JPH02194154A - Manufacture of water-resistant high permeability alloy - Google Patents

Manufacture of water-resistant high permeability alloy

Info

Publication number
JPH02194154A
JPH02194154A JP26269689A JP26269689A JPH02194154A JP H02194154 A JPH02194154 A JP H02194154A JP 26269689 A JP26269689 A JP 26269689A JP 26269689 A JP26269689 A JP 26269689A JP H02194154 A JPH02194154 A JP H02194154A
Authority
JP
Japan
Prior art keywords
less
alloy
temperature
magnetic permeability
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26269689A
Other languages
Japanese (ja)
Other versions
JPH0645847B2 (en
Inventor
Ryo Masumoto
量 増本
Yuetsu Murakami
雄悦 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute for Electromagnetic Materials
Original Assignee
Research Institute for Electromagnetic Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute for Electromagnetic Materials filed Critical Research Institute for Electromagnetic Materials
Priority to JP1262696A priority Critical patent/JPH0645847B2/en
Publication of JPH02194154A publication Critical patent/JPH02194154A/en
Publication of JPH0645847B2 publication Critical patent/JPH0645847B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the magnetic alloy easy to forge and having excellent effective permeability, saturation magnetic flux density and wear resistance by subjecting an alloy having specific compsn. essentially consisting of Ni, Nb, P and Fe to hot working, cold working and heat treatment under specific conditions. CONSTITUTION:An alloy essentially consisting of, by weight, 60 to 90% Ni, 0.5 to 14% Nb, 0.001 to 1% P and the balance Fe and furthermore contg., as auxiliary components, specific amounts of one or more kinds among Cr, Mo, Ge, Au, Co, V, W, Cu, Ta, Mn, Al, Ti, Zr, Hf, Sn, Sb, Ga, In, Tl, rare earth elements, platinum group elements, Be, Ag, Sr, Ba and B is subjected to hot working at 900 to 1000 deg.C and is thereafter cooled. The alloy is successively subjected to cold working at >50% working rate, is thereafter heated to the range of 900 deg.C to the melting temp. and is cooled from the order-disorder lattice transformation point or above at 100 deg.C/sec to 1 deg.C/hr cooling speed in accordance with the compsn.

Description

【発明の詳細な説明】 本発明は、Ni、 Nb、 Pおよびreを主成分とし
、副成分としてCr、 Mo+ Ge、 Au、 Co
、 V、 H,Cu。
DETAILED DESCRIPTION OF THE INVENTION The present invention has Ni, Nb, P, and re as main components, and Cr, Mo+Ge, Au, and Co as subcomponents.
, V, H, Cu.

Ta、 Mn、 Air Si、 Ti、 Zr、 H
f+ Sn、 Sb、 Ga、 In。
Ta, Mn, Air Si, Ti, Zr, H
f+ Sn, Sb, Ga, In.

TIl、希土類元素、白金族元素、Be+ Ag、 S
r、 Ba。
TIl, rare earth elements, platinum group elements, Be+ Ag, S
r, Ba.

Bの1種または2種以上を含有する耐摩耗性高透磁率合
金の製造法に関するもので、その目的とするところは、
鍛造加工が容易で、実効透磁率が大きく、飽和磁束密度
が40000以上で、(110}〈112>の再結晶集
合組織を有して耐摩耗性が良好な磁性合金を得るにある
This relates to a method for manufacturing a wear-resistant high magnetic permeability alloy containing one or more types of B, and its purpose is to:
The objective is to obtain a magnetic alloy that is easy to forge, has a large effective magnetic permeability, has a saturation magnetic flux density of 40,000 or more, has a recrystallized texture of (110}<112>, and has good wear resistance.

テープレコーダーなどの磁気記録再生ヘッドは交流磁界
において作動するものであるから、これに用いられる磁
性合金は高周波磁界における実効透磁率が大きいことが
必要とされ、また磁気テープが接触して摺動するため耐
摩耗性が良好であることが望まれている。現在、耐摩耗
性にすぐれた磁気ヘッド用磁性合金としてはセンダスト
(Fe−5i−An系合金)およびフェライト (Mn
O−ZnO−FezOs)があるが、これらは非常に硬
く脆いため、鍛造、圧延加工が不可能で、ヘッドコアの
製造に研削、研磨の方法が用いられており、従ってその
成品は高価である。またセンダストは飽和磁束密度は大
きいが薄板にできないので高周波磁界における実効透磁
率が比較的小さい。またフェライトは実効透磁率は大き
いが、飽和磁束密度が約4000 Gで小さいのが欠点
である。他方パーマロイ(Ni−Fe系合金)は飽和磁
束密度は大きいが、実効透磁率は小さ(、また鍛造、圧
延加工および打抜きは容易で量産性にすぐれているが、
摩耗しやすいのが大きな欠点であり、これを改善するこ
とが強く望まれている。
Since magnetic recording/reproducing heads such as tape recorders operate in alternating magnetic fields, the magnetic alloys used therein must have high effective magnetic permeability in high-frequency magnetic fields, and magnetic tapes must slide in contact with each other. Therefore, it is desired that the wear resistance be good. Currently, as magnetic alloys for magnetic heads with excellent wear resistance, sendust (Fe-5i-An alloy) and ferrite (Mn
O-ZnO-FezOs), but these are extremely hard and brittle and cannot be forged or rolled. Grinding and polishing methods are used to manufacture the head core, and the finished product is therefore expensive. Sendust has a high saturation magnetic flux density, but cannot be made into a thin plate, so its effective permeability in a high-frequency magnetic field is relatively low. Further, although ferrite has a high effective magnetic permeability, its drawback is that its saturation magnetic flux density is low at approximately 4000 G. On the other hand, permalloy (Ni-Fe alloy) has a high saturation magnetic flux density but a low effective magnetic permeability (and is easy to forge, roll, and punch and has excellent mass productivity;
A major drawback is that it is easily abraded, and there is a strong desire to improve this.

