の製造方法。
2. The magnetic flux density according to claim 1, wherein the steel further contains Ni ≦ 2.0%, Sn ≦ 0.50%, Cu ≦ 1.0% by weight.
Highly non-oriented electrical steel sheet manufacturing method.
JP34776296A 1996-12-26 1996-12-26 Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density Expired - Fee Related JP3352599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34776296A JP3352599B2 (en) 1996-12-26 1996-12-26 Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34776296A JP3352599B2 (en) 1996-12-26 1996-12-26 Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density

Publications (2)

Publication Number Publication Date
JPH10183247A JPH10183247A (en) 1998-07-14
JP3352599B2 true JP3352599B2 (en) 2002-12-03

Family

ID=18392413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34776296A Expired - Fee Related JP3352599B2 (en) 1996-12-26 1996-12-26 Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density

Country Status (1)

Country Link
JP (1) JP3352599B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4932782B2 (en) * 2002-06-26 2012-05-16 新日本製鐵株式会社 Electrical steel sheet, electrical parts using the same, and manufacturing method thereof
JP5000136B2 (en) * 2003-10-06 2012-08-15 新日本製鐵株式会社 High-strength electrical steel sheet, shape processed parts thereof, and manufacturing method thereof
JP5402694B2 (en) * 2010-02-08 2014-01-29 新日鐵住金株式会社 Method for producing non-oriented electrical steel sheet with excellent magnetic properties in rolling direction

Also Published As

Publication number Publication date
JPH10183247A (en) 1998-07-14

Similar Documents

Publication Publication Date Title
JP2012046806A (en) Method for manufacturing non-oriented electromagnetic steel sheet
JP2001303214A (en) Grain oriented silicon steel sheet excellent in high frequency magnetic property and its producing method
JP7253054B2 (en) Non-oriented electrical steel sheet with excellent magnetism and its manufacturing method
JPH1161256A (en) Production of non-oriented silicon steel sheet excellent in surface property and having low iron loss
JP2639227B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP3352599B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density
EP3940104A2 (en) Non-oriented electrical steel sheet and method for producing same
JP3399726B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JP3492075B2 (en) Non-oriented electrical steel sheet having excellent thermal conductivity and method for producing the same
JP3430794B2 (en) Non-oriented electrical steel sheet excellent in magnetic properties and method for producing the same
JP3037878B2 (en) Non-oriented electrical steel sheet excellent in iron loss after strain relief annealing and method for producing the same
JP2898789B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
EP3859036A1 (en) Non-oriented electrical steel sheet and manufacturing method therefor
JP2898793B2 (en) Method for producing non-oriented electrical steel sheet having high magnetic flux density and low iron loss
JP3424178B2 (en) Non-oriented electrical steel sheet with low iron loss
JP2870818B2 (en) Manufacturing method of full process non-oriented electrical steel sheet with excellent magnetic properties
JP2515146B2 (en) Non-oriented electrical steel sheet manufacturing method
JP2503111B2 (en) Manufacturing method of non-oriented electromagnetic thick plate with excellent magnetic properties
JPH09228005A (en) Non-oriented silicon steel sheet of high magnetic flux density and low core loss excellent in heat conductivity, and its manufacture
JP2724659B2 (en) High magnetic flux density unidirectional electrical steel sheet with excellent magnetic properties
KR920004950B1 (en) Making process for the electric steel plate
JP2001262289A (en) NONORIENTED SILICON STEEL SHEET EXCELLENT IN MAGNETIC PROPERTY IN >=1 kHz FREQUENCY REGION
JP3766745B2 (en) Non-oriented electrical steel sheet with low iron loss after magnetic annealing
JP2898792B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetism
JPS63134631A (en) Manufacture of semi-processed electrical steel sheet

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020813

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070920

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080920

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090920

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100920

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100920

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110920

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120920

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120920

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130920

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130920

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130920

Year of fee payment: 11

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130920

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees