JPS58123848A - Wear resistant high permeability alloy for magnetic recording and reproducing head, its manufacture and magnetic recording and reproducing head - Google Patents

Wear resistant high permeability alloy for magnetic recording and reproducing head, its manufacture and magnetic recording and reproducing head

Info

Publication number
JPS58123848A
JPS58123848A JP57006077A JP607782A JPS58123848A JP S58123848 A JPS58123848 A JP S58123848A JP 57006077 A JP57006077 A JP 57006077A JP 607782 A JP607782 A JP 607782A JP S58123848 A JPS58123848 A JP S58123848A
Authority
JP
Japan
Prior art keywords
less
alloy
composition
small amount
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57006077A
Other languages
Japanese (ja)
Other versions
JPS6212296B2 (en
Inventor
Ryo Masumoto
量 増本
Yuetsu Murakami
雄悦 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute for Electromagnetic Materials
Original Assignee
Research Institute for Electromagnetic Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute for Electromagnetic Materials filed Critical Research Institute for Electromagnetic Materials
Priority to JP57006077A priority Critical patent/JPS58123848A/en
Publication of JPS58123848A publication Critical patent/JPS58123848A/en
Publication of JPS6212296B2 publication Critical patent/JPS6212296B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To increase the saturation magnetic flux density of an Ni-Fe-Nb alloy without deteriorating the wear resistance and the effective permeability in a high frequency magnetic field by reducing the Nb content of the alloy and by adding a small amount of O. CONSTITUTION:This wear resistant high permeability alloy for a magnetic recording and reproducing head with >=5,000G saturation magnetic flux density consists of, by weight, 5-65% Fe, 0.5-10% Nb, 0.0003-0.1% O, a small amount of impurities and the balance Ni or further contains 0.01-30% in total of one or more among <=30% Cu, <=15% each of W, Ta and Mn, <=10% each of Mo and Co, <=5% each of Cr, V, Ti, Ge, Ga, In and T, <=3% each of Al, Si, Zr, Hf, a rare earth element and a Pt group element, and <=2% each of Be, Sn, Sb, B and P as secondary components. The alloy is heated at about 600 deg.C- the m.p. in a nonoxidizing atmosphere or in vacuum for a suitable time of >= 1min according to the composition, and it is cooled from a temp. above the order- disorder lattice transformation point to ordinary temp. at a suitable cooling rate of about 100 deg.C/sec-1 deg.C/hr according to the composition.

Description

【発明の詳細な説明】 本発明は交流磁界における磁気特性および耐摩耗性がす
ぐれ、鍛造加工か容易で磁気記録再生ヘッドに好適なI
I&透磁率合金およびその製造法ならびに磁気記細書生
ヘッドに闘するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention has excellent magnetic properties and wear resistance in an alternating magnetic field, is easy to forge, and is suitable for magnetic recording/reproducing heads.
I & permeability alloys and their manufacturing methods as well as magnetic writing heads.

テープレコーダーなどの磁気記録再生ヘッドは交諦磁界
において作動するものであるから、これVこ用いられる
磁性合金はimJ&波磁界における実効値磁率か高いこ
とが必要とされ、また磁気テープが接触して摺割するた
め鮒鯖耗性が良好であることか彊まれでいる。現在、耐
I11耗性にすぐれた磁気ヘッド用磁性合金としては一
センダスト(Fe−8i−All金合金およびフェライ
ト(MnO−ZnO−Fe、O3)かあるが、これらは
非常に硬く脆いため、鍛造、圧延加工が不可能で、ヘッ
ドコアの製造には研削、研磨の方法が用いられており、
従ってその成1品は、t、価である。またセンダストは
飽和磁束密度は大きい力)薄板にできないので一周仮磁
界における実効應−Φが比較的小さい。またフェライト
は実効値M!率は大きいか、飽和磁束密度が5000G
以下で小さいのが欠点である。他方パーマロイ(Ni 
−Fe糸金合金は鍛造、圧延列再および打抜きは容易で
it産性にすぐれているか、軟、く摩耗しや1いのが大
きな欠点である。
Since magnetic recording and reproducing heads such as tape recorders operate in an alternating magnetic field, the magnetic alloy used in this case must have a high effective value magnetic coefficient in the imJ & wave magnetic field, and the magnetic tape must be in contact with the This is probably due to the fact that the carp and mackerel have good abrasion resistance because they are cut into pieces. Currently, Ichisendust (Fe-8i-All gold alloy) and ferrite (MnO-ZnO-Fe, O3) are available as magnetic alloys for magnetic heads with excellent I11 wear resistance, but these are extremely hard and brittle, so forging , rolling is impossible, and grinding and polishing methods are used to manufacture the head core.
Therefore, the product has a value of t. In addition, since Sendust cannot be made into a thin plate (the saturation magnetic flux density is large), the effective value -Φ in a one-round temporary magnetic field is relatively small. Also, the effective value of ferrite is M! The rate is large or the saturation magnetic flux density is 5000G
The disadvantage is that it is small. On the other hand, permalloy (Ni
-Fe thread metal alloys are easy to forge, roll and punch and have excellent IT productivity, but their major drawbacks are that they are soft and easily abraded.

本光明首らはNi −F6糸合金の耐摩耗性についての
研究を行い、先に特公昭47−29690号においてN
i−Fe −Nb系合金を発明した。このNi −Fe
 −Nb系合金は、鍛造加工か容易でIIFI摩耗性に
すぐれ、磁気記録再生ヘッドに適した磁性合金であるが
、その後、磁気記録再生機において記録密度を高めるた
め一保磁力の磁気テープか採用されるようになり、それ
に伴って磁気ヘッド用磁性合金としては高い飽和磁束積
度を有することか必要とされるようになってきた。この
ため、Ni −Fe −Nb系合金においても、飽和磁
束密度を高めるため、非磁性添加物であるNbl1を減
する傾向になってきた。しかし、Nb1l;を識少する
とNi −Fe −Nb系合金の鋏度および%動抵抗の
低−トをきたし、それによって耐Hk性および1%+f
l)t@ f W界における実効透t&i牟を劣化させ
ることになり、適切な方法とは考えられない。したかつ
て目下何等かの改善策か強<!If’亭されている。
Akihisa Honko et al. conducted research on the wear resistance of Ni-F6 thread alloys, and previously published N
Invented i-Fe-Nb alloy. This Ni-Fe
- Nb-based alloys are easily forged and have excellent IIFI abrasion resistance, making them suitable for magnetic recording/reproducing heads. Later, magnetic tapes with a coercive force of 1 were adopted in magnetic recording/reproducing machines to increase the recording density. As a result, magnetic alloys for magnetic heads are required to have a high saturation magnetic flux density. For this reason, even in Ni-Fe-Nb alloys, there has been a trend to reduce the content of Nbl1, which is a non-magnetic additive, in order to increase the saturation magnetic flux density. However, if the Nb1l;
l) t@f This is not considered an appropriate method as it will degrade the effective transmission t & i in the W world. However, there are currently some improvement measures in place! If'tei is.

本発明はNi −Fe −Nb系合金の飽和磁束密度を
できるだけ低下させずに、耐摩耗性および実効透&d率
を優位に保持しようとするもので、銑多研究σ)結果N
i−ye −Nb系合金に酸素を少量添加するとニオブ
の酸化物を生じニオブと酸素の相乗効果によりその目的
が達成されたのである。
The present invention aims to maintain superior wear resistance and effective permeability without reducing the saturation magnetic flux density of the Ni-Fe-Nb alloy as much as possible.
When a small amount of oxygen is added to the i-ye-Nb alloy, niobium oxide is produced, and the synergistic effect of niobium and oxygen achieves this objective.

すなわち、一般に高市磁率合金では酸化物などの非金属
介在物は磁気特性を劣化させるものとして、これを極力
除去することに努めている刀・、杢屍明では微量のNb
糸除化物を積極的に生成さゼて、Ni−Fe−Nb系合
金の耐摩耗性および実S、 S磁率を改善しようとする
ものである。
In other words, in general, non-metallic inclusions such as oxides are considered to deteriorate the magnetic properties of alloys with high magnetic flux, and efforts are made to remove them as much as possible.
This method aims to improve the wear resistance and the real S and S magnetic properties of the Ni-Fe-Nb alloy by actively producing thread removal products.

本発明はwit比にて&)5〜66%、ニオ10.5〜
lO%、酸素o、oooa〜o、i%(特に0.001
〜0.1%)、少量の不純物と残部ニッケルからなるか
、またはこれを主成分とし、側成分として6ao%以下
、タングステン、タンタル、マンガンのそれぞれ16%
以下、% ’) フf ン、 :1バルトのそれぞれ1
0%以下、クロム、バナジウム、チタン、ゲルマニウム
、ガリウム、インジウム、タリウムのそれぞれ5%以下
、アルミニウム、ケイ累、ジルコニウム、ハフニウム。
The present invention has a wit ratio of &) 5 to 66%, and a niobium of 10.5 to 66%.
lO%, oxygen o, oooa~o, i% (especially 0.001
~0.1%), with a small amount of impurities and the balance nickel, or with this as the main component, and side components of 6ao% or less, 16% each of tungsten, tantalum, and manganese.
Hereinafter, %') F, :1 each of Baltic 1
0% or less, 5% or less of each of chromium, vanadium, titanium, germanium, gallium, indium, and thallium, aluminum, silica, zirconium, and hafnium.

布土類元業、白金族元素のそれぞれ8%以下、ベリリウ
ム、錫、アンチモン、ホウ紫、リンのそれぞれ8%以下
の1柳または2柳以上の合計0.01〜80%、少量の
不純物と残部鉄からなり、飽和磁束密度500Q G以
上を有し、耐摩耗性および実効透磁率がすぐれ、磁気記
録再生ヘッド噂に使用し得る11iI!l透磁率磁性合
金に係る。
A total of 0.01-80% of 1 or more of 8% each of platinum group elements, 8% or less of each of beryllium, tin, antimony, phosphorus, and phosphorus, with a small amount of impurities. The remainder is made of iron, has a saturation magnetic flux density of 500 Q G or more, has excellent wear resistance and effective magnetic permeability, and can be used for magnetic recording/reproducing heads. l permeability pertains to magnetic alloys.

さらに本発明は上記の11i&透磁率合金をケースおよ
びコアに用いて製造した耐摩耗性にすぐれた磁気記録再
生ヘッドに係る。
Furthermore, the present invention relates to a magnetic recording/reproducing head with excellent wear resistance manufactured using the above-mentioned 11i & magnetic permeability alloy for the case and core.

本発明の合金を造るには、まず主成分の鉄6〜65%、
ニオブ0.5〜lO%および残部ニッケルの過当型を非
酸化性雰−気中あるいは′JjI&全中において過当゛
な語解炉を用いて溶解じた後、過当なhM、#に剤、脱
硫剤を少量添加してできるたけ不純物を−取り除き、そ
のままか、更にこれにwsao%以下、タングステン、
タンタル、マンガンのそれぞれ15%以下、モリブデン
、コバルトのそれぞれ10%以下、クロム、バナジウム
、チタン、ゲルマニウム、ガリウム、インジウム、タリ
ウムのそれぞれ6%以下、アルミニウム、ケイ素、ジル
コニウム、ハフニウム、希土類元素、白金族元素のそれ
ぞれ8%以下、ぺIJ IJウムl m lアンチモン
、ホウ素、リンのそれぞれ2%以下のlfiまたは2棟
以上の合計0.01〜80%の定量をか加して充分に攪
拌し、組成的に均一な溶融合金を造る。ついで酸素ガス
かあるいは酸素を含んだ適当なガスを炉内に注入して調
圧するか、あるいは合金成分の酸化物を適当量添加する
ことにより、溶融合金に適当量の酸素を添加する。
To make the alloy of the present invention, first the main component iron is 6 to 65%,
After melting 0.5 to 10% of niobium and the balance of nickel in a non-oxidizing atmosphere or in a suitable decomposition furnace, it is subjected to excessive hM, #, desulfurization. Add a small amount of agent to remove as much impurity as possible, and then add tungsten, tungsten, or
15% or less each of tantalum and manganese, 10% or less each of molybdenum and cobalt, 6% or less each of chromium, vanadium, titanium, germanium, gallium, indium, and thallium, aluminum, silicon, zirconium, hafnium, rare earth elements, and platinum group metals. Add 8% or less of each of the elements, 2% or less of each of antimony, boron, and phosphorus, or a total of 0.01 to 80% of two or more, and stir thoroughly, Create a compositionally uniform molten alloy. Next, an appropriate amount of oxygen is added to the molten alloy by injecting oxygen gas or an appropriate gas containing oxygen into the furnace to adjust the pressure, or by adding an appropriate amount of an oxide of an alloying component.

次にこれを適当な形および大きさの鋳型に注入して健全
な一塊を得、さらにこれを高温において鍛遺熱闇圧延お
よび冷開圧延などの成形加工を施して目的の形状のもの
、例えば厚さ0.1鴎の薄板を遣る。
Next, this is poured into a mold of an appropriate shape and size to obtain a healthy lump, which is then subjected to forming processes such as forging hot dark rolling and cold open rolling at high temperatures to form the desired shape, e.g. Use a thin plate with a thickness of 0.1.

次にその薄板から目的の形状、寸法のものを打抜き、こ
れを適当な非畷化性雰囲気中あるいは真空中で再結晶温
度以上、すなわjち約600”C以上、符に800℃以
上融点以下の温度に1分間以上加熱し、ついで組成に対
応した適当な速度、例えは100’C/秒〜1゛C/時
で冷却する。合金の組成によってはこれをさらに約60
0℃以下の温度(規則格子−不規則格子変態点以下の温
度)、特に200〜600℃に1分間以上100時間以
下加熱し、冷却することにより飽和磁束密度5000 
G以上を有し、船Ml耗性にすぐれた^透磁率磁性合金
を得ることかできる。
Next, punch out a piece of the desired shape and size from the thin plate, and heat it in a suitable non-foaming atmosphere or in a vacuum at a temperature above the recrystallization temperature, that is, about 600"C or above, and a melting point above 800"C. Heat to the following temperature for 1 minute or more, then cool at an appropriate rate depending on the composition, e.g. 100'C/sec to 1'C/hour.
The saturation magnetic flux density is 5000 by heating to a temperature of 0°C or lower (regular lattice-irregular lattice transformation point or lower), especially 200 to 600°C for 1 minute or more and 100 hours or less, and cooling.
It is possible to obtain a permeability magnetic alloy having a magnetic permeability of more than G and excellent wear resistance.

上記の溶体化温度から規則−不規則格子変態点(約60
0℃)以上の温度までの冷却は、急冷しても徐冷しても
得られる磁性には大した変りはないが、この変態点以下
の冷却速度は磁性に大きな影響を及はす。すなわちこの
変態点以上の温度より100℃/抄〜1℃/時の組成に
対応した適当な速度でN温迄冷却することにより、地の
規則度がS度に1iIll盛され、すぐれた磁性が得ら
れる。そして上記の冷却速度の内100℃/秒に近い速
度で急冷すると、規則度が小さくなり、これ以上連く冷
却すると規則化−辿まず、規則度はさらに小さくなり磁
性は劣化する。しかしその規則度の小さい合金をその変
態点以下のgoθ℃〜600℃に再加熱し冷却すると、
規則化が進んで適度な規則度0.1〜0.6となり磁性
は向上する。他方、上記の変!庫点以上の温度から、例
えば1°C/時以下の速度で徐冷すると、規則化は進み
すぎ、磁性は低ドする。
From the above solution temperature to the regular-disordered lattice transformation point (approximately 60
When cooling to a temperature of 0° C. or higher, there is no significant difference in the magnetism obtained whether the cooling is rapid or gradual, but the cooling rate below this transformation point has a significant effect on the magnetism. In other words, by cooling from a temperature above this transformation point to N temperature at an appropriate rate corresponding to the composition of 100°C/1°C/hour, the regularity of the earth is increased to 1°C, and excellent magnetism is achieved. can get. If the material is rapidly cooled at a rate close to 100 DEG C./second among the above cooling rates, the degree of order decreases, and if the cooling continues any longer than this, the degree of order does not follow, and the degree of order decreases further and the magnetism deteriorates. However, if the less ordered alloy is reheated and cooled to goθ℃~600℃ below its transformation point,
Regularization progresses to a moderate degree of regularity of 0.1 to 0.6, improving magnetism. On the other hand, the above strange! If the material is slowly cooled from a temperature above the storage point at a rate of, for example, 1° C./hour or less, the ordering will be too advanced and the magnetism will be low.

次に本発明の実施例について述べる。Next, embodiments of the present invention will be described.

襄伽例 1 合金査号18(組成Ni−81,0%、Nb−5,0%
、0.−0.022伽、残@Fe) 試料を造るには上記組成の合金材料の全重量800gを
アルミナ坩堝に入れ、真空中で高周仮肪導炉によって溶
かした後、よく攪拌して均質なj81&合金とした。つ
いで酸素ガスを炉内に注入し、6 X 10−” To
rrに調圧して5分間保持した後これを1住g5ms0
、尚さ170111+の孔をもつ齢皺に注入し、得られ
た#塊を約1000℃で鍛造して厚さf’J 7 mの
板とした。さらに約600〜900℃の間で厚さlag
まで熱間圧制し、ついで常温で冷間圧延を施して0.1
11111の薄板とし、それから外径45鵬、内極8δ
■の環状板および磁気ヘッドのコアを打ち抜いた。つき
にこれらに第1表に示す神々な熱処理を施し、環状板で
磁気特性および硬度を、またコアを用いて磁気ヘッドを
製造し、表面粗さ計で磁気テープ(Orb、 )による
z00時間時間後の摩耗量を測定して第11表のような
結米を得た。
Jyoga Example 1 Alloy No. 18 (Composition Ni-81.0%, Nb-5.0%
,0. -0.022伽、Remaining @Fe) To make a sample, put the total weight of 800 g of the alloy material with the above composition into an alumina crucible, melt it in a high-frequency induction furnace in vacuum, and stir well to make a homogeneous material. j81 & alloy. Oxygen gas was then injected into the furnace, and 6
After adjusting the pressure to rr and holding it for 5 minutes, set it to 1g5ms0.
, and 170111+ holes were injected into the age wrinkles, and the obtained # block was forged at about 1000° C. into a plate with a thickness of f'J 7 m. Furthermore, the thickness lag between approximately 600 and 900℃
Hot pressed to 0.1, then cold rolled at room temperature
11111 thin plate, outer diameter 45mm, inner pole 8δ
(2) The annular plate and the core of the magnetic head were punched out. Then, these were subjected to the divine heat treatment shown in Table 1, and the annular plate was used to check the magnetic properties and hardness, and the core was used to manufacture a magnetic head, and a surface roughness meter was used to test the magnetic tape (Orb, ) for z00 hours. The amount of wear afterwards was measured and the grains shown in Table 11 were obtained.

実施例 8 合金番号87(組成Ni−80,5%、Nk)−7,0
%、 No−1,5%。
Example 8 Alloy number 87 (composition Ni-80.5%, Nk)-7.0
%, No-1,5%.

0、−0.016%、残部ye ) 試料を造るには上記組成の合金材料の全重飯800gを
アルミナ坩堝に入れ、真空中で高周波誘al111I気
炉によって溶かした後よく攪拌して溶融合金とした。つ
いで大気を炉内に注入し、l X 10−”TOrrに
調圧して6分間保持した。その後の製造工程は実施例1
と同じである。試料に種々の熱処理を施して第2表に示
すような特性が得られた。
0, -0.016%, balance ye) To make a sample, put 800 g of all the heavy rice of the alloy material with the above composition into an alumina crucible, melt it in a high-frequency induced Al111I air furnace in vacuum, and stir well to form the molten alloy. And so. Then, atmospheric air was injected into the furnace, and the pressure was adjusted to 1 x 10-'' TOrr and held for 6 minutes.The subsequent manufacturing process was as in Example 1.
is the same as The samples were subjected to various heat treatments and the properties shown in Table 2 were obtained.

243− つぎに第8表には1160°Cの真空中で2時間加熱し
た後、600℃から積々な速度で常温まで冷却するか、
あるいはこれをさらに600℃以)の温度で再加熱して
、常温で測定された代表的7j合金の緒特性が示しであ
る。
243- Next, Table 8 shows that after heating in a vacuum at 1160 °C for 2 hours, cooling from 600 °C at an increasing rate to room temperature,
Alternatively, this was further reheated at a temperature of 600° C. or higher, and the properties of a typical 7j alloy measured at room temperature are shown below.

つぎに本発明合金の酸素添加効果について図面によって
詳細に述べる。第1図には8.1%Ni−Te1−6%
Nb −0合金について酸素量と飽和磁束密度、実効珈
磁率、硬度および摩耗量との関係が示しである。一般に
醗素皺の増加とともに硬度は著しく増大し、同時に摩*
皺は着しく減少するが、特に酸素の微量添加で極めてそ
の効果が大きい。
Next, the effect of oxygen addition to the alloy of the present invention will be described in detail with reference to the drawings. Figure 1 shows 8.1%Ni-Te1-6%
The relationship between oxygen content, saturation magnetic flux density, effective magnetic constant, hardness, and wear amount is shown for Nb-0 alloy. In general, as the number of wrinkles increases, the hardness increases significantly, and at the same time, the hardness increases
Wrinkles are significantly reduced, and the effect is particularly great when a small amount of oxygen is added.

また、一般に酸素の添加は磁気記録再生ヘッドを作動さ
せる交流磁界、特に高周波磁界におし)て実効透磁率を
高める効果が大きい。しかし@素が0.1%以上では鍛
造、加工が困難となり、また磁気特性も磁気ヘッド用磁
性合金として不適当になることがわかる。
Furthermore, in general, the addition of oxygen has a great effect of increasing the effective magnetic permeability in an alternating current magnetic field (particularly a high frequency magnetic field) that operates a magnetic recording/reproducing head. However, it can be seen that if the @ element content exceeds 0.1%, forging and processing become difficult, and the magnetic properties become unsuitable as a magnetic alloy for a magnetic head.

本発明合金のこのような高い硬度および耐摩耗性の同上
はニオブの効果により、Ni−Fe合金の地がb!il
′m体硬化するが、これに酸素を添加すると強固なニオ
ブ糸酸化物、その他ニッケル糸および鉄系酸化物が、地
に微細に析出して、さらに硬化が進むものと考えられる
。また、これらの酸化物の微細な析出は磁区を分割して
aIllを増加させるJ)で、交fM磁界における磁壁
の移動速度を相対的に減少させ、そのため詣・電流損失
が小さくなり、人きな実効ろ磁率が得られるものと考え
られる。
The high hardness and wear resistance of the alloy of the present invention is due to the effect of niobium, which is why the Ni-Fe alloy has a b! il
It is believed that when oxygen is added to this, strong niobium thread oxides, other nickel threads, and iron-based oxides are finely precipitated on the ground, causing further hardening. In addition, the fine precipitation of these oxides divides the magnetic domain and increases aIll, which relatively decreases the movement speed of the domain wall in the alternating fM magnetic field, which reduces the current loss and the human population. It is thought that a good effective magnetic flux rate can be obtained.

さらに#Ill成分として添加するOu 、 W 、 
’ra 。
Furthermore, Ou, W, which are added as #Ill components,
'ra.

Mn 、 Mo 、 Co 、 Or 、 V 、 T
i 、 Go 、 Ga # In 。
Mn, Mo, Co, Or, V, T
i, Go, Ga # In.

Tt 、ムl 、 Si 、 Zr 、 Hf 、希土
類元素、白金族元素、 Be 、 Sn 、 Sb 、
 BおよびP尋は本発明台盤の電気抵抗を高める効果が
あり、またcoは飽和磁束密度を高めるのに有効であり
、さらにQu。
Tt, Mul, Si, Zr, Hf, rare earth elements, platinum group elements, Be, Sn, Sb,
B and P are effective in increasing the electrical resistance of the base plate of the present invention, co is effective in increasing the saturation magnetic flux density, and Qu is effective in increasing the saturation magnetic flux density.

w 、 Ta 、 v 、 xi 、 Ge 、 Ga
 、 工n 、 TI 、ムl。
w, Ta, v, xi, Ge, Ga
, Eng., TI, Mul.

Si 、 Zr 、 Hf 、希土類元素、白金族元素
、Be。
Si, Zr, Hf, rare earth elements, platinum group elements, Be.

sn 、 Sk+ + BおよびpHjpは本発明合金
の耐摩耗性を&!#Iする効果が大きい。またこれらの
副成分も酸化物を生成し、上記のように実効透Mi亭お
よびN離れ性を改善する。要するに本発明合金は飽和磁
束音度が50000y以上であるので、磁気ヘッド用磁
性合金として好適であるばかりでなく、実効透磁率が大
きく、硬度が高く耐摩耗性がすぐれ、且つ加工性か良好
なのでVTRおよび電子*m機の磁気記録両生ヘッドな
らひに普通の11気機器などに用いる磁性材料としても
非常に好適である。
sn, Sk+ + B and pHjp are the wear resistance of the alloy of the present invention &! The effect of #I is great. In addition, these subcomponents also generate oxides, which improve the effective transmission of Mi and N separation properties as described above. In short, the alloy of the present invention has a saturation magnetic flux sonicity of 50,000y or more, so it is not only suitable as a magnetic alloy for magnetic heads, but also has a large effective permeability, high hardness, excellent wear resistance, and good workability. It is also very suitable as a magnetic material for use in magnetic recording heads of VTRs and electronic machines, as well as ordinary 11-degree equipment.

次に本発明において合金の組成を鉄5〜65%、ニオブ
0.5〜10%、酸素o、oooa〜0.1%および残
部ニッケルと限定し、またこれに添加する元素な銅80
%以下、タングステン、タンタル、マンガンのそれぞれ
16%以下、そリブデン、コバルトのそれぞれ7%以下
、りpム、バナジウム。
Next, in the present invention, the composition of the alloy is limited to 5 to 65% iron, 0.5 to 10% niobium, oxygen o, oooa ~ 0.1%, and the balance nickel, and the elemental copper 80 added to this is
% or less, 16% or less each of tungsten, tantalum, and manganese, 7% or less each of sorybdenum, cobalt, lime, and vanadium.

チタン、ゲルマニウム、ガリウム、インジウム。Titanium, germanium, gallium, indium.

タリウムのそれぞれ5%以下、アルミニウム、ケイ素、
ジルコニウム、ハフニウム、希土類光m。
Less than 5% each of thallium, aluminum, silicon,
Zirconium, hafnium, rare earth light m.

白金族元素のそれぞれ8%以下、ベリリウム、鋤。Less than 8% of each of the platinum group elements, beryllium, and plow.

アンチモン、ホウ案、リンのそれぞれ2%以下の1糎ま
たは21に以上の合計0.01〜80%と限定した理由
は、実施例、第8表および図面で明らかなように、その
組取範Hの飽和磁束密度は6000G以上で、実効透磁
率および硬度が舖く耐摩耗性にすぐれ、且つ加工性も良
好であるが、組成がこ□ の範囲をはずれると飽和磁束密度が5000G以下とな
り、実効X!l!碩率および硬度が低下し、摩耗が大き
くなり、且つ加工が困難となり、磁気記録用生ヘッドの
材料として不適当となるからである。
The reason for limiting antimony, phosphorus, and phosphorus to a total of 0.01 to 80% of each of 2% or less, or 21, is based on the scope of the work, as is clear from the examples, Table 8, and drawings. The saturation magnetic flux density of H is 6000G or more, which has low effective magnetic permeability and hardness, excellent wear resistance, and good workability. However, if the composition is outside this range, the saturation magnetic flux density becomes 5000G or less, Effective X! l! This is because the grain size and hardness decrease, wear increases, and machining becomes difficult, making it unsuitable as a material for magnetic recording raw heads.

すなわち、ニオブが0.6%以下および酸素がo、oo
os%未満では添加効果が小さく、ニオブが10%を越
えると飽和磁束密度が5000 G以1となり、また眼
識か0.1%を越えると#I71造加工が困鈍となる。
That is, niobium is 0.6% or less and oxygen is o, oo
If the content of niobium is less than os%, the effect of the addition will be small; if the content of niobium exceeds 10%, the saturation magnetic flux density will be 5000 G or more, and if it exceeds 0.1%, the #I71 manufacturing process will become difficult.

そしてこれに副成分として一80%以下、タングステン
15%、マンガン15%、モリブデン10%、クロムb
%、バナジウムIS%、チタン5%、ゲルマニウム5%
、ガリウム5%、イリジウム6%、タリウム5%、アル
ミニウム8%、ライ紮8%、ハフニウム8%、希土類元
素8%、白金族元素8%のそれぞれを越え珍加すると飽
和′giJ1 彷Itが15000 G以下となるから
であり、ベリリウム2%、−2%、アンチモン8%、ホ
ウ素2%、リン2%のそれぞれを越えてか加すると鍛造
あるいは加工が困難となるからであり、Ooを10鵞を
柩え添加すると”実効透磁率が小さくなるからである。
In addition, the subcomponents are less than 180%, 15% tungsten, 15% manganese, 10% molybdenum, and chromium B.
%, vanadium IS%, titanium 5%, germanium 5%
, 5% gallium, 6% iridium, 5% thallium, 8% aluminum, 8% lithium, 8% hafnium, 8% rare earth elements, and 8% platinum group elements. This is because it becomes difficult to forge or process if beryllium exceeds 2%, -2%, antimony 8%, boron 2%, and phosphorus 2%. This is because the effective magnetic permeability decreases when .

     □ なお、第8表より明らかなように、Ni−Fe−Nb 
−0糸合金に#lll1戊分の何れかを入れると実効透
磁率は更に大きくなり、また、硬度も高くなり、耐摩耗
性が改善されるのでこれらの副成分の添加は同−効果で
あり、同効成分と見做し得る。また、希土類元素はスカ
ンジウム、イツトリウムおよびランタン糸元素からなる
ものであるが、その副成分添加効果は全く同一であり、
白金族元素は白金。
□ Furthermore, as is clear from Table 8, Ni-Fe-Nb
Adding any of #llll1 to the -0 thread alloy increases the effective magnetic permeability, increases the hardness, and improves the wear resistance, so the addition of these subcomponents has the same effect. , can be regarded as having the same effect. In addition, the rare earth elements are composed of scandium, yttrium, and lanthanum thread elements, but the effects of adding the subcomponents are exactly the same,
The platinum group element is platinum.

イリジウム、ルテニウム、ロジウム、ノ(ラジウム。Iridium, Ruthenium, Rhodium, Radium.

オスミウムからなるが、その効果も全く同一であるO 尚、炭素、室累および硫黄は一般に加工性を損うが、硬
度を高め耐摩耗性を改善するので、それぞれ0.1%ま
では有効であり本発明合金に不純物として含4されても
走支えない。
It consists of osmium, but its effects are exactly the same.Although carbon, carbon dioxide and sulfur generally impair workability, they increase hardness and improve wear resistance, so they are effective up to 0.1% each. However, even if it is included as an impurity in the alloy of the present invention, it will not support running.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は81%N1−Fe−6%Nk)−0合金17)
i[皺と実効透磁率、飽和磁束密度、硬度および摩耗型
との関係を示す特性図である。
Figure 1 shows 81%N1-Fe-6%Nk)-0 alloy17)
FIG. 2 is a characteristic diagram showing the relationship between wrinkles, effective magnetic permeability, saturation magnetic flux density, hardness, and wear type.