本発明者らは、先にNi−Fe−Nb系合金は鍛造加工
が容易ですぐれた高透磁率合金であることから、磁気記
録再生ヘッド用磁性合金として好適であることを見い出
し、これを特許出願した(特公昭47−29690号)
。その後本発明者らは、一般に摩耗現象は合金結晶の方
位によって差異があり、結晶異方性が存在することが知
られていることから、Ni−Fe−Nb系合金の結晶方
位と摩耗現象の関係について研究した結果、Ni−Fe
−Nb系合金においては、(100) <001>再結
晶集合組織は摩耗し易く、(110) <112>再結
晶集合組織が耐摩耗性に優れていることを見い出し、こ
れを特許出願(特公昭58−57499号、特開昭53
−26994号)した。
The present inventors have previously discovered that Ni-Fe-Nb alloys are suitable as magnetic alloys for magnetic recording/reproducing heads because they are easy to forge and have excellent high magnetic permeability, and have patented this alloy. Applied (Special Publication No. 47-29690)
. Subsequently, the present inventors discovered that the wear phenomenon generally differs depending on the orientation of the alloy crystal, and it is known that crystal anisotropy exists. As a result of research on the relationship, Ni-Fe
- In Nb-based alloys, we discovered that the (100) <001> recrystallized texture is easy to wear, while the (110) <112> recrystallized texture has excellent wear resistance, and we have filed a patent application for this (patent application). Publication No. 58-57499, Japanese Unexamined Patent Publication No. 53
-26994).

本発明者らはこの知見に基づいて、さらに進んでCu等
の面心立方晶金属の(100) <001>再結晶集合
組織の形成を抑制する効果があるとされる元素の一つで
あるPを同じ面心立方晶のNi−Fe−Nb系合金に添
加し、再結晶集合組織の形成について研究した。すなわ
ちNi−Fe 2元系合金は冷間圧延加工すると(11
0) <112> +  (112) <111>の加
工集合組織が生じるが、これを高温加熱すると(100
) <001>再結晶集合組織が発達することが知られ
ている。しかし、これにNbを添加すると積層欠陥エネ
ルギーは低下し、(110) <112>再結晶集合組
織が生成するようになるが、これはさらに微量のPを添
加することによって(100}〈00b再結再結金集織
の成長は抑制され、(110}〈112>再結晶集合組
織の成長が優先的に促進し、(110) d12>再結
晶集合組織が形成されて、耐摩耗性が著しく向上するこ
とを見い出しのである。
Based on this knowledge, the present inventors went further and discovered that Cu is one of the elements that is said to have the effect of suppressing the formation of (100) <001> recrystallization texture in face-centered cubic metals. P was added to the same face-centered cubic Ni-Fe-Nb alloy, and the formation of recrystallization texture was studied. In other words, when the Ni-Fe binary alloy is cold-rolled (11
0) <112> + (112) <111> is produced, but when this is heated at high temperature, (100
) It is known that a <001> recrystallization texture develops. However, when Nb is added to this, the stacking fault energy decreases and a (110) <112> recrystallization texture is generated, but this can be changed by adding a small amount of P to the (100} <00b recrystallization texture. The growth of the recrystallized texture is suppressed, the growth of the (110}<112> recrystallized texture is preferentially promoted, and the (110) d12> recrystallized texture is formed, resulting in significantly improved wear resistance. It's about finding ways to improve.

またNi−Fe−Nb系合金にPを添加するとN1−P
Also, when P is added to Ni-Fe-Nb alloy, N1-P
.

Fe−PおよびNb−P系の硬いリン化物がマトリック
ス中に析出し、硬度を高め、耐摩耗性の向上に寄与する
とともに、これらの弱強磁性および非強磁性の微細なリ
ン化物の分散析出によって磁区が分割されて、交流磁界
における渦電流損失が減少し、このために実効透磁率が
増大することも見い出した。要するにNbとPの相乗的
効果により、(110) d12>再結晶集合組織が発
達するとともに実効透磁率が増大し、耐摩耗性のすぐれ
た高透磁率合金が得られるのである。
Fe-P and Nb-P-based hard phosphides are precipitated in the matrix, increasing hardness and contributing to improved wear resistance, and the dispersed precipitation of these weakly ferromagnetic and non-ferromagnetic fine phosphides It was also found that the eddy current loss in an alternating magnetic field is reduced by dividing the magnetic domain, thereby increasing the effective magnetic permeability. In short, due to the synergistic effect of Nb and P, the (110) d12> recrystallization texture develops and the effective magnetic permeability increases, resulting in a high permeability alloy with excellent wear resistance.

本発明の合金を造るには、Ni 60〜90%、Nb0
.5〜14%、P 0.001〜1%および残部Feの
適当量を空気中、好ましくは非酸化性雰囲気(水素、ア
ルゴン、窒素など)中あるいは真空中において適当な溶
解炉を用いて溶解した後、マンガン、珪素、アルミニウ
ム、チタン、カルシウム合金、マグネシウム合金、ベリ
リウム合金その他の脱酸脱硫剤を少量添加してできるだ
け不純物を取り除く。
To make the alloy of the present invention, 60-90% Ni, Nb0
.. 5-14%, P 0.001-1% and the balance Fe were melted in air, preferably in a non-oxidizing atmosphere (hydrogen, argon, nitrogen, etc.) or in vacuum using a suitable melting furnace. After that, a small amount of deoxidizing and desulfurizing agents such as manganese, silicon, aluminum, titanium, calcium alloy, magnesium alloy, beryllium alloy, etc. is added to remove as much impurity as possible.

本発明では、上記合金に副成分としてCr、 Mo。In the present invention, Cr and Mo are added to the above alloy as subcomponents.

Ge、^Uの7%以下、Co、 Vの10%以下、Wの
15%以下、Cu、 Ta、 Mnの25%以下、Al
I St+ Tt、 Zr+Ill Sn、 Sb、 
Ga、 In、  Ti、希土類元素、白金族元素の5
%以下、Be、 Ag、 Sr、 Baの3%以下、8
1%以下の1種あるいは2種以上の合計o、oi〜30
%の所定量を更に添加する。かくして得た混合物を充分
に攪拌して組成的に均一な溶融合金を造る。
Ge, 7% or less of U, Co, 10% or less of V, 15% or less of W, Cu, Ta, 25% or less of Mn, Al
I St+ Tt, Zr+Ill Sn, Sb,
5 of Ga, In, Ti, rare earth elements, and platinum group elements
% or less, Be, Ag, Sr, Ba 3% or less, 8
1% or less of one or more types o, oi ~ 30
A predetermined amount of % is further added. The mixture thus obtained is thoroughly stirred to produce a compositionally uniform molten alloy.

