JPS6134160A - Wear resistant and high magnetic permeability alloy for magnetic record regenerating head, its manufacture and magnetic record regenerating head - Google Patents

Wear resistant and high magnetic permeability alloy for magnetic record regenerating head, its manufacture and magnetic record regenerating head

Info

Publication number
JPS6134160A
JPS6134160A JP15278384A JP15278384A JPS6134160A JP S6134160 A JPS6134160 A JP S6134160A JP 15278384 A JP15278384 A JP 15278384A JP 15278384 A JP15278384 A JP 15278384A JP S6134160 A JPS6134160 A JP S6134160A
Authority
JP
Japan
Prior art keywords
less
alloy
total
temperature
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15278384A
Other languages
Japanese (ja)
Other versions
JPH0368107B2 (en
Inventor
Ryo Masumoto
量 増本
Yuetsu Murakami
雄悦 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute for Electromagnetic Materials
Original Assignee
Research Institute for Electromagnetic Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute for Electromagnetic Materials filed Critical Research Institute for Electromagnetic Materials
Priority to JP15278384A priority Critical patent/JPS6134160A/en
Publication of JPS6134160A publication Critical patent/JPS6134160A/en
Publication of JPH0368107B2 publication Critical patent/JPH0368107B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a high magnetic permeability alloy superior in magnetic characteristic in AC magnetic field and wear resistance, easy for forging and favorable to magnetic record regeneration head, by heat treating Ni-Fe alloy contg. Zn, Cd, etc. under a specified condition. CONSTITUTION:Ni-Fe alloy contg. 30-90% Ni, 0.001-5% total of one or two kinds of Zn, Cd, and the balance Fe, or said alloy further contg. respective quantities of Cu, W, Ta, the other auxiliary components is melted in vacuum or nonoxidizing atmosphere. The molten metal is cast in mold, the ingot is deformed to sheet by forging hot rolling, cold rolling, etc. The sheet is heated to 600 deg.C-m.p. for 1min-100hr in vacuum or nonoxidizing atmosphere such as Ar, H2, successively cooled from the temp. to normal temp. at 100-1 deg.C/sec rate. Or said sheet is heated at <=600 deg.C for >=1min to manufacture the titled alloy having >=5,000G saturated magnetic flux density and superior wear resistance.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は交流磁界における磁気特性および耐摩耗性がす
ぐれ、鍛造加工が容易で磁気記録再生ヘッドに好適な高
透磁率合金およびその製造法ならびに磁気記録再生ヘッ
ドに関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a high magnetic permeability alloy that has excellent magnetic properties and wear resistance in an alternating magnetic field, is easy to forge, and is suitable for magnetic recording/reproducing heads, and a method for producing the same. The present invention relates to a magnetic recording/reproducing head.

(従来の技術) テープレコーダーなどの磁気記録再生ヘッドは交流磁界
において作動するものであるから、これに用いられる磁
性合金は高周波磁界における実効透磁率が高いことが必
要とされミまた磁気テープが接触して摺動するため耐摩
耗性が良好であることが望まれている。現在、耐摩耗性
にすぐれた磁気ヘッド用磁性合金としてはセンダスト(
Fe −5i−A/系合金)およびフェライト(MnO
−Zn0−Fe、08)がある。
(Prior Art) Since magnetic recording/reproducing heads such as tape recorders operate in alternating magnetic fields, the magnetic alloys used therein are required to have high effective magnetic permeability in high-frequency magnetic fields. It is desired that the wear resistance is good because it slides on the surface. Currently, Sendust (
Fe-5i-A/based alloy) and ferrite (MnO
-Zn0-Fe, 08).

(発明が解決しようとする問題点) しかしなから、これらの合金は非常に硬く脆いため、鍛
造、圧延加工が不可能で、ヘッドコアの製造には研削、
研磨の方法が用いられており、従ってその成品は高価で
ある。またセンダストは飽和磁束密度は大きいが薄板に
できないので高周波磁界における実効透磁率が比較的小
さい。またフェライトは実効透磁率は大きいが、飽和磁
束密度が5000G以下で小さいのが欠点である。他方
パーマロイ(Ni −Fe系合金)は鍛造、圧延加工お
よ。
(Problem to be solved by the invention) However, these alloys are extremely hard and brittle, making it impossible to forge or roll them.
Polishing methods are used and the products are therefore expensive. Sendust has a high saturation magnetic flux density, but cannot be made into a thin plate, so its effective permeability in a high-frequency magnetic field is relatively low. Further, although ferrite has a high effective magnetic permeability, its drawback is that its saturation magnetic flux density is low at 5000G or less. On the other hand, permalloy (Ni-Fe alloy) is processed by forging, rolling and other processes.

び打抜きは容易で量産性にすぐれているが、歎く摩耗し
やすいのが大きな欠点である。
Although die-cutting is easy and has excellent mass productivity, its major drawback is that it is easily abraded.

本発明者らはNi−Fe系合金の磁気特性および耐摩耗
性の改善について幾多研究を行った結果、Ni−Fe 
B合金にnb族元素のストロンチウムおよびバリウムの
1種および2種の合計0.001〜5%を添加すること
により目的を達成したのである。
The present inventors conducted numerous studies on improving the magnetic properties and wear resistance of Ni-Fe alloys, and found that Ni-Fe
This objective was achieved by adding a total of 0.001 to 5% of one or both of the NB group elements strontium and barium to the B alloy.

(問題点を解決するための手段) 本発明は重量比にてニッケル80〜90%、ストロンチ
ウムおよびバリウムの1種および2種の合計0.001
〜5%、少量の不純物と残部鉄からなるか、またはこれ
を主成分とし、副成分として銅80%以下、タングステ
ン、タンタルのそれぞれ20%以下、ニオブ、マンガン
、クロムのそれぞれ15%以下、モリブデン、バナジウ
ム、金、コバルトのそれぞれ10%以下、チタン、ケイ
素。
(Means for Solving the Problems) The present invention has a weight ratio of 80 to 90% nickel, a total of 0.001% of one or two of strontium and barium.
~5%, with small amounts of impurities and the balance consisting of iron, or with iron as the main component, and secondary components of up to 80% copper, up to 20% each of tungsten and tantalum, up to 15% each of niobium, manganese, and chromium, and molybdenum. , less than 10% each of vanadium, gold, and cobalt, titanium, and silicon.