Claims (1)

【特許請求の範囲】 L 菖菖比にて1l(6〜66%、ニオ10.5〜10
%、瞭索0.0008〜0.1%、少量の不純物と残部
ニッケルからなり、飽和磁束密度5000G以上を肩す
ることを特徴とする磁気記録再生ヘッド用耐摩耗性高迭
磁率合金。 l 厭厭比にて鉄6〜65%、ニオ10.5〜10%、
酸系o、oooa〜0.1%、少量の不g物と残部ニッ
ケルからなる合金を主成分とし、副成分としてw480
%以下、タングステン、タンタル、マンガンのそれぞれ
15%以下、モリブデン、コバルトのそれぞれ10%以
下、クロム、バナジウム、チタン、ゲルマニウム。 ガリウム、インジウム、タリウムのそれぞれ5%以′土
、アルミニウム、ケイ素、ジルコニウム、/17エウム
、希土如元素、白金族元素のそれぞれ8%以下、ベリリ
ウム、銅、アンチモン、ホウ素、リンのそれぞれ2%以
下の14ililまたは8種以上の合計0.01〜80
%を含有してなり、飽和磁束密度5000G以上を有す
ることを%微とする磁気記録再生ヘッド用耐摩耗性ll
16透磁亭合金。 1 重量比にて鉄5〜66%、ニオブ0.r1〜10%
、酸素o、oooa〜0.1%、少量の不純物と残部ニ
ッケルからなる合金を600℃以上融点以下の温度で非
酸化性雰囲気あるいは真空中において、少くとも1分間
以上、組成に対応した過当時間加熱した後、規則−不規
則格子減線点以上の湿度から100℃/lEp〜1℃層
の組成に対応した過当な速度で常温まで冷却することを
特徴とする磁気記録再生ヘッド用耐華耗性鳥透磁率合金
の製造法。 娠 恵を比にて鉄5〜65%、ニオブ0.5〜10%、
酸素o、oooa〜0.1%、少量の不純物と残部ニッ
ケルからなる合金を主成分とし、副成分として銅80%
以下、タングステン、りンタル、マンガンのそれぞれ1
6%以下、モリブデン、フバルFのそれぞれ10%以下
、クロム、バナジウム、チタン、ゲルマニウム。 ガリウム、インジウム、タリウムのそれぞれ5%以下、
アルミニウム、ケイ素、ジルコニウム、ハフニウム、希
土類元素、白金族元素のそれぞれ8%以下、ペリi)ラ
ム、錫、アンチモン、ホウ素、リンのそれぞれ8%以下
の11+または2棟以上の合計0.01〜80%を含有
してなる合金を600℃以上融点以下の温度で非酸化性
雰囲気あるいは呉空中において、少くとも1分間以上、
組成に対応した適当#1間加熱した後、規則−不規則格
子変態点以上の温度から100℃/秒〜1℃/時の組成
に対応した適当な速度で常温まで冷却することを特徴と
する磁気記録再生ヘッド用耐摩耗性高透1i1f率合金
の製造法。 & 重量比にて鉄b〜65%、ニオ10.5〜10%、
酸素o、 o o o a〜0.1%、少量の不純物と
残S=ツケルかうなる合金を600 ’C以上融点以下
の温度で非酸化性雰囲気あるいは真空中において少くと
も1分間以上100時間以下の組成に対応した適当時間
加熱した後、規則−不規則格子変態点以上の温度から1
00℃/秒〜1°C/時の組成に対応した適当な速度で
常温まで冷却し、これをさらに規則−不規則変態点以下
の温度で非酸化性雰囲気中あるいは真空中において1分
間以上、組成に対応した適当時間加熱し、冷却すること
を特徴とする磁気記録再生ヘッド用耐摩耗性に透磁率合
金の製造法。 a 重量比にてflに5〜61s%、ニオ10.5〜1
0%、酸素o、oooa〜0.1%、少量の不純物と残
部ニッケルからなる合金を主成分とし、副成分として一
80%以下、タングステン。 タンタル、マンガンのそれぞれ15%以下、モリブデン
、コバ□・ルトのそれぞれ10%以下、クロム、バナジ
ウム、チタン、ゲルマニウム、   ′ガリウム、イン
ジウム、タリウムのそれぞれ5%以下、アルミニウム、
ケイ素、ジルコニウム、ハフニウム、希土類元素、白金
族元素のそれぞれ8%以下、ベリリウム、#1.アンチ
モン、ホウ素、リンのそれぞれ2%以下の1権または2
権以上の合計0.01〜80%を含有してなる合金を6
−OO°C以上融点以下の湿度で非酸化性j1囲気ある
いは真空中において少くとも1分間以上100時間以下
の組成に対応した適当時間加熱した後、規則−不規則格
子変態点以上の温度から100°C/45−〜1℃/時
の組成に対応した適当な速度で常温まで冷却し、これを
さらに規則−不規則格子変態点以上の湿度で非酸化性雰
囲気中あるいは真空中において1分間以上、組成に対応
した虐当時同加熱し、冷却することを特徴とする修気−
記録再生ヘッド用耐摩耗性高1!i磁率合金のwM造法
。 v、  4重比にて鉄5〜65%、ニオブ0.5〜10
%、酸素o、oooδ〜0.1%、少量の不純物と西部
ニッケルからなる合金を用いた磁気記細書生ヘッド。 a 重量比にて鉄5〜66%、ニオブ0.l5NlO%
、酸素o、oooa〜0.1%、少量の不純物と残部ニ
ッケルからなる合金を主成分とし、副成分として@80
%以下、タングステン、タンタル、マンガンのそれぞれ
15%以下、そリプデン、コバルトのそれぞれ10%以
下、クロム、バナジウム、チタン、ゲルマニウム。 ガリウム、イシジウム、タリウムのそれぞれ5%以下、
アルミニウム、ケイ素、ジルコニウム、ハフニウム、希
土類元素、白金族元素のそれぞれ8%以下、ベリリウ゛
ム、鋤、アンチモン、ホウ素、リンのそれぞれ2%以下
の1−または2他以上の合計0.01〜80%を含有し
てなる合蛍を用いた磁気記録再生ヘッド。
[Claims] L Iris ratio: 1 liter (6 to 66%, 10.5 to 10
%, 0.0008 to 0.1%, a small amount of impurities, and the remainder nickel, and is characterized by having a saturation magnetic flux density of 5000 G or more. l Iron: 6-65%, Nitrogen: 10.5-10%,
The main component is an alloy consisting of acidic o, oooa ~ 0.1%, a small amount of ingredients, and the balance is nickel, and the subcomponent is w480.
% or less, 15% or less each of tungsten, tantalum, and manganese, 10% or less each of molybdenum and cobalt, chromium, vanadium, titanium, and germanium. 5% or less each of gallium, indium, and thallium; 8% or less each of aluminum, silicon, zirconium, /17Eum, rare earth elements, and platinum group elements; 2% each of beryllium, copper, antimony, boron, and phosphorus. The following 14ilil or 8 or more types total 0.01-80
%, and has a saturation magnetic flux density of 5000 G or more.
16 permeate alloy. 1 Iron 5-66%, niobium 0. r1~10%
, oxygen o, oooa ~ 0.1%, a small amount of impurities, and the balance nickel alloy in a non-oxidizing atmosphere or vacuum at a temperature of 600°C or higher and lower than the melting point for at least 1 minute or more for an appropriate period of time corresponding to the composition. A wear-resistant wear-resistant magnetic recording/reproducing head for a magnetic recording/reproducing head, characterized in that after heating, cooling is performed from a humidity above the regular-irregular lattice attenuation point to room temperature at an excessive rate corresponding to the composition of the 100°C/lEp to 1°C layer. Method for producing magnetic permeability alloy. Iron 5-65%, niobium 0.5-10%,
The main component is an alloy consisting of oxygen o, oooa ~ 0.1%, a small amount of impurities, and the balance is nickel, and the secondary component is 80% copper.
Below, 1 each of tungsten, lintal, and manganese
6% or less, molybdenum, Fval F each 10% or less, chromium, vanadium, titanium, germanium. 5% or less of each of gallium, indium, and thallium,