次にこれを適当な形および大きさの鋳型に注入して健全
な鋳塊を得、さらにこれに900℃を超え1000’C
以下の高温において鍛造あるいは熱間加工を施して適当
な形状のもの、例えば棒あるいは板となし、必要ならば
600℃以上の温度で焼鈍する。
Next, this is poured into a mold of an appropriate shape and size to obtain a sound ingot, which is further heated to over 900°C and 1000'C.
It is forged or hot-worked into a suitable shape, such as a bar or plate, at a high temperature below, and annealed at a temperature of 600° C. or higher, if necessary.

次いでこれに冷間圧延などの方法によって加工率50%
以上の冷間加工を施し、目的の形状のもの、例えば厚さ
0.1mの薄板を造る0次にその薄板から例えば外径4
5 m、内径33 mの環状板を打抜き、これを水素中
その他の適当な非酸化性雰囲気(水素、アルゴン、窒素
など)中あるいは真空中で900℃以上融点以下の温度
で適当時間加熱し、ついで規則−不規則格子変態点(約
600℃)以上の温度から100℃/秒〜1℃/時の組
成に対応した適当な速度で冷却するかあるいはこれをさ
らに規則−不規則格子変態点(約 600″C)以下の
温度で適当時間再加熱・し、冷却する。このようにして
、実効透磁率3000以上、飽和磁束密度40000以
上を有し、且つ(110) <112>の再結晶集合組
織を有した耐摩耗性高透磁率合金が得られる。
Next, this is subjected to a processing rate of 50% by methods such as cold rolling.
The above cold working is performed to produce a thin plate of the desired shape, for example, a thickness of 0.1m.
Punch out an annular plate with a diameter of 5 m and an inner diameter of 33 m, heat it in hydrogen or other suitable non-oxidizing atmosphere (hydrogen, argon, nitrogen, etc.) or in vacuum at a temperature of 900°C or higher and lower than the melting point for a suitable period of time, Then, from a temperature above the ordered-disordered lattice transformation point (approximately 600°C), it is cooled at an appropriate rate corresponding to the composition of 100°C/sec to 1°C/hour, or this is further cooled down to the ordered-disordered lattice transformation point (approximately 600°C). It is reheated for an appropriate time at a temperature of about 600"C or less, and then cooled. In this way, it has an effective magnetic permeability of 3,000 or more, a saturation magnetic flux density of 40,000 or more, and a recrystallized set of (110) <112>. A wear-resistant, high permeability alloy with a microstructure is obtained.

次に本発明を図面につき説明する。The invention will now be explained with reference to the drawings.

第1図は80%Ni−Fe−5χNb−P系合金につい
て加工率85%の冷間圧延し、1050℃で加熱した後
1000’C/時の速度で冷却した場合の再結晶集合組
織および諸特性とP量との関係を示したものである。 
Ni−Fe−Nb系合金は冷間圧延加工すると(110
) <112>+(112) <111>の加工集合組
織が生じるが、これを高温加熱すると(110) <1
12>+ (100) <001>の再結晶集合組織が
生成する。
Figure 1 shows the recrystallization texture and various properties of an 80% Ni-Fe-5χNb-P alloy that was cold rolled at a processing rate of 85%, heated at 1050°C, and then cooled at a rate of 1000°C/hour. It shows the relationship between the characteristics and the amount of P.
When Ni-Fe-Nb alloy is cold rolled (110
) <112>+(112) <111> is produced, but when this is heated at high temperature, (110) <1
12>+ (100) A recrystallized texture of <001> is generated.

しかし、これにPを添加すると(100) <Ool>
再結晶集合組織の生成が抑制され、(110) <11
2>の再結晶集合組織が発達し、それとともに摩耗量は
減少する。また実効透磁率はPの添加によって増大する
。第2図は80%Ni−Fe−5%Nb−0,05%P
合金について、1050℃で加熱した場合の再結晶集合
組織および諸特性と冷間加工率との関係を示したもので
、冷間加工率の増加は(110) <112>の再結晶
集合組織の発達をもたらし、耐摩耗性を向上させ、実効
透磁率を高める。第3図は80%Ni−Fe−5%Nb
−0,05%P合金を冷間加工率85%で圧延した後の
加熱温度と再結晶集合組織および諸特性との関係を示し
たもので、加熱温度の上昇とともに(112) <11
1>成分が減少し、(110) <112>が発達し、
耐摩耗性が向上し、また実効透磁率は増大する。第4図
は合金番号8(80%Ni−Fe−5%Nb−0,05
%P合金)、合金番号41 (79,5%Ni−Fe−
8%Nb−0,035%P−2%Mo合金)、合金番号
89 (82%Ni−Pe−2%Nb−0,085%P
−3%Si合金)について実効透磁率と冷却速度との関
係およびこれをさらに再加熱処理を施した場合の実効透
磁率(×印)を示したものである0合金の組成に対応し
た最適冷却速度、最適加熱温度および再加熱時間が存在
することが判る。
However, when P is added to this, (100) <Ool>
The formation of recrystallized texture is suppressed, and (110) <11
2> recrystallization texture develops, and the amount of wear decreases accordingly. Moreover, the effective magnetic permeability increases by adding P. Figure 2 shows 80%Ni-Fe-5%Nb-0.05%P
The graph shows the relationship between the recrystallized texture and various properties and cold working rate when the alloy is heated at 1050°C, and the increase in cold working rate is due to the recrystallized texture of (110) Provides development, improves wear resistance, and increases effective permeability. Figure 3 shows 80%Ni-Fe-5%Nb
This figure shows the relationship between the heating temperature, recrystallization texture, and various properties after rolling a -0.05% P alloy at a cold working rate of 85%. As the heating temperature increases, (112) < 11
1> component decreases, (110) <112> develops,
Wear resistance is improved and effective permeability is increased. Figure 4 shows alloy number 8 (80%Ni-Fe-5%Nb-0,05
%P alloy), alloy number 41 (79,5%Ni-Fe-
8%Nb-0,035%P-2%Mo alloy), alloy number 89 (82%Ni-Pe-2%Nb-0,085%P
Optimum cooling corresponding to the composition of the 0 alloy, which shows the relationship between effective magnetic permeability and cooling rate and the effective magnetic permeability (x mark) when this is further reheated for (-3% Si alloy) It can be seen that there is a speed, optimum heating temperature and reheating time.