ゲルマニウム、ガリウム、インジウム、タリウム。Germanium, gallium, indium, thallium.

ストロンチウム、バリウム、白金族元素のそれぞれ5%
以下、アルミニウム、ジルコニウム、ハフニウム、銀、
希土類元素、ベリリウム、錫、アンチモンのそれぞれ8
%以下、ホウ素、リンのそれぞれ2%以下の1種または
2種以上の合計0.01〜30%からなり、飽和磁束密
度5000G以上を有し、耐摩耗性および実効透磁率が
すぐれ、磁気記録再生ヘッド等に使用し得る高透磁率磁
性合金に係る。
5% each of strontium, barium, and platinum group elements
Below, aluminum, zirconium, hafnium, silver,
8 each of rare earth elements, beryllium, tin, and antimony
% or less, boron, phosphorus, each of 2% or less, totaling 0.01 to 30%, has a saturation magnetic flux density of 5000G or more, has excellent wear resistance and effective magnetic permeability, and is suitable for magnetic recording. The present invention relates to a high permeability magnetic alloy that can be used for playback heads and the like.

さらに本発明は上記の高透磁率合金をケースおよびコア
などに用いて製造した耐J’、’−に性にすぐれた磁気
記録再生ヘッドに係る。
Furthermore, the present invention relates to a magnetic recording/reproducing head having excellent resistance to J' and '-, manufactured by using the above-mentioned high magnetic permeability alloy for the case, core, etc.

(作 用) 本発明の合金を造るには、まず主成分のニッケル80〜
90%、亜鉛およびカドミウムの1梗または2種の合計
0.001〜5%および残部鉄の適当量を非酸化性雰囲
気中あるいは真空中において適当な溶解炉を用いて溶解
した後、適当な脱酸剤、脱硫剤を少量添加してできるだ
け不純物を取り除き、そのままか、更にこれに銅30%
以下、タングステン、タンタルのそれぞれ20%以下、
ニオブ、マンガン、クロムのそれぞれ15%以下、モリ
ブデン、バナジウム、金、コバルトのそれぞれ10%以
下、チタン、ケイ素、ゲルマニウム、ガリウム、インジ
ウム、タリウム、ストロンチウム。
(Function) To make the alloy of the present invention, first the main component nickel 80~
90%, a total of 0.001 to 5% of one or two types of zinc and cadmium, and an appropriate amount of the balance iron in a non-oxidizing atmosphere or in a vacuum using a suitable melting furnace, and then a suitable decomposition process. Add a small amount of acid and desulfurization agent to remove as much impurity as possible, then add 30% copper as is or add 30% copper to this.
Below, 20% or less of each of tungsten and tantalum,
Up to 15% each of niobium, manganese, and chromium; up to 10% each of molybdenum, vanadium, gold, and cobalt; titanium, silicon, germanium, gallium, indium, thallium, and strontium.

バリウム、白金族元素のそれぞれ5%以下、アルミニウ
ム、ジルコニウム、ハフニウムr 希土F 元素、ベリ
リウム、錫、アンチモンのそれぞれ3%以下、ホウ素、
リンのそれぞれ2%以下の1種または2種以上の合計0
.01〜80%の定itを添加して充分に攪拌し、組成
的に均一な溶融合金を造る。
5% or less each of barium, platinum group elements, aluminum, zirconium, hafnium r, rare earth F elements, 3% or less each of beryllium, tin, antimony, boron,
Total of 1 or 2 or more types of phosphorus, each less than 2% 0
.. 0.01 to 80% is added and thoroughly stirred to create a compositionally uniform molten alloy.

次にこれを適当な形および大きさの鋳型に注入し、て健
全な鋳塊を得、さらにこれを両温において鍛造熱間圧延
および冷間圧延などの成形加工を施して目的の形状のも
の、例えば厚さ0.1朋の薄板を造る。
Next, this is poured into a mold of an appropriate shape and size to obtain a sound ingot, which is then subjected to forming processes such as forging, hot rolling, and cold rolling at both temperatures to form the desired shape. For example, a thin plate with a thickness of 0.1 mm is made.

次にその薄板から目的の形状、寸法のものを打抜き、こ
れを適当な非酸化性雰囲気(水素、アルゴン、窒素など
)中あるいは真空中で再結晶温度以上、すなわち約60
0℃以上、特に800”C以上融点以下の温度に1分間
以上加熱し、ついで組成に対応した適当な速度、例えば
100℃/秒〜l℃/時で冷却する。合金の組成によっ
てはこれをさらに約600 ”C以下の温度(規則格子
−不規則格子変態点以下の温度)、特に200〜600
℃に1分間以上100時間以下加熱し、冷却することに
より飽和磁束密度5000G以上を有し、耐摩耗性にす
ぐれた高透磁率磁性合金を得ることができる。
Next, a piece of the desired shape and size is punched out from the thin plate, and it is heated in a suitable non-oxidizing atmosphere (hydrogen, argon, nitrogen, etc.) or in a vacuum at a temperature above the recrystallization temperature, that is, about
The alloy is heated to a temperature of 0°C or higher, particularly 800"C or higher and lower than the melting point, for 1 minute or more, and then cooled at an appropriate rate depending on the composition, for example, 100°C/sec to 1°C/hour. Depending on the composition of the alloy, this may be Further, at a temperature of about 600"C or less (temperature below the ordered lattice-irregular lattice transformation point), especially from 200 to 600"
C. for 1 minute to 100 hours and cooled, a high permeability magnetic alloy having a saturation magnetic flux density of 5000 G or more and excellent wear resistance can be obtained.