8% or less of each of aluminum, silicon, zirconium, hafnium, rare earth elements, platinum group elements, 11+ or 2 or more of 8% or less of each of peri-i) ram, tin, antimony, boron, phosphorus, or a total of 0.01 to 80 % in a non-oxidizing atmosphere or in the air at a temperature of 600°C or higher and lower than the melting point for at least 1 minute.
It is characterized by heating for an appropriate period of time corresponding to the composition, and then cooling from a temperature above the regular-irregular lattice transformation point to room temperature at an appropriate rate corresponding to the composition of 100°C/sec to 1°C/hour. A method for producing a wear-resistant, highly transparent, 1i1f ratio alloy for magnetic recording/reproducing heads. & Weight ratio of iron b ~ 65%, niobium 10.5 ~ 10%,
Oxygen o, o o o a~0.1%, a small amount of impurities, and a residual S=Tsukeru alloy is heated in a non-oxidizing atmosphere or in vacuum at a temperature of 600'C or higher and below the melting point for at least 1 minute or more and 100 hours or less. After heating for an appropriate time corresponding to the composition of
00°C/sec to 1°C/hour to room temperature at an appropriate rate corresponding to the composition, and further cooled at a temperature below the regular-disorder transformation point in a non-oxidizing atmosphere or in vacuum for 1 minute or more. A method for producing a wear-resistant and magnetically permeable alloy for magnetic recording/reproducing heads, which comprises heating and cooling for an appropriate time depending on the composition. a weight ratio of 5 to 61s% to fl, 10.5 to 1% of niobium
The main component is an alloy consisting of 0% oxygen, oooa ~ 0.1%, a small amount of impurities, and the balance nickel, and the secondary component is 180% or less, tungsten. 15% or less each of tantalum and manganese, 10% or less each of molybdenum, cobalt, chromium, vanadium, titanium, germanium, 5% or less each of gallium, indium, and thallium, aluminum,
8% or less of each of silicon, zirconium, hafnium, rare earth elements, and platinum group elements, beryllium, #1. Antimony, boron, phosphorus each with 1 or 2% less than 2%
6 alloys containing a total of 0.01 to 80% of
After heating for an appropriate time corresponding to the composition for at least 1 minute to 100 hours in a non-oxidizing atmosphere or vacuum at a humidity of -OO°C or higher and lower than the melting point, it is heated to a temperature higher than the regular-irregular lattice transformation point to Cool to room temperature at an appropriate rate corresponding to the composition of °C/45-1 °C/hour, and then cool for at least 1 minute in a non-oxidizing atmosphere or in vacuum at a humidity above the regular-irregular lattice transformation point. Shuki, which is characterized by heating and cooling at the same time according to the composition.
High wear resistance for recording/reproducing heads! wM manufacturing method of i-magnetic alloy. v, 5-65% iron, 0.5-10 niobium in 4-weight ratio
%, oxygen o, oooδ~0.1%, a small amount of impurities, and a magnetic writing head using an alloy consisting of Western nickel. a 5-66% iron by weight, 0.0% niobium. l5NlO%
, oxygen o, oooa ~ 0.1%, a small amount of impurities and the balance nickel as the main component, @80 as a subcomponent
% or less, 15% or less each of tungsten, tantalum, and manganese, 10% or less each of solipdenum, cobalt, chromium, vanadium, titanium, and germanium. 5% or less of each of gallium, isidium, and thallium,
8% or less each of aluminum, silicon, zirconium, hafnium, rare earth elements, and platinum group elements; 2% or less each of beryllium, plow, antimony, boron, and phosphorus; a total of 0.01 to 80% of 1- or 2 or more others; A magnetic recording/reproducing head using a firefly containing the same.
JP57006077A 1982-01-20 1982-01-20 Wear resistant high permeability alloy for magnetic recording and reproducing head, its manufacture and magnetic recording and reproducing head Granted JPS58123848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57006077A JPS58123848A (en) 1982-01-20 1982-01-20 Wear resistant high permeability alloy for magnetic recording and reproducing head, its manufacture and magnetic recording and reproducing head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57006077A JPS58123848A (en) 1982-01-20 1982-01-20 Wear resistant high permeability alloy for magnetic recording and reproducing head, its manufacture and magnetic recording and reproducing head

Publications (2)