第5図は80%Ni−Fe−5%Nb−0,05%P合
金にCr、 Mo、 Ge、 AuあるいはCoを添加
した場合の磁気ヘッドの耐摩耗量の特性図で、Cr、 
No、 Ge、 AuあるいはCoを添加すると、何れ
も実効透磁率は高くなり、摩耗量は減少するが、Cr、
 Mo、 GeあるいはAuの7%以上では飽和磁束密
度が4000 G以下となり好ましくない、またGo 
10%以上では実効透磁率が3000以下となり好まし
くない。
Figure 5 is a characteristic diagram of the wear resistance of a magnetic head when Cr, Mo, Ge, Au, or Co is added to an 80% Ni-Fe-5% Nb-0.05% P alloy.
When No, Ge, Au, or Co is added, the effective permeability increases and the amount of wear decreases, but when Cr,
If Mo, Ge or Au exceeds 7%, the saturation magnetic flux density will be less than 4000 G, which is undesirable.
If it is more than 10%, the effective magnetic permeability will be less than 3000, which is not preferable.

第6図は同じく80%Ni−Fe−5%Nb−0,05
%P合金にV、 W、 Cu、 TaあるいはMnを添
加した場合の磁気ヘッドの摩耗量および実効透磁率の特
性図で、V、 W、 Cu、 TaあるいはMnを添加
すると、何れも実効透磁率は高くなり、摩耗量は減少す
るが、■を10%以上、Wを15%以上、Cu、Taあ
るいはMnを25%以上添加すると飽和磁束密度が40
00 G以下となり好ましくない。
Figure 6 shows the same 80%Ni-Fe-5%Nb-0.05
This is a characteristic diagram of the wear amount and effective magnetic permeability of the magnetic head when V, W, Cu, Ta or Mn is added to the %P alloy. increases and the amount of wear decreases, but if 10% or more of ■, 15% or more of W, and 25% or more of Cu, Ta, or Mn are added, the saturation magnetic flux density increases to
00 G or less, which is not preferable.

第7図は同じく80%Ni−Fe−5%Nb−0,05
%P合金にAIr Sll Tll Zr+ Hft 
Sn、 sbあるいはGaを添加した場合の特性図で、
Affi、 Si、 Tit Zr+肘、 Sn、 S
bあるいはGaを5%以上添加すると、何れも実効透磁
率は高くなり、摩耗量は減少するが、Sll Tit 
Zr、 HfあるいはGaが5%以上では飽和磁束密度
は4000 G以下となり、A1.Snあるいはsbが
5%以上では鍛造加工が困難となり好ましくない。
Figure 7 shows the same 80%Ni-Fe-5%Nb-0,05
%P alloy to AIr Sll Tll Zr+ Hft
Characteristic diagram when Sn, sb or Ga is added,
Affi, Si, Tit Zr+elbow, Sn, S
When 5% or more of b or Ga is added, the effective magnetic permeability increases and the amount of wear decreases, but Sll Tit
When Zr, Hf or Ga is 5% or more, the saturation magnetic flux density is 4000 G or less, and A1. If Sn or sb is 5% or more, forging becomes difficult, which is not preferable.

第8図は同じく80%Ni−Fe−5%Nb−0,05
%P合金にIn+ Ti、 La、 Ru、 Be+ 
Ag、 Sr、 BaあるいはBを添加した場合の特性
図で、In、 Tit La。
Figure 8 shows the same 80%Ni-Fe-5%Nb-0,05
%P alloy with In+ Ti, La, Ru, Be+
This is a characteristic diagram when Ag, Sr, Ba or B is added.In, Tit La.

Ru、 Be、^L sr、 HaあるいはBを添加す
ると、何れも実効透磁率は高くなり、摩耗量は減少する
が、In、 tj!、 La+ Ruを5%以上、Be
、 Sr、 Baを3%以上添加すると飽和磁束密度が
4000 G以下となり、Agを3%以上あるいはBを
1%以上添加すると鍛造加工が困難となり好ましくない
When Ru, Be, ^L sr, Ha, or B is added, the effective magnetic permeability increases and the amount of wear decreases, but In, tj! , La+Ru at 5% or more, Be
If 3% or more of , Sr, or Ba is added, the saturation magnetic flux density becomes 4000 G or less, and if 3% or more of Ag or 1% or more of B is added, forging becomes difficult, which is not preferable.

第9図は80%Ni−Pe−5%Nb−0,05%P系
合金を実施例と同じ方法で製造し、約1000”Cで鍛
造して厚さ7−とし、種々な加熱温度で厚さ0.67a
mまで熱間圧延加工し、ついで常温で冷間圧延加工を施
して0.1mm薄板(冷間加工率85%)とし、この薄
板を1050℃の水素中で2時間加熱後、1000℃/
hrの速度で常温まで冷却した場合の熱間加工の温度と
再結晶集合組織と摩耗量との関係を示す特性図である。
Figure 9 shows an 80%Ni-Pe-5%Nb-0.05%P alloy manufactured in the same manner as in the example, forged at about 1000"C to a thickness of 7", and then heated at various heating temperatures. Thickness 0.67a
The thin plate was hot-rolled to 0.1 mm (cold-rolling rate: 85%) at room temperature, then heated in hydrogen at 1050°C for 2 hours, and then rolled at 1000°C/
FIG. 3 is a characteristic diagram showing the relationship between hot working temperature, recrystallized texture, and wear amount when cooling to room temperature at a rate of hr.

熱間圧延加工の温度が900℃以下では(112) <
ltl>が残留し、摩耗量が大きいが、900℃〜10
00℃の温度では(110) <112>が発達し摩耗
量が特に小さくなるのである。
When the hot rolling temperature is below 900°C, (112) <
ltl> remains and the amount of wear is large, but from 900℃ to 10
At a temperature of 00°C, (110) <112> develops and the amount of wear becomes particularly small.

本発明の合金の製造法においては、900℃〜1000
℃間の温度における熱間圧延加工と、加工率50%以上
の冷間加工と、900℃以上の温度における熱処理とを
繰り返す工程の相関によって(110}〈112>の再
結晶集合組織が著しく発達し、耐摩耗性のすぐれたN1
−Fe−Nb−P系合金が得られるのである。
In the method for producing the alloy of the present invention, the temperature at 900°C to 1000°C
The recrystallized texture of (110}<112> develops significantly due to the correlation between the processes of repeating hot rolling at a temperature between 50°C, cold working at a working rate of 50% or higher, and heat treatment at a temperature of 900°C or higher. N1 with excellent wear resistance
-Fe-Nb-P alloy is obtained.