上記の溶体化温度から規則−不規則格子変態点(約60
0℃)以上の温度までの冷却は、急冷しても徐冷しても
得られる磁性には大した変りはないが、この変態点以下
の冷却速度は磁性に大きな彫物を及ぼす。すなわちこの
変態点以上の温度より100℃/秒〜1℃/時の組成に
対応した適当な速度で常温迄冷却することにより、地の
規則度が適度に調整され、すぐれた磁性が得られる。そ
して上記の冷却速度の内100℃/秒に近い速度で急冷
すると、規則度が小さくなり、これ以上速く冷却すると
規則化が進まず、規則度はさらに小さくなり磁性は劣化
する。しかしその規則度の小さい合金をその変態点以下
の200℃〜600℃に再加熱し冷却すると、規則化が
進んで適度な規則度となり磁性は向上する。他方、上記
の変態点以上の温度から、例えば1℃/時以下の速度で
徐冷すると、規則化は進みすぎ、磁性は低下する。
From the above solution temperature to the regular-disordered lattice transformation point (approximately 60
When cooling to a temperature of 0° C. or higher, there is no significant difference in the magnetism obtained whether the material is rapidly or slowly cooled, but a cooling rate below this transformation point has a large effect on the magnetism. That is, by cooling from a temperature above this transformation point to room temperature at an appropriate rate corresponding to the composition of 100° C./sec to 1° C./hour, the degree of regularity of the ground can be appropriately adjusted and excellent magnetism can be obtained. If the material is rapidly cooled at a rate close to 100° C./sec among the above cooling rates, the degree of order decreases, and if it is cooled faster than this, the degree of order does not proceed, and the degree of order decreases further and the magnetism deteriorates. However, when an alloy with a low degree of order is reheated to 200° C. to 600° C. below its transformation point and cooled, ordering progresses and the degree of order becomes appropriate, improving magnetism. On the other hand, if it is slowly cooled from a temperature above the above-mentioned transformation point at a rate of, for example, 1° C./hour or less, ordering will proceed too much and the magnetism will decrease.

(実施例) 次に本発明の実施例について述べる。(Example) Next, examples of the present invention will be described.

実施例 1 合金番号17 (組成N1−q9.o%、Zn−1,0
%、0d−1,0%、残部1i’e) 試料を造るには上記組成の合金材料の全重量、800 
gをアルミナ坩堝叫入れ、アルコ゛ン中で高周波誘専炉
によって溶かした後、よ< R14’l’ して均質な
溶融合金とした。ついでこれを直径25 ” z高さ1
70市の孔をもつ鋳型に注入し、得られた鋳塊を約11
00℃で鍛造して厚さ約7 mrnの板とした。さらに
約600〜900℃の間で厚さl amまで熱間圧延し
、ついで常温で冷間圧延を施して0.1mmの薄板とし
、それから外径45111m、内径33mmの環状板お
よび磁気ヘッドのコアを打ち抜いた。
Example 1 Alloy number 17 (composition N1-q9.o%, Zn-1,0
%, 0d-1,0%, balance 1i'e) To make the sample, the total weight of the alloy material of the above composition, 800
g was put into an alumina crucible and melted in an alcohol in a high-frequency induction furnace, and then heated to a homogeneous molten alloy. Next, make this with a diameter of 25” x height of 1
The ingot was poured into a mold with 70 holes, and the resulting ingot was poured into a mold with 70 holes.
It was forged at 00°C to form a plate with a thickness of about 7 mrn. Further, it is hot-rolled at about 600 to 900°C to a thickness of lam, and then cold-rolled at room temperature to form a thin plate of 0.1 mm, which is then made into an annular plate with an outer diameter of 45111 mm and an inner diameter of 33 mm, and the core of the magnetic head. punched out.

つぎにこれらに第1表に示す棟々な熱処理を施し、環状
板で磁気特性を、またコアを用いて磁気ヘッドを製造し
、表面粗さ計で磁気テープ(OrO□)による200時
間時間後の摩耗量を測定して第1表のような結果を得た
Next, these were subjected to extensive heat treatment as shown in Table 1, and the magnetic properties were determined using the annular plate, and a magnetic head was manufactured using the core.After 200 hours, the magnetic tape (OrO The wear amount was measured and the results shown in Table 1 were obtained.

、実施例 2 合金番号66(組成Ni−79,0%、Zn−0,7%
、Qd−1,2%、 Nb −7,0%、残部Fe)試
料を造るには上記組成の合金材料の全重屓800gをア
ルミナ坩堝に入れ、真空中で高周波誘導電気炉によって
溶かした後よく攪拌して溶融合金とした。製造工程は実
施例1と同じである。
, Example 2 Alloy number 66 (composition Ni-79.0%, Zn-0.7%
, Qd -1.2%, Nb -7.0%, balance Fe) To make a sample, 800 g of the alloy material with the above composition was placed in an alumina crucible and melted in a high frequency induction electric furnace in a vacuum. The mixture was stirred thoroughly to form a molten alloy. The manufacturing process is the same as in Example 1.

試料に種々の熱処理を施して第2表に示すような特性が
得られた。
The samples were subjected to various heat treatments and the properties shown in Table 2 were obtained.

つぎに第3表には1150’Cの真空中で2時間加熱し
た後、600℃から糊々な速成で常温まで冷却するか、
あるいはこれをさらに600℃以下の温度で再加熱して
、常温で測定された代表的な合金の緒特性が示しである
Next, Table 3 shows that after heating in a vacuum at 1150'C for 2 hours, cooling from 600°C to room temperature by rapid formation,
Alternatively, this is further reheated at a temperature of 600° C. or lower, and the typical properties of the alloy measured at room temperature are shown below.

つぎに本発明合金の亜鉛およびカドミウムの添加効果に
ついて図面によって詳細に述べる。第1図には78.6
%Ni−ire −zn合金についてZn添加量と実効
透磁率、飽和磁束密度および摩耗量との関係を示し、第
2図には79%Ni−ire −7%Nb −Zn合金
についてZn添加量と実効透磁率、飽和磁束密度および
摩耗量との関係を示した。
Next, the effect of adding zinc and cadmium to the alloy of the present invention will be described in detail with reference to the drawings. Figure 1 shows 78.6
Figure 2 shows the relationship between the amount of Zn added and the effective magnetic permeability, saturation magnetic flux density, and wear amount for the 79%Ni-ire-7%Nb-Zn alloy. The relationship between effective magnetic permeability, saturation magnetic flux density and amount of wear is shown.

第3図には78.5%Ni −Fe −Cd合金にライ
てCd添加量と実効透磁率、飽和磁束密度および摩耗量
との関係を示し、第4図には79%Ni−Fe −7%
Nb−。
Figure 3 shows the relationship between the amount of Cd added, effective magnetic permeability, saturation magnetic flux density, and wear amount for 78.5%Ni-Fe-Cd alloy, and Figure 4 shows the relationship between 79%Ni-Fe-7 alloy. %
Nb-.

Cd合金についてCd添加量と実効透磁率、飽和磁束密
度および摩耗量との関係を示した。
The relationship between the Cd addition amount, effective magnetic permeability, saturation magnetic flux density, and wear amount for Cd alloys is shown.

一般に亜鉛又はカドミウムの添加量の増加とともに実効
透磁率は著しく増大し、摩耗量は減少する。しかし亜鉛
およびカドミウムが5%以上では加工が困難になり好ま
しくない。
Generally, as the amount of zinc or cadmium added increases, the effective magnetic permeability increases significantly and the amount of wear decreases. However, if the zinc and cadmium content exceeds 5%, processing becomes difficult, which is not preferable.

本発明のこのような磁気特性の向上は溶解時における亜
鉛およびカドミウムの脱酸、脱硫効果に飽和磁歪および
結晶磁気異方性エネルギーが小さくなり、磁化し易い状
態に成るものと考えられる。
It is thought that the improvement in magnetic properties of the present invention is due to the deoxidation and desulfurization effects of zinc and cadmium during melting, and the saturation magnetostriction and magnetocrystalline anisotropy energy become smaller, resulting in a state where magnetization becomes easier.

さらにNi −Zn系、Fe −Zn系、Ni −Cd
系およびFe −Cd系金端間化合物が微細に析出して
磁区を分割し磁壁を増加させるので、交流磁界における
磁壁の移動速度を相′対的に減少させ、そのため渦電流
損失が小さくなり、大きな実効透磁率が得られるものと
考えられる。また本発明合金の耐摩耗性の向上は、亜鉛
又はカドミウムを添加すると、Ni −Fe合金の地が
固溶体硬化するとともに、強固な金属間化合物が地に微
細に析出し、さらに耐食性が向上することによるものと
考えられる。
Furthermore, Ni-Zn series, Fe-Zn series, Ni-Cd
The Fe-Cd system and the Fe-Cd gold end-to-end compound precipitate finely, dividing the magnetic domain and increasing the domain wall, so the moving speed of the domain wall in an alternating magnetic field is relatively reduced, and therefore the eddy current loss is reduced. It is thought that a large effective magnetic permeability can be obtained. Furthermore, the wear resistance of the alloy of the present invention is improved because when zinc or cadmium is added, the base of the Ni-Fe alloy is solid solution hardened, and strong intermetallic compounds are finely precipitated on the base, further improving the corrosion resistance. This is thought to be due to

さらに副成分として添加するcul W # NbrT
a 、 Mll 、 MO、V 、 Au 、 co 
、 cr 、 Ti 、 ae 。
Furthermore, cul W # NbrT added as a subcomponent
a, Mll, MO, V, Au, co
, cr, Ti, ae.

Ga 、 In 、 Tj 、 Sr 、 Ba 、 
Al、 Si 、 Zr 、 Hf 。
Ga, In, Tj, Sr, Ba,
Al, Si, Zr, Hf.

Ag 、希土類元素、白金族元素、 Be 、 Sn 
、 Sb 。
Ag, rare earth elements, platinum group elements, Be, Sn
, Sb.

BおよびP等は本発明合金の実効透磁率を高める効果が
あり、またCOは飽和磁束密度を高めるの、Sl + 
Zr + Hf + A9 、希土類元素、白金族元素
B, P, etc. have the effect of increasing the effective magnetic permeability of the alloy of the present invention, CO increases the saturation magnetic flux density, and Sl +
Zr + Hf + A9, rare earth element, platinum group element.

738 、 Sn 、 Sb 、 BおよびP等は本発
明合金の耐摩耗性を改善する効果が大きく、さらにSr
 、 Ba。
738, Sn, Sb, B and P have a great effect on improving the wear resistance of the alloy of the present invention, and Sr
, Ba.

Nb 、 Ta 、 Mn 、 Ti 、 Si +希
土類元素は鍛造加工性を改善する効果が大きい。
Nb, Ta, Mn, Ti, Si + rare earth elements have a large effect on improving forging workability.

次に本発明において合金の組成をニッケル80〜90%
、亜鉛又はカドミウムの1種または2種の合計0.00
1〜5%および残部鉄と限定し、またこれに添加する元
素を銅30%以下、タングステン、タンタルのそれぞれ
20%以下、ニオブ、マンガン、クロムのそれぞれ15
%以下、モリブデン、バナジウム、金、コバルトのそれ
ぞれ10%以下、チタン、ケイ素、ゲルマニウム、ガリ
ウム。
Next, in the present invention, the composition of the alloy is 80 to 90% nickel.
, a total of one or two of zinc or cadmium 0.00
1 to 5% and the balance iron, and the elements added to this are 30% or less copper, 20% or less each of tungsten and tantalum, and 15% each of niobium, manganese, and chromium.
% or less, molybdenum, vanadium, gold, cobalt each less than 10%, titanium, silicon, germanium, gallium.

インジウム、タリウム、ストロンチウム、バリウム、白
金族元素のそれぞれ5%以下、アルミニウム、ジルコニ
ウム、ハフニウム、 銀、 希1r4元g。
Less than 5% each of indium, thallium, strontium, barium, platinum group elements, aluminum, zirconium, hafnium, silver, rare 1r4 element g.

ベリリウム、錫、アンチモンのそれぞれ8%以下、ホウ
素、リンのそれぞれ2%以下の1種または2種以上の合
計0.01〜30%と限定した理由は、実施例、第8表
および図面で明らかなように、その組成範囲の飽和6B
束密度は5000G以上で、実効6磁率および耐摩耗性
にすぐれ、且つ加工性も良好であるが、組成がこの範囲
をはずれると飽和磁束密度が5000G以下となり、実
効透磁率が低下し、摩耗が大きくなり、且つ加工が困難
となり、磁気記録再生ヘッドの材料として不適当となる
からである。すなわち、亜鉛およびカドミウムが0.0
01%未満では添加効果が小さく、5%を越えると鍛造
加工が困難となる。そしてこれに副成分として銅80%
以下、タングステン20%、ニオブ15%、−タンタル
20%、マンガン15%、クロム15%、モリブデンl
θ%、バナジウム10%、金10%、チタン5%、ゲル
マニウム5%、ガリウム5%、インジウム5%、タリウ
ム5%、ストロンチウム5%、バリウム5%、白金族元
素5%のそれぞれを越え添加すると飽和磁束密度が50
00G以下となるからであり、ジルコニウム3%、銀8
%、ケイ素5%、アルミニウム3%、ハフニウム8%、
希土類元素8%1ベリリウム3%く錫3%、アンチモン
3%、ホウ素2%、リン2%、のそれぞれを越えて添加
すると鍛造あるいは加工が困難となるからであり、00
を10%を越え添加すると実効透磁率が小さくなるから
である。
The reason for limiting the total to 0.01 to 30% of one or more of 8% or less each of beryllium, tin, and antimony, and 2% or less each of boron and phosphorus is clear from the examples, Table 8, and the drawings. saturated 6B in its composition range, such as
The flux density is 5000G or more, which has excellent effective 6 magnetic coefficient and wear resistance, as well as good workability. However, if the composition is outside this range, the saturation magnetic flux density will be less than 5000G, and the effective magnetic permeability will decrease, causing wear. This is because it becomes large and difficult to process, making it unsuitable as a material for magnetic recording/reproducing heads. That is, zinc and cadmium are 0.0
If it is less than 0.01%, the effect of addition is small, and if it exceeds 5%, forging becomes difficult. And 80% copper as a subcomponent
Below: 20% tungsten, 15% niobium, 20% tantalum, 15% manganese, 15% chromium, molybdenum
θ%, 10% vanadium, 10% gold, 5% titanium, 5% germanium, 5% gallium, 5% indium, 5% thallium, 5% strontium, 5% barium, and 5% platinum group elements. Saturation magnetic flux density is 50
00G or less, 3% zirconium, 8% silver
%, silicon 5%, aluminum 3%, hafnium 8%,
This is because if the addition exceeds 8% of rare earth elements, 3% of beryllium, 3% of tin, 3% of antimony, 2% of boron, and 2% of phosphorus, it becomes difficult to forge or process.
This is because adding more than 10% of the amount reduces the effective magnetic permeability.

なお、第3表より明らかなように、Hl−Bre糸合金
合金成分の何れかを入れると実効透磁率は更に大きくな
り、また、硬度も高くなり、耐摩耗性が改善されるので
これらの副成分のふ加は同一効果であり、同効成分と見
做し得る。また、希土類元素はスカンジウム、イツトリ
ウムおよびランタン系元素からなるものであるが、その
副成分添加効果は全く同一であり、白金族元素は白金、
イリジウム、ルテニウム、ロジウム、パラジウム、オス
ミウムからなるが、その効果も全く同一である。
As is clear from Table 3, if any of the Hl-Bre thread alloy alloy components is added, the effective magnetic permeability will further increase, the hardness will also increase, and the wear resistance will be improved. The ingredients have the same effects and can be considered as ingredients with the same effect. Rare earth elements consist of scandium, yttrium, and lanthanum-based elements, but the effect of adding their subcomponents is exactly the same, and platinum group elements consist of platinum,
It is composed of iridium, ruthenium, rhodium, palladium, and osmium, but its effects are exactly the same.

尚、炭素、窒素、酸素および硫黄は耐摩耗性を改善し、
Te 、 Se 、 Bi 、 caおよびpbは快削
性を改善するので、磁気特性を損わない程度の各々0.
1%以下ならば有効であり、本発明合金に不純物として
含有されても差支えない。
In addition, carbon, nitrogen, oxygen and sulfur improve wear resistance,
Since Te, Se, Bi, ca, and pb improve free machinability, they are each added to a level of 0.0000 to an extent that does not impair magnetic properties.
It is effective if it is 1% or less, and there is no problem even if it is contained as an impurity in the alloy of the present invention.