Publication Number Publication Date
JPS58123848A true JPS58123848A (en) 1983-07-23
JPS6212296B2 JPS6212296B2 (en) 1987-03-18

Family

ID=11628500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57006077A Granted JPS58123848A (en) 1982-01-20 1982-01-20 Wear resistant high permeability alloy for magnetic recording and reproducing head, its manufacture and magnetic recording and reproducing head

Country Status (1)

Country Link
JP (1) JPS58123848A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS602651A (en) * 1983-06-17 1985-01-08 Nippon Mining Co Ltd Magnetic alloy
JPS60135542A (en) * 1983-12-24 1985-07-18 Tohoku Metal Ind Ltd Free-cutting magnetic alloy
JPS60135543A (en) * 1983-12-24 1985-07-18 Tohoku Metal Ind Ltd Free-cutting magnetic alloy
JPS60135544A (en) * 1983-12-24 1985-07-18 Tohoku Metal Ind Ltd Free-cutting magnetic alloy
JPS60224728A (en) * 1984-04-19 1985-11-09 Res Inst Electric Magnetic Alloys Wear resistant high magnetic permeability alloy and its manufacture and magnetic recording/reproducing head
JPS61174349A (en) * 1985-01-30 1986-08-06 Res Inst Electric Magnetic Alloys Wear resistant high magnetic permeability alloy and its manufacture and magnetic recording/playback head
EP0198422A2 (en) * 1985-04-11 1986-10-22 Sony Corporation Soft magnetic thin film
JPH0741891A (en) * 1993-07-30 1995-02-10 Res Inst Electric Magnetic Alloys Wear resistant high permeability alloy, its production and magnetic recording and reproducing head

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5312139B2 (en) * 2009-03-27 2013-10-09 株式会社Neomaxマテリアル High-strength temperature-sensitive magnetic alloy and heating member for induction heating

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49115019A (en) * 1973-03-08 1974-11-02

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49115019A (en) * 1973-03-08 1974-11-02

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0352530B2 (en) * 1983-06-17 1991-08-12 Nippon Mining Co
JPS602651A (en) * 1983-06-17 1985-01-08 Nippon Mining Co Ltd Magnetic alloy
JPH0356297B2 (en) * 1983-12-24 1991-08-27
JPS60135544A (en) * 1983-12-24 1985-07-18 Tohoku Metal Ind Ltd Free-cutting magnetic alloy
JPS60135543A (en) * 1983-12-24 1985-07-18 Tohoku Metal Ind Ltd Free-cutting magnetic alloy
JPS60135542A (en) * 1983-12-24 1985-07-18 Tohoku Metal Ind Ltd Free-cutting magnetic alloy
JPH0356298B2 (en) * 1983-12-24 1991-08-27
JPH0532454B2 (en) * 1983-12-24 1993-05-17 Tokin Corp
JPS60224728A (en) * 1984-04-19 1985-11-09 Res Inst Electric Magnetic Alloys Wear resistant high magnetic permeability alloy and its manufacture and magnetic recording/reproducing head
JPH0310699B2 (en) * 1984-04-19 1991-02-14 Denki Jiki Zairyo Kenkyusho
JPS61174349A (en) * 1985-01-30 1986-08-06 Res Inst Electric Magnetic Alloys Wear resistant high magnetic permeability alloy and its manufacture and magnetic recording/playback head
JPH0545658B2 (en) * 1985-01-30 1993-07-09 Denki Jiki Zairyo Kenkyusho
EP0198422A2 (en) * 1985-04-11 1986-10-22 Sony Corporation Soft magnetic thin film
JPH0741891A (en) * 1993-07-30 1995-02-10 Res Inst Electric Magnetic Alloys Wear resistant high permeability alloy, its production and magnetic recording and reproducing head
US5547520A (en) * 1993-07-30 1996-08-20 The Foundation: The Research Institute Of Electric And Magnetic Alloys Wear-resistant high permeability magnetic alloy and method of manufacturing the same

Also Published As

Publication number Publication date
JPS6212296B2 (en) 1987-03-18

Similar Documents

Publication Publication Date Title
KR910002868B1 (en) Wear-resistant alloy of high permeability and method of producing the same
JP2777319B2 (en) Wear-resistant high-permeability alloy, method for producing the same, and magnetic recording / reproducing head
JPS59582B2 (en) Amorphous alloy for magnetic heads with low magnetostriction and high wear resistance and its manufacturing method
JPS625972B2 (en)
JPS58123848A (en) Wear resistant high permeability alloy for magnetic recording and reproducing head, its manufacture and magnetic recording and reproducing head
JP3294029B2 (en) Wear-resistant high-permeability alloy, method for producing the same, and magnetic recording / reproducing head
JP3251899B2 (en) Wear-resistant high permeability alloy and magnetic recording / reproducing head
KR900007666B1 (en) Amorphous alloy for use in magnetic heads
JPS58150119A (en) Alloy having high magnetic permeability for magnetic recording and reproducing head and its production, and magnetic recording and reproducing head
JPH0310700B2 (en)
JPS6218619B2 (en)
JPS6134160A (en) Wear resistant and high magnetic permeability alloy for magnetic record regenerating head, its manufacture and magnetic record regenerating head
JPH0645847B2 (en) Manufacturing method of wear resistant high permeability alloy.
JPS60224728A (en) Wear resistant high magnetic permeability alloy and its manufacture and magnetic recording/reproducing head
JPH02153036A (en) Wear-resistant high permeability alloy for magnetic recording/reproducing head and its manufacture and magnetic recording/reproducing head
JPS6024348A (en) Wear-resistant alloy with high magnetic permeability for magnetic recording and reproducing head, its manufacture and magnetic recording and reproducing head
JPH07166281A (en) Wear resistant magnetic alloy
JPH0645849B2 (en) Manufacturing method of wear resistant high permeability alloy.
JPH02153052A (en) Manufacture of wear resistant high permeability alloy for magnetic recording/reproducing head and magnetic recording/reproducing head
JPH0525947B2 (en)
JPH0377644B2 (en)
JPH0377645B2 (en)
JPS61210134A (en) Production of amorphous alloy for magnetic head having high magnetic permeability, large effective magnetic permeability, small magnetorestriction, high hardness and large wear resistance
JPH0645839B2 (en) Abrasion resistance high magnetic permeability magnetic recording / reproducing head
JPH0645846B2 (en) Manufacturing method of wear resistant high permeability alloy.