本発明において、冷間加工は(110) <112>+
(112) <111>の集合組織を形成し、これを基
として(110) <112>の再結晶集合組織を発達
させるために必要で、第1図および第2図に見られるよ
うにp o、ooi%以上において、特に加工率50%
以上の冷間加工を施した場合に(110) <112>
の再結晶集合組織の発達が顕著で、耐摩耗性は著しく向
上し、その実効透磁率も高い。また上記の冷間加工に次
いで行われる加熱は、組織の均一化、加工歪みの除去と
ともに、(110) <112>の再結晶集合組織を発
達させ、高い実効透磁率とすぐれた耐摩耗性を得るため
に必要であるが、第3図に見られるように特に900℃
以上の加熱によって実効透磁率および耐摩耗性は顕著に
向上する。
In the present invention, cold working is (110) <112>+
It is necessary to form the (112) <111> texture and develop the (110) <112> recrystallization texture based on this, and as seen in Figures 1 and 2, po , above ooi%, especially when the processing rate is 50%
When subjected to the above cold working, (110) <112>
The development of the recrystallized texture is remarkable, the wear resistance is significantly improved, and the effective magnetic permeability is also high. In addition, the heating performed after the cold working described above not only homogenizes the structure and removes processing distortion, but also develops a (110) <112> recrystallized texture, resulting in high effective magnetic permeability and excellent wear resistance. However, as shown in Figure 3, the temperature is particularly high at 900°C.
The effective magnetic permeability and wear resistance are significantly improved by the above heating.

尚、上記の冷間加工と、次いで行われる900℃以上の
融点以下の加熱を繰り返し行うことは、(110) <
112>の再結晶集合組繊の集積度を高め、耐摩耗性を
向上させるために有効である。この場合は最終冷間加工
の加工率が50%以下でも(110}〈112>再結晶
集合組織が得られるが、本発明の技術的思想に包含され
るものである。
It should be noted that repeating the above cold working and the subsequent heating above 900°C below the melting point is (110) <
112> is effective for increasing the degree of accumulation of recrystallized assembled fibers and improving wear resistance. In this case, the (110}<112> recrystallized texture can be obtained even if the working rate of the final cold working is 50% or less, but this is included in the technical idea of the present invention.

上記の900℃以上融点以下の温度から規則−不規則格
子変態点く約600℃)以上の温度までの冷却は、急冷
しても徐冷しても得られる磁性には大した変りはないが
、第4図に見られるようにこの変態点以下の冷却速度は
磁性に大きな影響を及ぼす、すなわちこの変態点以上の
温度より100″C/秒〉1℃/時の組成に対応した適
当な速度で常温迄冷却することにより、地の規則度が適
度に調整され、すぐれた磁性が得られる。そして上記の
冷却速度の内100″C/秒に近い速度で象、冷すると
、規則度が小さ(なり、これ以上速く冷却すると規則化
が進まず、規則度はさらに小さくなり磁性は劣化する。
When cooling from a temperature above 900°C below the melting point to a temperature above the ordered-irregular lattice transformation point (approximately 600°C), there is no significant difference in the magnetism obtained whether cooling is rapid or gradual. , as seen in Figure 4, the cooling rate below this transformation point has a great effect on magnetism, that is, the cooling rate below this transformation point is 100''C/sec>1℃/hour. By cooling the earth to room temperature, the degree of regularity of the earth can be adjusted appropriately and excellent magnetism can be obtained.Then, when cooling at a rate close to 100"C/sec of the above cooling rates, the degree of regularity is small. (So, if it is cooled any faster than this, regularization will not progress, the degree of order will further decrease, and the magnetism will deteriorate.

しかし、その規則度の小さい合金をその変態点以下の2
00℃〜600℃に組成に対応して、1分間以上100
時間以下再加熱し冷却すると、規則化が進んで適度な規
則度となり磁性は向上する。
However, if the alloy with low order is 2 below its transformation point,
100°C for 1 minute or more depending on the composition at 00°C to 600°C.
If the material is reheated for a period of time or less and then cooled, ordering progresses and the degree of order becomes appropriate, improving magnetism.

他方、上記の変態点以上の温度から、例えば1℃/時以
下の速度で徐冷すると、規則化は進みすぎ、磁性は低下
する。
On the other hand, if it is slowly cooled from a temperature above the above-mentioned transformation point at a rate of, for example, 1° C./hour or less, ordering will proceed too much and the magnetism will decrease.

尚、上記の熱処理を水素が存在する雰囲気中で施すこと
は、実効透磁率を高めるのに特に効果があるので好まし
い。
Note that it is preferable to perform the above heat treatment in an atmosphere where hydrogen is present, since this is particularly effective in increasing the effective magnetic permeability.

次に本発明を実施例につき説明する。Next, the invention will be explained with reference to examples.

延し、ついで常温で種々な加工率で冷間圧延を施して0
.1閣の薄板とし、それから外径451III11、内
径33 mの環状板を打ち抜いた。
Then, it is cold rolled at room temperature with various processing rates to obtain 0.
.. A thin plate of one size was made, and an annular plate with an outer diameter of 451III11 and an inner diameter of 33 m was punched out.

原料は99.8%純度のニッケル、鉄および99.8%
純度のニオブ、モリブデンとりン10χの鉄−リン母合
金を用いた。試料を造るには、原料を全重量800gで
アルミナ坩堝に入れ、真空中で高周波誘導電気炉によっ
て溶かした後、よく攪拌して均質な溶融合金とした。次
にこれを直径25mm、高さ170mmの孔をもつ鋳型
に注入し、得られた鋳塊を約1000″Cで鍛造して厚
さ約1tmaの板とした。さらに約900℃〜1000
℃の間で適当な厚さまで熱間圧上記各実施例、第2表お
よび図面に掲げた合金には比較的純度の高い金属Nb、
 Crt Mot詩、 Mn。
Raw materials are 99.8% pure nickel, iron and 99.8%
An iron-phosphorus mother alloy with purity of niobium, molybdenum and phosphorus of 10x was used. To prepare the sample, raw materials were placed in an alumina crucible with a total weight of 800 g, melted in a high-frequency induction electric furnace in a vacuum, and then thoroughly stirred to obtain a homogeneous molten alloy. Next, this was poured into a mold with a hole of 25 mm in diameter and 170 mm in height, and the obtained ingot was forged at about 1000"C to form a plate with a thickness of about 1 tma.
The alloys listed in each of the above examples, Table 2 and the drawings include relatively pure metal Nb,
Crt Mot Poetry, Mn.

v、 Ti、 A7!、 Siおよび希土類元素等を用
いたが、これらの代りに経済的に有利な一般市販のフェ
ロ合金、母合金およびミツシュメタルを用いても溶解の
際、脱酸、脱硫を充分に行えば、これら金属を単独で用
いる場合とほぼ同様な磁気特性、耐摩耗性および加工性
が得られる。
v, Ti, A7! , Si and rare earth elements, etc., but economically advantageous commercially available ferroalloys, master alloys, and Mitsushi metals can be used instead of these metals if sufficient deoxidation and desulfurization are performed during melting. Almost the same magnetic properties, wear resistance, and processability as when used alone can be obtained.