/XHHの鋪思 ) 以上で実効透磁率が晶く、耐摩耗性がすぐれ、且つ加工
性が良好なので磁気録音当主ヘッド用磁性合金として好
適であるばかりでなく、VTRおよび電子計算機の磁気
記録再生ヘッドならびに普通の電気機器などに用いる磁
性材料としても非常に好適である。
/XHH's thoughts) As described above, the effective magnetic permeability is high, the wear resistance is excellent, and the workability is good, so it is not only suitable as a magnetic alloy for magnetic recording heads, but also for magnetic recording and reproduction of VTRs and electronic computers. It is also very suitable as a magnetic material for use in heads and ordinary electrical equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は78.5%Ni−Fe −Zn合金の亜鉛量と
実効透磁率、飽和磁束密度および摩耗量との関係を示す
特性図、 第2図は79%Ni −pe −7%Nb −Zn合金
の亜鉛量と実効透磁率、飽和磁束密度および摩耗量との
関係を示す特性図、 第8図は78.5%Ni −Fe −Cd合金のカドミ
ウム量と実効透磁率、飽和磁束密度および摩耗量との関
係を示す特性図、 第4図は79%Ni−Fe −7%Nb −Cd合金の
カドミウム量と実効透磁率、飽和磁束密度および摩耗量
との関係を示す特性図である。 第1図 第2図 第3図 Cd (’l) 第4図 Cd(%)
Figure 1 is a characteristic diagram showing the relationship between zinc content, effective magnetic permeability, saturation magnetic flux density, and wear amount of 78.5%Ni-Fe-Zn alloy, and Figure 2 is a 79%Ni-pe-7%Nb- A characteristic diagram showing the relationship between zinc content and effective magnetic permeability, saturation magnetic flux density, and wear amount of Zn alloy. Figure 8 shows the relationship between cadmium content and effective magnetic permeability, saturation magnetic flux density, and Figure 4 is a characteristic diagram showing the relationship between the amount of cadmium and the effective magnetic permeability, the saturation magnetic flux density, and the amount of wear of a 79%Ni-Fe-7%Nb-Cd alloy. Figure 1 Figure 2 Figure 3 Cd ('l) Figure 4 Cd (%)

Claims (1)