上記のように本発明合金は加工が容易で、耐摩耗性にす
ぐれ、40000以上の飽和磁束密度、高い透磁率、低
保磁力を有しているので、磁気記録再生ヘッドのコアお
よびケース用磁性合金として好適であるばかりでなく、
耐摩耗性および高透磁率を必要とする一般の電磁機器の
磁性材料としても好適である。
As mentioned above, the alloy of the present invention is easy to process, has excellent wear resistance, and has a saturation magnetic flux density of 40,000 or more, high magnetic permeability, and low coercive force. Not only is it suitable as an alloy, but
It is also suitable as a magnetic material for general electromagnetic equipment that requires wear resistance and high magnetic permeability.

次に本発明において合金の組成を主成分としてNi 6
0〜90χ、Nb 0.5〜14χ、P 0.001〜
1χおよび残部Feと限定し、これに副成分として添加
する元素をCr+Mo+ Ge、 Auを7z以下、C
o、 Vをto !以下、Wを15%以下、Cu、 T
a、 Mnを25%以下、A1.  St、  Tit
  Zr、  Iff、  Sn+  Sb、  Ga
+  In、  Tll。
Next, in the present invention, the composition of the alloy is Ni 6 as the main component.
0~90χ, Nb 0.5~14χ, P 0.001~
1χ and the balance is Fe, and the elements added as subcomponents are Cr + Mo + Ge, Au is 7z or less, C
o, V to! Below, W is 15% or less, Cu, T
a, Mn 25% or less, A1. St, Tit
Zr, If, Sn+ Sb, Ga
+ In, Tll.

希土類元素、白金族元素を5%以下、Be、^g、 S
r。
Rare earth elements, platinum group elements less than 5%, Be, ^g, S
r.

Baを3%以下、Bを1%以下の1種または2種以上の
合計で0.01〜30χと限定した理由は各実施例、第
2表および図面、特に第5図ないし第8図で明らかなよ
うに、この組成範囲の実効透磁率は3000以上、飽和
磁束密度40000以上で、且つ(110}〈112>
の再結晶集合組織を有し、耐摩耗性がすぐれているが、
この組成範囲をはずれると磁気特性あるいは耐摩耗性が
劣化するからである。
The reason why Ba is limited to 3% or less and B is limited to 0.01 to 30χ in total of one or more types of 1% or less is shown in each example, Table 2, and drawings, especially in Figures 5 to 8. As is clear, the effective magnetic permeability in this composition range is 3000 or more, the saturation magnetic flux density is 40000 or more, and (110}<112>
It has a recrystallized texture and has excellent wear resistance, but
This is because if the composition falls outside of this range, the magnetic properties or wear resistance will deteriorate.

すなわち、Nb 0.5%以下およびP 0.001%
以下では(110) <112>の再結晶集合組織が充
分発達しないので耐摩耗性が悪< 、Nb 14%以上
および211以上では鍛造加工が困難となり、また実効
透磁率3000以下、飽和磁束密度4000 G以下に
なるからである。
That is, Nb 0.5% or less and P 0.001%
Below, the recrystallization texture of (110) and <112> is not sufficiently developed, resulting in poor wear resistance, and when Nb is 14% or more and 211 or more, forging becomes difficult, and the effective magnetic permeability is 3000 or less, and the saturation magnetic flux density is 4000. This is because it becomes less than G.

そしてNi 60〜90χ、Nb 0.5〜14χ、P
 0.001〜1χおよび残部Feの組成範囲の合金は
、実効透磁率3000以上、飽和磁束密度40000以
上で、耐摩耗性がすぐれ、且つ加工性が良好であるが、
一般にこれにさらにCr+ Mo、 Ge+ Au、 
W、 V、 Cu+Ta、 Mn、  AI!t Zr
+ Si、 Ti+ Hf、 Ga、希土類元素。
And Ni 60~90χ, Nb 0.5~14χ, P
Alloys with a composition range of 0.001 to 1χ and the balance Fe have an effective magnetic permeability of 3000 or more, a saturation magnetic flux density of 40000 or more, excellent wear resistance, and good workability.
Generally, in addition to this, Cr+Mo, Ge+Au,
W, V, Cu+Ta, Mn, AI! tZr
+Si, Ti+Hf, Ga, rare earth elements.

Be、 Ag、 B等を添加すると特に実効透磁率を高
める効果があり、Coを添加すると特に飽和磁束密度を
高める効果があり、Ge+ Au、 vl Ta、 w
、 Ti、 Zr。
Adding Be, Ag, B, etc. has the effect of particularly increasing the effective magnetic permeability, and adding Co has the effect of particularly increasing the saturation magnetic flux density.Ge + Au, vl Ta, w
, Ti, Zr.

Hf、  ^1. Si、 Sn+ Sb、 Ga+ 
In、  Tl+希土類元素、白金族元素、 Be、 
Ag、 Sr、 Ba、 B等を添加すると特に耐摩耗
性を向上する効果があり、Au、 Mn。
Hf, ^1. Si, Sn+ Sb, Ga+
In, Tl + rare earth elements, platinum group elements, Be,
Addition of Ag, Sr, Ba, B, etc. is particularly effective in improving wear resistance, and Au, Mn.

T+、 Coo希土類元素+ Be+ Sr+ Ba+
 Bを添加すると鍛造、加工を良好にする効果がある。
T+, Coo rare earth element + Be+ Sr+ Ba+
Adding B has the effect of improving forging and processing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は80χNi−Fe−5χNb−P系合金の緒特
性とPIとの関係を示す特性図、 第2図は80χNi−Fe−5X Nb−0,05χP
系合金の緒特性と冷間加工率とめ関係を示す特性図、第
3図は80χNi−Fe−5χNb−0,05χP系合
金の緒特性と加熱温度との関係を示す特性図、第4図は
80% Ni−Fe−5χNb−0,05χp系合金(
合金番号8 ) 、79.5χNi−Fe−8χNb−
0,035χP−2XMo合金(41)、および82χ
Ni−Fe−2χNb−0,085χP−3χSi合金
(89)の実効透磁率と冷却速度、再加熱温度および再
加熱時間との関係を示す特性図、第5図は802 Ni
−Fe−5χNb−0,05X P合金にCr、 Mo
+ Ge、 AuあるいはCOを添加した場合の緒特性
と各元素の添加量との関係を示す特性図、第6図は80
χNi−Fe−5χNb−0,05χP合金にV+ ’
A+ Cu、 TaあるいはMnを添加した場合の緒特
性と各元素の添加量との関係を示す特性図、第7図は8
0χNi−Fe−5χNb−0,05χP合金にAf+
 St+ Ti+ Zr、 or、 Sn+ Sbある
いはGaを添加した場合の緒特性と各元素の添加量との
関係を示す特性図、 第8図はIn+ Tl+ La、 Ru、 Be、 A
g+ Sr+ BaあるいはBを添加した場合の緒特性
と各元素の添加量との関係を示す特性図、 第9図は80χNi−Fe−5χNb−0,05χP系
合金の熱間圧延加工温度と再結晶集合組織と摩耗量との
関係を示す特性図である。 第5図 Cr、No、 ere、Att or Co  (′1
0)靭尿惰賞キく 第7図 第8 図 In、 T1. La orRu (%)Be、 Al
、Sr、Ba or B (%)轄間氏′f温よ(0C
) 上 申 書 平成元年 12月 2、
Figure 1 is a characteristic diagram showing the relationship between the characteristics and PI of the 80χNi-Fe-5XNb-P alloy, and Figure 2 is the characteristic diagram of the 80χNi-Fe-5X Nb-0,05χP.
Figure 3 is a characteristic diagram showing the relationship between the strength properties of the 80χNi-Fe-5χNb-0,05χP series alloy and the relationship between the heating temperature. 80% Ni-Fe-5χNb-0,05χp alloy (
Alloy number 8), 79.5χNi-Fe-8χNb-
0,035χP-2XMo alloy (41), and 82χ
A characteristic diagram showing the relationship between the effective magnetic permeability, cooling rate, reheating temperature, and reheating time of Ni-Fe-2χNb-0,085χP-3χSi alloy (89). Figure 5 is for 802Ni.
-Fe-5χNb-0,05X P alloy with Cr and Mo
Figure 6 is a characteristic diagram showing the relationship between the characteristics and the amount of each element added when Ge, Au or CO is added.
V+' to χNi-Fe-5χNb-0,05χP alloy
Figure 7 is a characteristic diagram showing the relationship between the characteristics and the amount of each element added when Cu, Ta or Mn is added.
Af+ in 0χNi-Fe-5χNb-0,05χP alloy
St+ Ti+ Zr, or, Sn+ Characteristic diagram showing the relationship between the initial characteristics and the amount of each element added when Sb or Ga is added. Figure 8 shows In+ Tl+ La, Ru, Be, A.
A characteristic diagram showing the relationship between the properties and the amount of each element added when g+ Sr+ Ba or B is added. FIG. 3 is a characteristic diagram showing the relationship between texture and wear amount. Figure 5 Cr, No, ere, Attor or Co ('1
0) Tough Urinary Award Kiku Figure 7 Figure 8 In, T1. La orRu (%)Be, Al
, Sr, Ba or B (%) Mr. Warm (0C
) Report December 2, 1989,

Claims (1)

【特許請求の範囲】 1、重量比にてNi60〜90%、Nb0.5〜14%
、P0.001〜1%および残部Feを主成分とし、副
成分としてCr、Mo、Ge、Auをそれぞれ7%以下
、Co、Vをそれぞれ10%以下、Wを15%以下、C
u、Ta、Mnをそれぞれ25%以下、Al、Si、T
i、Zr、Hf、Sn、Sb、Ga、In、Tl、希土
類元素、白金族元素をそれぞれ5%以下、Be、Ag、
Sr、Baをそれぞれ3%以下、Bを1%以下の1種ま
たは2種以上の合計0.01〜30%、少量の不純物と
からなる合金を900℃を超え1000℃以下の温度に
熱間加工した後冷却し、次に加工率50%以上の冷間加
工を施した後、900℃以上融点以下の温度で加熱し、
ついで規則−不規則格子変態点以上の温度から100℃
/秒〜1℃/時の組成に対応した適当な速度で常温まで
冷却することにより、1KHzにおける実効透磁率30
00以上、飽和磁束密度4000G以上で、且つ{11
0}〈112〉の再結晶集合組織を形成せしめることを
特徴とする耐摩耗性高透磁率合金の製造法。 2、重量比にてNi60〜90%、Nb0.5〜14%
、P0.001〜1%および残部Feを主成分とし、副
成分としてCr、Mo、Ge、Auをそれぞれ7%以下
、Co、Vをそれぞれ10%以下、Wを15%以下、C
u、Ta、Mnをそれぞれ25%以下、Al、Si、T
i、Zr、Hf、Sn、Sb、Ga、In、Ti、希土
類元素、白金族元素をそれぞれ5%以下、Be、Ag、
Sr、Baをそれぞれ3%以下、Bを1%以下の1種ま
たは2種以上の合計0.01〜30%、少量の不純物と
からなる合金を900℃を超え1000℃以下の温度に
熱間加工した後冷却し、次に加工率50%以上の冷間加
工を施した後、900℃以上融点以下の温度で加熱し、
ついで規則−不規則格子変態点以上の温度から100℃
/秒〜1℃/時の組成に対応した適当な速度で冷却し、
これをさらに規則−不規則格子変態点以下の温度で1分
間以上100時間以下の組成に対応した適当時間加熱し
冷却することにより、1KHzにおける実効透磁率30
00以上、飽和磁束密度4000G以上で、且つ{11
0}〈112〉の再結晶集合組織を形成せしめることを
特徴とする耐摩耗性高透磁率合金の製造法。
[Claims] 1. Ni 60-90%, Nb 0.5-14% by weight
, P0.001-1% and the balance Fe as main components, Cr, Mo, Ge, Au as subcomponents each at 7% or less, Co, V at 10% or less, W at 15% or less, C
u, Ta, Mn each 25% or less, Al, Si, T
i, Zr, Hf, Sn, Sb, Ga, In, Tl, rare earth elements, platinum group elements each at 5% or less, Be, Ag,
An alloy consisting of 3% or less each of Sr and Ba, 1% or less of B, a total of 0.01 to 30% of one or more types, and a small amount of impurities, is heated to a temperature of more than 900°C and less than 1000°C. After processing, it is cooled, and then subjected to cold working at a processing rate of 50% or more, and then heated at a temperature of 900°C or more and below the melting point,
Then, from the temperature above the regular-irregular lattice transformation point to 100°C
By cooling to room temperature at an appropriate rate corresponding to the composition of
00 or more, saturation magnetic flux density 4000G or more, and {11
A method for producing a wear-resistant high magnetic permeability alloy, which is characterized by forming a recrystallized texture of 0}<112>. 2.Ni60-90%, Nb0.5-14% by weight
, P0.001-1% and the balance Fe as main components, Cr, Mo, Ge, Au as subcomponents each at 7% or less, Co, V at 10% or less, W at 15% or less, C
u, Ta, Mn each 25% or less, Al, Si, T
i, Zr, Hf, Sn, Sb, Ga, In, Ti, rare earth elements, platinum group elements each at 5% or less, Be, Ag,
An alloy consisting of 3% or less each of Sr and Ba, 1% or less of B, a total of 0.01 to 30% of one or more types, and a small amount of impurities, is heated to a temperature of more than 900°C and less than 1000°C. After processing, it is cooled, and then subjected to cold working at a processing rate of 50% or more, and then heated at a temperature of 900°C or more and below the melting point,
Then, from the temperature above the regular-irregular lattice transformation point to 100°C
Cool at an appropriate rate corresponding to the composition/second to 1°C/hour,
By further heating this at a temperature below the regular-disorder lattice transformation point for an appropriate time corresponding to the composition for 1 minute to 100 hours and cooling, the effective magnetic permeability at 1 KHz is 30.
00 or more, saturation magnetic flux density 4000G or more, and {11
A method for producing a wear-resistant high magnetic permeability alloy, which is characterized by forming a recrystallized texture of 0}<112>.
JP1262696A 1989-10-07 1989-10-07 Manufacturing method of wear resistant high permeability alloy. Expired - Lifetime JPH0645847B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1262696A JPH0645847B2 (en) 1989-10-07 1989-10-07 Manufacturing method of wear resistant high permeability alloy.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1262696A JPH0645847B2 (en) 1989-10-07 1989-10-07 Manufacturing method of wear resistant high permeability alloy.