【特許請求の範囲】 1、重量比にてニッケル80〜90%、亜鉛およびカド
ミウムの1種または2種の合計0.001〜5%、少量
の不純物と残部鉄からなり、飽和磁束密度5000G以
上を有することを特徴とする磁気記録再生ヘッド用耐摩
耗性高透磁率合金。 2、重量比にてニッケル30〜90%、亜鉛およびカド
ミウムの1種または2種の合計0.001〜5%、少量
の不純物と残部鉄からなる合金を主成分とし、副成分と
して銅30%以下、タングステン、タンタルのそれぞれ
20%以下、ニオブ、マンガン、クロムのそれぞれ 15%以下、モリブデン、バナジウム、金、コバルトの
それぞれ10%以下、チタン、ケイ素、ゲルマニウム、
ガリウム、インジウムタリウム、ストロンチウム、バリ
ウム、白金族元素のそれぞれ5%以下、アルミニウム、
ジルコニウム、ハフニウム、銀、希土類元素、ベリリウ
ム、錫、アンチモンのそれぞれ3%以下、ホウ素、リン
のそれぞれ2%以下の1種または2種以上の合計0.0
1〜30%を含有してなり、飽和磁束密度5000G以
上を有することを特徴とする磁気記録再生ヘッド用耐摩
耗性高透磁率合金。 3、重量比にてニッケル30〜90%、亜鉛およびカド
ミウムの1種または2種の合計0.001〜5%、少量
の不純物と残部鉄からなる合金を、600℃以上融点以
下の温度で非酸化性雰囲気あるいは真空中において、少
くとも1分間以上100時間以下の組成に対応した適当
時間加熱した後、600℃以上の温度から100℃/秒
〜1℃/時の組成に対応した適当な速度で常温まで冷却
することを特徴とする磁気記録再生ヘッド用耐摩耗性高
透磁率合金の製造法。 4、重量比にてニッケル30〜90%、亜鉛およびカド
ミウムの1種または2種の合計0.001〜5%、少量
の不純物と残部鉄からなる合金を主成分とし、副成分と
して銅30%以下、タングステン、タンタルのそれぞれ
20%以下、ニオブ、マンガン、クロムのそれぞれ 15%以下、モリブデン、バナジウム、金、コバルトの
それぞれ10%以下、チタン、ケイ素、ゲルマニウム、
ガリウム、インジウム、タリウム、ストロンチウム、バ
リウム、白金族元素のそれぞれ5%以下、アルミニウム
、ジルコニウム、ハフニウム、銀、希土類元素、ベリリ
ウム、錫、アンチモンのそれぞれ3%以下、ホウ素、リ
ンのそれぞれ2%以下の1種または2種以上の合計0.
01〜30%を含有してなる合金を600℃以上融点以
下の温度で非酸化性雰囲気あるいは真空中において、少
くとも1分間以上100時間以下の組成に対応した適当
時間加熱した後、600℃以上の温度から100℃/秒
〜1℃/時の組成に対応した適当な速度で常温まで冷却
することを特徴とする磁気記録再生ヘッド用耐摩耗性高
透磁率合金の製造法。 5、重量比にてニッケル30〜90%、亜鉛およびカド
ミウムの1種または2種の合計0.001〜5%、少量
の不純物と残部鉄からなる合金を600℃以上融点以下
の温度で非酸化性雰囲気あるいは真空中において少くと
も1分間以上100時間以下の組成に対応した適当時間
加熱した後、600℃以上の温度から100℃/秒〜1
℃/時の組成に対応した適当な速度で常温まで冷却し、
これをさらに600℃以下の温度で非酸化性雰囲気中あ
るいは真空中において1分間以上、組成に対応した適当
時間加熱し、冷却することを特徴とする磁気記録再生ヘ
ッド用耐摩耗性高透磁率合金の製造法。 6、重量比にてニッケル30〜90%、亜鉛およびカド
ミウムの1種または2種の合計0.001〜5%、少量
の不純物と残部鉄からなる合金を主成分とし、副成分と
して銅30%以下、タングステン、タンタルのそれぞれ
20%以下、ニオブ、マンガン、クロムのそれぞれ 15%以下、モリブデン、バナジウム、金、コバルトの
それぞれ10%以下、チタン、ケイ素、ゲルマニウム、
ガリウム、インジウムタリウム、ストロンチウム、バリ
ウム、白金族元素のそれぞれ5%以下、アルミニウム、
ジルコニウム、ハフニウム、銀、希土類元素、ベリリウ
ム、錫、アンチモンのそれぞれ3%以下、ホウ素、リン
のそれぞれ2%以下の1種または2種以上の合計0.0
1〜30%を含有してなる合金を600℃以上融点以下
の温度で非酸化性雰囲気あるいは真空中において少くと
も1分間以上100時間以下の組成に対応した適当時間
加熱した後、600℃以上の温度から100℃/秒〜1
℃/時の組成に対応した適当な速度で常温まで冷却し、
これをさらに600℃以下の温度で非酸化性雰囲気中あ
るいは真空中において1分間以上、組成に対応した適当
時間加熱し、冷却することを特徴とする磁気記録再生ヘ
ッド用耐摩耗性高透磁率合金の製造法。 7、重量比にてニッケル30〜90%、亜鉛およびカド
ミウムの1種または2種の合計0.001〜5%、少量
の不純物と残部鉄からなる合金を用いた磁気記録再生ヘ
ッド。 & 重量比にてニッケル80〜90%、亜鉛およびカド
ミウムの1種または2種の合計0.001〜5%、少量
の不純物と残部鉄からなる合金を主成分とし、副成分と
して銅30%以下、タングステン、タンタルのそれぞれ
20%以下、ニオブ、マンガン、クロムのそれぞれ 15%以下、モリブデン、バナジウム、金、コバルトの
それぞれ10%以下、チタン、ケイ素、ゲルマニウム、
ガリウム、インジウム、タリウム、ストロンチウム、バ
リウム、白金族元素のそれぞれ5%以下、アルミニウム
、ジルコニウム、ハフニウム、銀、希土類元素、ベリリ
ウム、錫、アンチモンのそれぞれ3%以下、ホウ素、リ
ンのそれぞれ2%以下の1種または2種以上の合計0.
01〜30%を含有してなる合金を用いた磁気記録再生
ヘッド。
[Claims] 1. Consisting of 80-90% nickel by weight, 0.001-5% in total of one or both of zinc and cadmium, a small amount of impurities and the balance iron, and has a saturation magnetic flux density of 5000 G or more A wear-resistant high permeability alloy for a magnetic recording/reproducing head, characterized by having: 2. The main component is an alloy consisting of 30 to 90% nickel by weight, a total of 0.001 to 5% of one or both of zinc and cadmium, a small amount of impurities and the balance iron, and 30% copper as a subcomponent. Below, 20% or less each of tungsten and tantalum, 15% or less each of niobium, manganese, and chromium, 10% or less each of molybdenum, vanadium, gold, and cobalt, titanium, silicon, germanium,
5% or less of each of gallium, indium thallium, strontium, barium, platinum group elements, aluminum,
3% or less each of zirconium, hafnium, silver, rare earth elements, beryllium, tin, and antimony, and 2% or less each of boron and phosphorus, total of one or more of 0.0
1 to 30%, and has a saturation magnetic flux density of 5000 G or more. 3. An alloy consisting of 30 to 90% nickel, a total of 0.001 to 5% of one or both of zinc and cadmium, a small amount of impurities, and the balance iron at a temperature above 600°C and below the melting point. After heating in an oxidizing atmosphere or vacuum for an appropriate time corresponding to the composition for at least 1 minute to 100 hours, heat from a temperature of 600°C or higher at an appropriate rate of 100°C/sec to 1°C/hour depending on the composition. A method for producing a wear-resistant high permeability alloy for magnetic recording/reproducing heads, which is characterized by cooling to room temperature at room temperature. 4. The main component is an alloy consisting of 30-90% nickel by weight, a total of 0.001-5% of one or both of zinc and cadmium, a small amount of impurities and the balance iron, and 30% copper as a secondary component. Below, 20% or less each of tungsten and tantalum, 15% or less each of niobium, manganese, and chromium, 10% or less each of molybdenum, vanadium, gold, and cobalt, titanium, silicon, germanium,
5% or less each of gallium, indium, thallium, strontium, barium, and platinum group elements; 3% or less each of aluminum, zirconium, hafnium, silver, rare earth elements, beryllium, tin, and antimony; and 2% or less each of boron and phosphorus. Total of 1 type or 2 or more types: 0.
After heating an alloy containing 01 to 30% in a non-oxidizing atmosphere or in vacuum at a temperature of 600°C or higher and below the melting point for an appropriate time corresponding to the composition of at least 1 minute or more and 100 hours or less, A method for producing a wear-resistant high permeability alloy for a magnetic recording/reproducing head, characterized in that the alloy is cooled from a temperature of 100° C./sec to 1° C./hour to room temperature at an appropriate rate corresponding to the composition. 5. An alloy consisting of 30-90% nickel by weight, a total of 0.001-5% of one or both of zinc and cadmium, a small amount of impurities, and the balance iron is non-oxidized at a temperature above 600°C and below the melting point. After heating for an appropriate time corresponding to the composition for at least 1 minute or more and less than 100 hours in a neutral atmosphere or vacuum, it is
Cool to room temperature at an appropriate rate corresponding to the composition in °C/hour,
A wear-resistant high permeability alloy for magnetic recording/reproducing heads, which is further heated at a temperature of 600°C or less in a non-oxidizing atmosphere or in vacuum for at least 1 minute for an appropriate time depending on the composition, and then cooled. manufacturing method. 6. The main component is an alloy consisting of 30-90% nickel by weight, a total of 0.001-5% of one or both of zinc and cadmium, a small amount of impurities and the balance iron, and 30% copper as a secondary component. Below, 20% or less each of tungsten and tantalum, 15% or less each of niobium, manganese, and chromium, 10% or less each of molybdenum, vanadium, gold, and cobalt, titanium, silicon, germanium,
5% or less of each of gallium, indium thallium, strontium, barium, platinum group elements, aluminum,
3% or less each of zirconium, hafnium, silver, rare earth elements, beryllium, tin, and antimony, and 2% or less each of boron and phosphorus, total of one or more of 0.0
After heating an alloy containing 1 to 30% in a non-oxidizing atmosphere or in a vacuum at a temperature of 600°C or higher and lower than the melting point for at least 1 minute to 100 hours, the alloy is heated at a temperature of 600°C or higher and lower than the melting point. Temperature to 100℃/sec~1
Cool to room temperature at an appropriate rate corresponding to the composition in °C/hour,
A wear-resistant high permeability alloy for magnetic recording/reproducing heads, which is further heated at a temperature of 600°C or less in a non-oxidizing atmosphere or in vacuum for at least 1 minute for an appropriate time depending on the composition, and then cooled. manufacturing method. 7. A magnetic recording/reproducing head using an alloy consisting of nickel in a weight ratio of 30 to 90%, one or both of zinc and cadmium in a total of 0.001 to 5%, a small amount of impurities, and the balance iron. & The main component is an alloy consisting of 80-90% nickel by weight, a total of 0.001-5% of one or both of zinc and cadmium, a small amount of impurities and the balance iron, and 30% or less copper as a secondary component. , 20% or less each of tungsten and tantalum, 15% or less each of niobium, manganese, and chromium, 10% or less each of molybdenum, vanadium, gold, and cobalt, titanium, silicon, germanium,
5% or less each of gallium, indium, thallium, strontium, barium, and platinum group elements; 3% or less each of aluminum, zirconium, hafnium, silver, rare earth elements, beryllium, tin, and antimony; and 2% or less each of boron and phosphorus. Total of 1 type or 2 or more types: 0.
A magnetic recording/reproducing head using an alloy containing 0.01 to 30%.
JP15278384A 1984-07-25 1984-07-25 Wear resistant and high magnetic permeability alloy for magnetic record regenerating head, its manufacture and magnetic record regenerating head Granted JPS6134160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15278384A JPS6134160A (en) 1984-07-25 1984-07-25 Wear resistant and high magnetic permeability alloy for magnetic record regenerating head, its manufacture and magnetic record regenerating head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15278384A JPS6134160A (en) 1984-07-25 1984-07-25 Wear resistant and high magnetic permeability alloy for magnetic record regenerating head, its manufacture and magnetic record regenerating head

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP1262699A Division JPH02153036A (en) 1989-10-07 1989-10-07 Wear-resistant high permeability alloy for magnetic recording/reproducing head and its manufacture and magnetic recording/reproducing head

Publications (2)

Publication Number Publication Date
JPS6134160A true JPS6134160A (en) 1986-02-18
JPH0368107B2 JPH0368107B2 (en) 1991-10-25

Family

ID=15548050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15278384A Granted JPS6134160A (en) 1984-07-25 1984-07-25 Wear resistant and high magnetic permeability alloy for magnetic record regenerating head, its manufacture and magnetic record regenerating head

Country Status (1)

Country Link
JP (1) JPS6134160A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02153036A (en) * 1989-10-07 1990-06-12 Res Inst Electric Magnetic Alloys Wear-resistant high permeability alloy for magnetic recording/reproducing head and its manufacture and magnetic recording/reproducing head
JP2008179842A (en) * 2007-01-23 2008-08-07 Sumitomo Osaka Cement Co Ltd Method for producing nickel-iron-zinc alloy nanoparticle and nickel-iron-zinc alloy nanoparticle, and method for producing planar nickel-iron-zinc alloy nanoparticle and planar nickel-iron-zinc alloy nanoparticle
CN104357710A (en) * 2014-11-26 2015-02-18 杨攀 Novel nickel alloy and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02153036A (en) * 1989-10-07 1990-06-12 Res Inst Electric Magnetic Alloys Wear-resistant high permeability alloy for magnetic recording/reproducing head and its manufacture and magnetic recording/reproducing head
JP2008179842A (en) * 2007-01-23 2008-08-07 Sumitomo Osaka Cement Co Ltd Method for producing nickel-iron-zinc alloy nanoparticle and nickel-iron-zinc alloy nanoparticle, and method for producing planar nickel-iron-zinc alloy nanoparticle and planar nickel-iron-zinc alloy nanoparticle
CN104357710A (en) * 2014-11-26 2015-02-18 杨攀 Novel nickel alloy and preparation method thereof

Also Published As

Publication number Publication date
JPH0368107B2 (en) 1991-10-25

Similar Documents

Publication Publication Date Title
KR910002868B1 (en) Wear-resistant alloy of high permeability and method of producing the same
JP2777319B2 (en) Wear-resistant high-permeability alloy, method for producing the same, and magnetic recording / reproducing head
JPS625972B2 (en)
JPH0158261B2 (en)
KR100405929B1 (en) Abrasion resistant high transmittance alloy, its manufacturing method and magnetic recording playback head
JPS6212296B2 (en)
JPS5947017B2 (en) Magnetic alloy for magnetic recording and playback heads and its manufacturing method
JPS6134160A (en) Wear resistant and high magnetic permeability alloy for magnetic record regenerating head, its manufacture and magnetic record regenerating head
JPS5947018B2 (en) Magnetic alloy for magnetic recording and playback heads and its manufacturing method
JPH02153036A (en) Wear-resistant high permeability alloy for magnetic recording/reproducing head and its manufacture and magnetic recording/reproducing head
JPS58150119A (en) Alloy having high magnetic permeability for magnetic recording and reproducing head and its production, and magnetic recording and reproducing head
JP3251899B2 (en) Wear-resistant high permeability alloy and magnetic recording / reproducing head
JPS6218619B2 (en)
JPH02153052A (en) Manufacture of wear resistant high permeability alloy for magnetic recording/reproducing head and magnetic recording/reproducing head
JPH02194154A (en) Manufacture of water-resistant high permeability alloy
JPH032216B2 (en)
JPS60224728A (en) Wear resistant high magnetic permeability alloy and its manufacture and magnetic recording/reproducing head
JPS62188756A (en) Grain-oriented foil of high saturation magnetic flux density and its production
JPH0310700B2 (en)
JPH0525947B2 (en)
JPH0645849B2 (en) Manufacturing method of wear resistant high permeability alloy.
JPH0645846B2 (en) Manufacturing method of wear resistant high permeability alloy.
JPH0377644B2 (en)
JPH0645839B2 (en) Abrasion resistance high magnetic permeability magnetic recording / reproducing head
JPH0377645B2 (en)