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP59079101A Division JPS60224728A (en) 1984-04-19 1984-04-19 Wear resistant high magnetic permeability alloy and its manufacture and magnetic recording/reproducing head

Publications (2)

Publication Number Publication Date
JPH02194154A true JPH02194154A (en) 1990-07-31
JPH0645847B2 JPH0645847B2 (en) 1994-06-15

Family

ID=17379326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1262696A Expired - Lifetime JPH0645847B2 (en) 1989-10-07 1989-10-07 Manufacturing method of wear resistant high permeability alloy.

Country Status (1)

Country Link
JP (1) JPH0645847B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5525164A (en) * 1993-04-30 1996-06-11 Nkk Corporation Ni-Fe magnetic alloy and method for producing thereof
CN106435276A (en) * 2016-12-26 2017-02-22 重庆派馨特机电有限公司 Graphene-reinforced nickel-based alloy powder for modifying stirring head
CN106435275A (en) * 2016-12-26 2017-02-22 重庆派馨特机电有限公司 Alloy powder for modifying stirring head
CN106591830A (en) * 2016-12-26 2017-04-26 重庆派馨特机电有限公司 Composite powder improving abrasion resistance of stirring head

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5525164A (en) * 1993-04-30 1996-06-11 Nkk Corporation Ni-Fe magnetic alloy and method for producing thereof
US5669989A (en) * 1993-04-30 1997-09-23 Nkk Corporation Ni-Fe magnetic alloy and method for producing thereof
CN106435276A (en) * 2016-12-26 2017-02-22 重庆派馨特机电有限公司 Graphene-reinforced nickel-based alloy powder for modifying stirring head
CN106435275A (en) * 2016-12-26 2017-02-22 重庆派馨特机电有限公司 Alloy powder for modifying stirring head
CN106591830A (en) * 2016-12-26 2017-04-26 重庆派馨特机电有限公司 Composite powder improving abrasion resistance of stirring head

Also Published As

Publication number Publication date
JPH0645847B2 (en) 1994-06-15

Similar Documents

Publication Publication Date Title
US5547520A (en) Wear-resistant high permeability magnetic alloy and method of manufacturing the same
US4830685A (en) Wear-resistant alloy of high permeability and method of producing the same
JPS625972B2 (en)
KR100405929B1 (en) Abrasion resistant high transmittance alloy, its manufacturing method and magnetic recording playback head
JPS6212296B2 (en)
JPH02194154A (en) Manufacture of water-resistant high permeability alloy
JPS5947017B2 (en) Magnetic alloy for magnetic recording and playback heads and its manufacturing method
JPS5947018B2 (en) Magnetic alloy for magnetic recording and playback heads and its manufacturing method
JPH0310699B2 (en)
JPH02153036A (en) Wear-resistant high permeability alloy for magnetic recording/reproducing head and its manufacture and magnetic recording/reproducing head
JPH0377644B2 (en)
JPH0645849B2 (en) Manufacturing method of wear resistant high permeability alloy.
JPH0310700B2 (en)
JPH07166281A (en) Wear resistant magnetic alloy
JPH10259439A (en) Wear resistant high permeability alloy and magnetic recording and reproducing head
JPS6218619B2 (en)
JPH0368107B2 (en)
JPH02153052A (en) Manufacture of wear resistant high permeability alloy for magnetic recording/reproducing head and magnetic recording/reproducing head
JPS6155583B2 (en)
JPH0645846B2 (en) Manufacturing method of wear resistant high permeability alloy.
JPH02146704A (en) Magnetic recording and reproducing head having wear resistance and high permeability
JPS6130405B2 (en)
JPS5857499B2 (en) Ni-Fe-Nb wear-resistant high permeability alloy and magnetic recording/reproducing head
KR920006607B1 (en) Method of making fe alloy for the soft magnetic materials
JPH0377645B2 (en)